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Abstract—In this paper, we investigate the competitive content
placement problem in Mobile Edge Caching (MEC) systems,
where Edge Data Providers (EDPs) cache appropriate contents
and trade them with requesters at a suitable price. Most of the
existing works ignore the complicated strategic and economic
interplay between content caching, pricing, and content sharing.
Therefore, we propose a joint Mean-Field Game framework
for mobile edge Caching and Pricing (MFG-CP) in large-scale
dynamic MEC systems, which can facilitate distributed optimal
decision-making based on the mean-field game theory. Specifi-
cally, we first formulate the competitive content placement issue
among EDPs as a non-cooperative stochastic differential game.
To significantly reduce the communication and computation com-
plexity, we further devise a mean-field model to approximate the
collective impact of all EDPs on caching, trading, and sharing, by
which each EDP can quickly estimate some unknown information
without considerable interactions. Then, we develop a distributed
best response scheme based on iterative learning, enabling each
EDP to solely customize its optimal caching strategy and pricing
policy. Besides, we theoretically prove the existence of a unique
MFG equilibrium. Finally, trace-driven simulations demonstrate
the effectiveness of MFG-CP compared with some baselines.

Index Terms—Mobile edge caching, dynamic pricing, mean-
field game, network economics.

I. INTRODUCTION

A. Background and Motivation

With the proliferation of intelligent devices and services,
Mobile Edge Caching (MEC) has become an attractive
paradigm for handling the explosive growth of mobile data
traffic [1]–[8]. A typical MEC system consists of many Edge
Data Providers (EDPs, e.g., small-cell/femtocell base stations
and smartphones) and a group of content requesters, through
which EDPs can cache appropriate contents (e.g., articles,
videos, and music) and then trade them with requesters at a
suitable price [9], [10]. Due to its ability to effectively enhance
Quality of Experience (QoE) for requesters and reduce band-
width consumption, MEC has garnered attention from various
commercial platforms, e.g., Google Edge Network [11], Fastly
[12], CacheMire [13], and Vbrick Edge Caching [14].

In this paper, we focus on the competitive content placement
issue in MEC systems, where each EDP not only needs to
place proper contents but also needs a pricing policy for
content trading. Although much effort has been devoted to
content placement [15]–[18], most of them do not discuss the

economic competition in caching optimization. Actually, there
exists a complex game among EDPs. For example, in the
same geographical area, there are two edge video providers
(Alice and Bob) offering video services {v1, v2} to requesters.
Here, the popularity of v1 is higher than v2, and Alice (or
Bob) is capable of only caching one video due to the limited
storage resources. Considering that high-popularity videos can
generate more trading incomes, Alice and Bob generally tend
to cache v1 to improve their utilities (i.e., net profits). However,
when both Alice and Bob cache v1, there arises a competition
that impels them to attract more requesters by sequentially
lowering their trading prices. Consequently, both Alice and
Bob will earn low utilities or even negative utilities. Then, one
of them might prefer to select the other video v2 to enhance its
own utility. In large-scale MEC systems, such the competitive
content trading among multiple EDPs will make the content
placement issue more challenging. Especially, when EDPs do
not cache the content required by the corresponding requester,
peer content sharing is conducive to improving the caching
efficiency [19]. Hence, it is highly significant to explore the
economic effect of dynamic pricing for content placement.

B. Challenges

There are several challenges that need to be overcome in
addressing the competitive content placement issue, i.e.,
• Complicated interplay between caching, pricing, and shar-

ing: the challenge arises from the fact that caching strategies
can significantly impact the trading price under the supply-
demand principle, and the rewards of content trading con-
versely affect the decisions of content replacement. Such the
intricate mutual influence is critical since redundant content
caching may result in market saturation and decrease the
profits of EDPs, while insufficient caching will cause a low
QoE for requesters and hurt future trading. Meanwhile, the
content sharing among EDPs also involves an economic
transaction issue, making the interplay more complex.

• Real-time decision-making with system dynamics: the net-
work channel conditions may be unstable due to the random
mobility of requesters and some unknown interference. On
the other hand, the time-varying content service requests in
the dynamic trading market reflect the unpredictable content
popularity and timeliness demands. It is quite challenging



to incorporate these spatio-temporal dynamics to adaptively
make the optimal caching decision for each EDP.

• Large-scale distributed best response with incomplete infor-
mation: EDPs are coupled together since they coexist in a
common trading market. That is, there exists a complicated
non-cooperative game among EDPs to make distributed
caching decisions. Importantly, it is not trivial for an EDP
to estimate the detailed information of other EDPs in the
dynamic system, as heavy communication and computation
overhead will be consumed, especially for large-scale sce-
narios. Thus, how to efficiently make the best responses for
large-scale EDPs in a distributed way should be solved.
Although a few studies have delved into caching optimiza-

tion with pricing [20]–[25], the price of all EDPs for the same
content determined by these works is homogeneous, ignoring
the strategic behaviors of EDPs. Several works have studied
the strategy determination in dynamic scenarios [26]–[28].
Nevertheless, they focus on optimizing decision processes and
do not consider the complex technical and economic game
among multiple EDPs. In short, none of the previous research
has comprehensively addressed the three challenges.

C. Solution and Contribution
To circumvent the above challenges, we introduce the Mean-

Field Game (MFG) theory [29] to reduce a one-to-many
game to a one-to-one game and further propose a joint MFG
framework for mobile edge Caching and Pricing, namely
MFG-CP, where each EDP can optimize its own utility in a
distributed manner. Specifically, we first formulate the system
dynamics and design the utility function for each EDP, which
takes content pricing, content sharing, content placement, and
request service delay into consideration simultaneously. Then,
we model the competitive content placement problem among
multiple EDPs as a non-cooperative stochastic differential
game with incomplete information. To significantly mitigate
the communication and computation complexity, we design
a joint game framework for MEC systems by harnessing
the MFG methodology. In this framework, the collective
impact of all EDPs can be approximated via the mean-field
distribution, by which each EDP can quickly estimate the
unknown information related to its utility without considerable
interactions. Accordingly, we present an iterative best response
learning scheme to determine the optimal caching strategy
and the pricing policy distributedly. In a nutshell, our major
contributions are summarized as follows:
• We propose an MFG-CP framework for joint edge caching

and pricing, which can facilitate optimal decision-making
in a decentralized manner based on the MFG methodology.
To the best of our knowledge, this is the first endeavor to
explore the intricate interplay between strategic caching and
monetary trading in large-scale dynamic MEC systems.

• We formulate the caching optimization problem as a non-
cooperative stochastic differential game among multiple
EDPs. To achieve low complexity, we devise a mean-field
estimator to approximate the impact of caching, trading, and
sharing without requiring massive information exchange.

Fig. 1. System overview.

• We develop an iterative best response learning scheme to
solve the coupled differential equations. Consequently, each
EDP can solely customize the optimal caching strategy and
pricing policy using its local information. Additionally, we
prove the existence of a unique MFG equilibrium.

• We conduct extensive simulations on the real-world trace to
corroborate the significant performance of MFG-CP.

II. SYSTEM MODEL

We consider a large-scale MEC system, which consists of
a collection of cloud centers, a set M = {1, · · · , i, · · · ,M}
of Edge Data Providers (EDPs), and a group J =
{1, · · · , j, · · · , J} of content requesters, as illustrated in Fig.
1. Each EDP is endowed with caching functionality to serve
requesters who desire some contents. To promptly respond to
requesters’ demands via wireless links, EDPs need to cache
certain contents in advance and are allowed to share the cached
contents with each other in a decentralized edge-edge manner.
Upon receiving requests, EDPs can offer their cached contents
for sale at a suitable trading price. Now, we first present the
dynamic network model and the dynamic edge caching model
as game foundations and summarize our problem.

A. Network Model

Owing to the randomness and uncertainty of requesters’ mo-
bility in the MEC system, there exists some unpredictable in-
terference among requesters, leading to unstable network chan-
nel conditions. Consequently, we consider a non-stationary
time-varying channel model to describe such a stochastic
process. Following the commonly-accepted definition in [27],
[30], we let hi,j(t) represent the channel fading coefficient
between EDP i and requester j, and the evolution of hi,j(t)
can be characterized by a mean-reverting Ornstein-Uhlenbeck
process with a dynamic differential equation, i.e.,

dhi,j(t) =
1

2
ςh(υh − hi,j(t))dt+ ϱhdWi,j(t), (1)

where ςh, υh, and ϱh are positive constants. ςh denotes a
changing rate, while υh and ϱh represent the long-term mean
and standard deviation of the process, respectively. The ran-
dom diffusion term Wi,j(t) characterizes a standard Brownian
motion, capturing the randomness of the system (e.g., the
mobility of requesters and channel fluctuation). Eq. (1) depicts



TABLE I
DESCRIPTION OF MAJOR NOTATIONS

Variable Description
M, i the set of EDPs and the index of an EDP.
J , j the set of requesters and the index of a requester.
K, k the set of contents and the index of a content.

xi,k(t) the caching strategy of EDP i for content k at time t.
qi,k(t) the remaining space of EDP i for content k at time t.
Πi,k the content popularity of EDP i for content k.
Ii,k(t) the set of requesters who ask for content k at time t.
Li,k the content timeliness of EDP i for content k.

hi,j(t) the channel fading between EDP i and requester j.
Hi,j(t) the wireless transmission rate from EDP i to requester j.
pi,k(t) the unit price customized by EDP i for selling content k.
Si,k(t) the state of EDP i with respect to a given content k.
Qk, p̄k the data size of content k and the unit sharing price.

the random phenomenon of probability fluctuations around
the long-term mean υh, i.e., the Ornstein-Uhlenbeck process
gravitates towards υh at a rate ςh, while simultaneously
experiencing random fluctuations due to the Brownian motion.

In general, each requester is associated with a default
serving EDP that is nearest geographically. Here, let Ji(t) be
the set of requesters who are served by EDP i at time t. Since
the signals received by requesters from the corresponding EDP
may undergo the interference from other links, the achievable
wireless transmission rate from EDP i to requester j is:

Hi,j(t) = B log2
(
1 +

|gi,j(t)|2Gi
ϱ2 +

∑M
i′ ̸=i |gi′,j(t)|2Gi′

)
. (2)

Here, B is the transmission bandwidth, Gi is the transmission
power, and ϱ2 is the noise power. Generally, the channel gain
can be defined by |gi,j(t)|2= |hi,j(t)|2d−τi,j , where di,j means
the Euclidean distance between EDP i and requester j, and τ
denotes the path loss exponent.

B. Edge Caching Model
The integrated cloud center stores various types of contents,

denoted by K = {1, · · · , k, · · · ,K}, each of which will
be updated at different frequencies. For example, a content
contains the traffic flow data of several important roads (or
the financial news of some countries), and then the center may
update it every hour (or every day). The data size of content
k is denoted by Qk. After downloading contents, each EDP
will conduct the content placement and content trading.

During the content placement phase, each EDP needs a
caching strategy to optimize its own utility, as outlined in
Section III. Let xi(t) = [xi,1(t), · · · , xi,K(t)] represent the
caching strategy of EDP i, where xi,k(t) ∈ [0, 1] indicates
the instantaneous caching rate of content k, representing the
caching proportion when EDP i downloads content k from
the data center in time slot t. Correspondingly, the time-
varying remaining storage capacity of EDP i for all contents
is denoted by qi(t) = [qi,1(t), · · · , qi,K(t)], where qi,k(t)
signifies the remaining space of EDP i for content k. This
indicates that each EDP may cache a portion of content k while
reserving some space in the storage. To reasonably describe
the dynamics of qi(t), we introduce several influential factors.
Definition 1 (Content Popularity). The content popularity
of EDP i refers to the frequency at which the content k is

requested, denoted by Πi,k. Initially, the content popularity
typically conforms to the Zipf’s distribution [31], expressed
as Πi,k(t0)=

1/kι∑K
k=1 1/kι

. Here, ι>0 signifies the steepness of
the distribution. Let Ii,k(t)∈Ji(t) be the set of requesters who
ask for content k at time t. Based on the number of requests
changing over time, the content popularity can be updated as:

Πi,k(t)=
K ·Πi,k(t0) + |Ii,k(t)|
K +

∑K
k=1 |Ii,k(t)|

. (3)

Definition 2 (Content Timeliness). To capture the urgency
of requesters’ demands, we define the content timeliness of
EDP i as the level of urgency with which requesters acquire
content k, denoted by Li,k ∈ [0, Lmax]. A larger Li,k means
that requesters desire to receive content k with less time delay,
e.g., most drivers hope to obtain traffic data as soon as possible
for route planning. Suppose each requester j ∈ Ii,k(t) can
specify its data timeliness requirement Li,k,j when making a
request. At time t, Li,k(t) can be approximated by the average
value, i.e., Li,k(t)=

∑
j∈Ii,k(t) Li,k,j/|Ii,k(t)|.

Evidently, the remaining space qi,k(t) fluctuates with the
caching strategy. Simultaneously, when taking the content
popularity into account, EDP i may opt to discard content k if
it is rarely requested. On the other hand, from the perspective
of response delay, EDP i is inclined to allocate more storage
space to content k when it is urgently requested, thereby
mitigating the need for additional communication with other
EDPs or the center. Consequently, the dynamics of the caching
state can be characterized as follows:

dqi,k(t) = Qk[−w1xi,k(t)− w2Πi,k(t)

+w3ξ
Li,k(t)]dt+ ϱqdWi(t), (4)

where w1, w2, w3, and ϱq are positive constant coefficients to
adjust the proportion of different factors, and ξ ∈ (0, 1) is a
pre-fixed parameter. Similar to Eq. (1), Wi(t) is also a standard
Brownian motion. The first term reflects the decrementing rate
of the remaining space, which is controlled by the determined
caching strategy. The terms Πi,k(t) and ξLi,k(t) signify the
incrementing rate of the remaining space, arising from the
discarding part based on the dynamic demands of requesters.
More concretely, EDP i will discard content k when it is
scarcely requested by requesters, i.e., the fewer the requests
for content k, the faster it is removed from the caching storage.
Meanwhile, EDP i will also appropriately discard content
k when it is not urgently needed by requesters, which is a
decreasing function of Li,k(t). Here, ξ regulates the steepness
of the function. That is, the more urgent the requests for
content k, the faster it is added into the caching storage.

During the content trading phase, each EDP sells its own
contents to the corresponding requesters. Let pi,k(t) denote
the unit price customized by EDP i for selling content k
at time t. It is worth noting that EDP i may not cache the
whole data of content k in accordance with its predetermined
caching strategy xi,k(t). When asking for uncached data from
the center or other EDPs, each EDP will give priority to
adjacent EDPs for the sake of reducing the transmission delay.
Nevertheless, without a proper economic incentive, each EDP



is generally unwilling to share its cached data [32]. Hence,
we adopt a common usage-based pricing scheme [33], [34],
where each EDP needs to pay a uniform unit price (denoted
by p̄k) for obtaining content k from other peer EDPs.

C. Model Summary and Problem Statement
Now, we summarize the key characteristics of the above

system. Firstly, it is a joint edge caching and pricing frame-
work, where EDPs can determine their own caching strategies
by themselves, share their own contents with nearby peers,
and trade their contents with requesters. Secondly, we take
the dynamics of network conditions and caching storages into
consideration, which involves several realistic issues such as
the heterogeneous demands of content popularity and timeli-
ness, the real-time trading price, as well as the paid sharing
among EDPs. Thirdly, there exists an intertwined game among
multiple EDPs under time-varying requests, and the decisions
of different EDPs will interact with each other. In this paper,
we take an interest in dealing with these problems:
1) How does each EDP customize its own caching strategy

and trading price with incomplete information?
2) How do the strategies of different EDPs affect each other?
3) How does one achieve the system/game equilibrium state?

These problems encompass the significant technical and
economic interactions among diverse EDPs in the large-scale
dynamic MEC system. For ease of reference, we summarize
the commonly used notations in Table I.

III. GAME FORMULATION

A. Utility Function Design

The goal of each EDP i is to maximize its own utility (i.e.,
net profit) by determining a suitable caching strategy xi,k(t)
during a finite time horizon T . EDP i will confront with three
cases when responding to requesters, i.e.,
• Case 1: EDP i has already cached enough content k for

requesters. Owing to the continuity of caching states, some
contents might not be wholly cached, i.e., only a relatively
small portion α (e.g., α=20%) is not stored. In this case,
the content can basically meet the use of requesters.

• Case 2: EDP i does not cache enough content k but some
adjacent EDPs have cached the content. Then, EDP i will
associate with the other EDP that provides enough content
k and will pay the corresponding reward.

• Case 3: Both EDP i and other EDPs do not cache enough
content k. Consequently, the EDP needs to download the
uncached portion of content k from the cloud center.
For ease of exposition, let P1(qi,k(t)), P2(qi,k(t), q−i,k(t)),

and P3(qi,k(t), q−i,k(t)) describe the occurrence probability
of the above three cases, respectively. Here, q−i,k(t) denotes
the caching state of the other possible EDP in case 2. More
specifically, we can define these probabilities as follows:

P1(qi,k(t))=f(α·Qk − qi,k(t));

P2(qi,k(t), q−i,k(t))=f(qi,k(t)−α·Qk) · f(α·Qk−q−i,k(t));
P3(qi,k(t), q−i,k(t))=f(qi,k(t)−α·Qk) · f(q−i,k(t)−α·Qk),

where f(x)=1/(1 + e−2lx), l>0 is a smooth approximation
of the heaviside step function. For instance, in case 1, P1

approaches 1 when qi,k(t) is less than 20%·Qk.
Then, we define the utilities of EDPs based on the above

cases, the network model, and the edge caching model. The
utility of each EDP refers to the income paid by requesters
and the sharing benefit from other EDPs minus total cost, i.e.,

1) Trading income Φ1
i,k(t): Considering the supply-demand

relationship in the trading market, we define the dynamic price
for each EDP i selling content k as follows:

pi,k(t) =


p̂, M = 1

p̂−
η1

∑M
i′=1,i′ ̸=iQk · xi′,k(t)

M − 1
, M ≥ 2

(5)

where p̂ represents the maximum price per unit data that
EDPs can charge, and η1 is used to convert the average
content supply into monetary value. According to the principle
of supply and demand, when multiple EDPs offer the same
content in the trading market, the price of the content tends to
decrease as EDPs try to gain a competitive advantage. Based
on Eq. (5), the trading income of EDP i can be expressed as:

Φ1
i,k(t) = Ii,k(t)pi,kP1(Qk − qi,k(t)) (6)

+Ii,k(t)pi,kP2(Qk−q−i,k(t))+Ii,k(t)pi,kP3Qk.

2) Sharing benefit Φ2
i,k(t): The sharing benefit is the

monetary benefit formed when EDP i shares its contents with
other EDPs. We use Mi,k(t)∈M to denote the set of EDPs
who request content k from EDP i at time t. Then, the sharing
benefit can be expressed as follows:

Φ2
i,k(t) =

∑
i′∈Mi,k(t)

p̄k(qi′,k(t)− qi,k(t)). (7)

3) Content placement cost C1
i,k(t): Placing and storing

cached contents will consume some resources (such as pro-
cessing capacity, computation time, etc.), which can be char-
acterized by a quadratic function like in [30], i.e.,

C1
i,k(t) = w4xi,k(t) + w5x

2
i,k(t). (8)

Here, w4 and w5 are adjustment coefficients.
4) Staleness cost C2

i,k(t): The staleness cost is defined as
a penalty function of the total request service delay. Since the
delay directly affects QoE for requesters, the function needs
to be non-decreasing and nonnegative to measure the impact
of staleness. For simplicity, we adopt a linear penalty function
to describe the staleness cost, shown as follows:

C2
i,k(t)=η2

{
Qkxi,k(t)

Hc
+

∑
j∈Ii,k(t)

[
P1Qk − qi,k(t)

Hi,j(t)
(9)

+P2Qk − q−i,k(t)

Hi,j(t)
+ P3(

qi,k(t)

Hc
+

Qk
Hi,j(t)

)
]}
,

where η2 is utilized to convert the total request service delay
into the staleness cost, and Hc denotes the transmission rate
between the center and any EDP. The first term is generated
by the process in which EDP i downloads content k from
the center according to the determined caching strategy. The
second term corresponds to case 1 when EDP i can directly
transmit content k to requesters. The third term denotes the
delay when the EDP purchases the content from an adjacent



EDP and transfers it to requesters. Here, we omit the trans-
mission time between EDP i and its adjacent EDPs because it
is much smaller than the communication delay between EDP
i and the center/requesters. The fourth term corresponds to
case 3 when EDP i will download the uncached content from
the data center and transmit the whole content k to requesters.
After accumulating the delay of all corresponding requesters,
the staleness cost of EDP i can be acquired.

5) Sharing cost C3
i,k(t): In case 2, EDP i provides a

remuneration to a suitable adjacent EDP who is willing to
share content k, which will yield the sharing cost and can be
expressed by C3

i,k(t)=P2p̄k(qi,k(t)−q−i,k(t)).
Based on the above definitions, the utility function of EDP

i with respect to content k in time t can be represented as:

Ui,k(t)=Φ1
i,k(t)+Φ2

i,k(t)−C1
i,k(t)−C2

i,k(t)−C3
i,k(t). (10)

It is noteworthy that the net profit of each EDP not only
depends on its own strategy but also is affected by other
EDPs’ strategies. However, each EDP is unaware of the strate-
gies/states of other EDPs when making caching decisions.

B. Game Formulation
Based on the above models, we formulate the competitive

content placement problem among large-scale EDPs as a
stochastic differential game with incomplete information in
a finite time horizon, presented as follows:
• Players: A set M={1, · · · , i, · · · ,M} of EDPs.
• States: Let the 2-tuple Si,k(t)=⟨{hi,j(t)|j∈Ji(t)}, qi,k(t)⟩

denote the state of EDP i at time t with respect to a given
content k. Then, the state space is {Si,k(t)|i∈M, t∈ [0, T ]}.

• Strategies: A set {xi,k(t)} of all possible caching controls.
• Accumulative utility: The accumulative utility of player i

with regard to content k over the finite time horizon t can
be defined by Ui,k(t) = E[

∫ t
0
Ui,k(t

′)dt′].
In the above stochastic differential game, the optimization

problem of each EDP can be formulated as follows:
maxxi,k(t),t:0→T Ui,k(xi,k, Si,k,S−i,k), (11)

s.t., dhi,j(t) =
1

2
ςh(υh − hi,j(t))dt+ ϱhdWi,j(t),

dqi,k(t) = Qk[−w1xi,k(t)− w2Πi,k(t)

+w3ξ
Li,k(t)]dt+ ϱqdWi(t), (12)

where S−i,k={si′,k|i′ ̸= i, i′∈M} means the states of other
M−1 EDPs. The solution of the optimization problem needs
to achieve the Nash equilibrium, which is defined below:
Definition 3 (Nash Equilibrium, NE [35]). The set of optimal
caching strategies {x∗

i (t)|i∈M, t∈ [0, T ]} constitutes a Nash
equilibrium if and only if the following inequality holds:
Ui,k(x

∗
i,k(t), S

∗
i,k(t),S

∗
−i,k(t)) ≥ Ui,k(xi,k(t), S

∗
i,k(t),S

∗
−i,k(t)),

where S∗
i,k(t) and S∗

−i,k(t) denote the corresponding opti-
mal states under the optimal caching strategies. Def. 3 can
guarantee that no participant can improve its own utility by
unilaterally deviating from its optimal strategy.

According to the theory of dynamic programming, the NE
of the game can be achieved by solving a series of Hamilton-
Jacobi-Bellman (HJB) equations to characterize the optimal

strategies for players. The HJB equation is a partial differential
equation that describes the value function associated with the
game, where the value function is the optimization objective,
i.e., Vi,k(t, Si,k,S−i,k)=maxxi,k(t) Ui,k(xi,k, Si,k,S−i,k). For
each EDP i∈M, the HJB equation can be presented as:

maxxi,k(t)

[
OVi,k(t) +Ui,k(t)

]
+ ∂tVi,k(t) = 0, (13)

where O represents the partial differential operator. The opti-
mal caching strategy of each EDP can be derived by solving
the M equations simultaneously. Unfortunately, there exists a
complicated coupling of the M equations, and it is arduous
to solve them. This is because each EDP needs the caching
strategies and state information of all other EDPs, leading to
a high computational burden and significant communication
overhead. Moreover, the content trading process involves a
dynamic pricing policy and a peer-to-peer content sharing
policy, which also results in the unknown mutual influence
among EDPs’ decisions. Therefore, it is unrealistic to obtain
the solution of equations directly when the number of EDPs
is enormous. On the other hand, when each EDP wishes to
customize its own strategy by itself in a decentralized manner,
the MEC system finds it harder to achieve an NE in such an
incomplete information scenario. To solve these challenges,
we further propose a new game framework below.

IV. FRAMEWORK DESIGN

In this section, we focus on designing a joint game frame-
work, called MFG-CP. We first introduce the basic idea of
MFG-CP. Next, we derive the optimal caching strategy for
each EDP and present the detailed framework descriptions.
Finally, the NE and complexity of MFG-CP are analyzed.

A. Basic Idea
We propose a joint game framework for caching and pricing

(i.e., MFG-CP), in which each EDP can directly customize its
optimal caching strategy and pricing policy without knowing
other EDPs’ strategies, states, trading prices, and sharing
effects. The basic idea of MFG-CP is to approximate the
collective impact of large-scale EDPs on content caching,
trading, and sharing without considerable interactions, and
then iteratively solve multiple coupled equations to determine
the optimal caching strategy for each EDP. More explicitly, we
first transform the original stochastic differential game to an
MFG, where the multi-player interactions can be regarded as a
generic-player representation based on a statistical distribution.
Then, we design a mean-field estimator to approximate the cu-
mulative impact of all EDPs on caching, trading, and sharing,
in which the Fokker-Planck-Kolmogorov (FPK) equation is
constructed to display the evolution of mean-field distribution.
Here, we skillfully estimate the unknown incomes and costs of
each EDP without the need for frequent information exchange.
Next, we design a generic player to adjust its caching strategy
based on the HJB equation and the feedback from the mean-
field estimator. Finally, in order to acquire the NE of the game
for each EDP in a distributed scenario, we design an iterative
best response learning algorithm to solve the coupled HJB
and FPK equations. In this way, the optimal caching strategy



(a) Framework under the stochastic differential game (b) MFG-CP under the mean-field game
Fig. 2. Comparisons under different game frameworks.

can be determined during the time horizon using only local
information and a mean-field distribution.

As illustrated in Fig. 2, we compare MFG-CP with the
original game. Clearly, the number of partial differential
equations used for deriving the optimal caching strategies in
the MFG-CP is reduced from M×K to 2×K. In general,
according to the Zipf law, the request probability of most
contents remains considerably small, even when K is large.
Hence, the number of equations that need to be solved is less
than 2×K, implying that the computing time required to derive
the optimal strategies will not incur excessive complexity.

B. Determining the Optimal Caching Strategy
Firstly, we transform the original game into a novel MFG

and design two modules: a generic player who takes rational
actions and a mean-field estimator that represents the collective
actions of all other players. At the beginning, each generic
EDP formulates a strategy set comprising all feasible states to
optimize its utility. Since all EDPs are symmetrical in possible
states and are equally rational, they share a common strategy
set. Subsequently, by approximating the Probability Density
Function (PDF) of states, the mean-field estimator calculates
the cumulative impact of all EDPs on content caching, trading,
and sharing for the generic EDP. In this way, the generic EDP
adjusts its strategy set based on the feedback from the mean-
field estimator, and the mean-field estimator recalculates the
impact according to the updated strategy set. This iterative
process continues until an NE is achieved.

Then, we introduce the two modules: the mean-field esti-
mator and the generic player, respectively.
(1) Mean-field estimator: The above MFG model possesses
four characteristics: the rationality of EDPs; a large number
of EDPs; the interchangeability of the states of EDPs; and
the interactions among EDPs via the mean-field estimator.
The first feature shows that each EDP makes decisions by
itself. The second feature shows the large-scale MEC system
possesses a sufficient number of EDPs, so that the role of
behavior decision for each EDP in the group will become
smaller. In other words, the state exchange among EDPs will
not alter the outcome of the game, which corresponds to the
third feature. The presence of the fourth feature arises from
the fact that each EDP interacts with the mean-field estimator,
rather than an individual within the environment.

Building upon the aforementioned characteristics, the
caching strategy of each EDP is only determined by its

own current state and the mean-field estimation. That is,
any permutation of the indexes of EDPs will not change the
determination of the optimal strategy. Consequently, we can
concentrate on a generic EDP by removing the index i, and
the EDP interacts with the mean-field estimator instead of
communicating with all the other EDPs separately.

Given the state Sk(t), the mean-field estimator needs to
estimate the statistical distribution of this state at time t, and
the probability density of EDPs in a specific state with respect
to content k is expressed as follows:

λ(Sk(t))= lim
M→∞

Λ(Sk(t))= lim
M→∞

1

M

∑M

i=1
1{Si,k(t)=Sk(t)}, (14)

where Λ(Sk(t)) means the proportion of EDPs in the state
Sk(t), and the indicator function 1{·} returns one if the given
condition is satisfied and zero otherwise. Since λ(Sk(t)) is
a continuum PDF, there is

∫
h

∫
q
λ(Sk(t))dhdq = 1. When

the number of EDPs approaches infinity (i.e., M→∞), the
proportion Λ(Sk(t)) converges to a mean-field PDF λ(Sk(t)),
which characterizes the state evolution of the EDPs over time.
When all EDPs in the MEC system implement the derived
optimal strategies (i.e., Theorem 1), the evolution of the mean-
field distribution under the dynamics of the channel state h(t)
and the remaining caching state qk(t) can be described by
leveraging the FPK equation as follows:

∂tλ(Sk(t)) +
1

2
ςh(υh − h(t))∂hλ(Sk(t))

+Qk[−w1xk(t)− w2Πk(t) + w3ξ
Lk(t)]∂qλ(Sk(t))

−1

2
ϱ2h∂

2
hhλ(Sk(t))−

1

2
ϱ2q∂

2
qqλ(Sk(t)) = 0. (15)

Based on the mean-field distribution, we can approximate
the unknown incomes and costs which involve the strategies
and states of other EDPs. Firstly, we need to determine the
dynamic price pk(t) with the help of the mean-field PDF
λ(Sk(t)) and the MFG-based optimal strategy x∗k(Sk(t)).
According to Eq. (5), the price is associated with other EDPs’
caching strategies, which can be rewritten as:

pi,k(t) = p̂− η1MQk
M − 1

∫
h

∫
q

Λ(Sk(t))x
∗
k(Sk(t))dhdq

+
η1Qk
M − 1

xi,k(Sk(t)) ⇒ pk(t) = lim
i→∞

pi,k(t), (16)

⇒ pk(t) ≈ p̂− η1Qk

∫
h

∫
q

λ(Sk(t))x
∗
k(Sk(t))dhdq. (17)

Here, Eq. (17) holds due to the fact that limi→∞M/(M −
1) = 1 and limi→∞

η1
M−1xi,k(Sk(t)) = 0. In addition to the

dynamic price, the trading income also needs to know q−i,k(t),



which can be approximated by the average state of all other
EDPs. More specifically, we define q̄−,k(t) to represent the
mean remaining caching storage space of other EDPs. Given
the mean-field distribution, the average caching state with
regard to λ(Sk(t)) can be expressed as:

q̄−,k(t) ≈
∫
h

∫
q

qk(t)λ(Sk(t))dhdqk. (18)

Then, we estimate the sharing benefit to analyze the influ-
ence of paid content sharing. We assume that the center will
randomly assign a suitable EDP to respond to the correspond-
ing EDP’s request. Hence, we consider the average sharing
benefit for sharing content k, i.e., the monetary benefit ac-
quired by each EDP who has cached enough content k. At time
t, the number of EDPs who have the qualification to share their
content k can be approximated as Mk(t)=

∑M
i=1 1qi,k(t)≤α·Qk

,
which can be publicized by the center. Meanwhile, the center
also observes the number of EDPs who have encountered case
3, denoted by M ′

k(t). In addition, the average transmission size
∆q(t) between EDPs can be calculated as follows:

∆q(t)≈
∣∣∣∣ ∫∫

qk≤α·Qk

qk(t)λ(Sk(t))dhdqk−
∫∫

qk>α·Qk

qk(t)λ(Sk(t))dhdqk

∣∣∣∣.
From a holistic perspective, the average sharing benefit at time
t can be expressed as: Φ̄2

k(t)= p̄k∆q(t)(
M−M ′

k(t)
Mk(t)

−1).
According to the above approximation, the generic EDP

can further optimize its utility by calling the mean-field
estimator and can determine the optimal caching strategy
under the current state information. The process of the strategy
determination is elucidated in the following module.
(2) Generic player: With the establishment of the mean-
field estimator, the optimization problem of each EDP can
be converted into a generic problem, which only involves the
local state information and the mean-field distribution, i.e.,

maxxk(0→T ) Uk(xk, Sk, λ). (19)
It is crucial to highlight that the utility function in Eq.

(19) is exactly consistent with Eq. (11) after removing the
EDP index i. More importantly, we just employ the mean-
field estimator to quickly obtain pk(t), q̄−,k(t), and Φ̄2

k(t),
and then we directly substitute them for the trading income,
sharing benefit, staleness cost, and sharing cost. As a result,
the value objective function Vk(t, Sk, λ) only relies on the
individual caching strategy, the current state, and the mean-
field distribution. To address the optimization problem, the
HJB equation (i.e., Eq. (13)) can be rewritten as:

maxxk(t)

[
1

2
ςh(υh − h(t))∂hVk(t) +

1

2
ϱ2h∂

2
hhVk(t)

+Qk[−w1xk(t)− w2Πk(t) + w3ξ
Lk(t)]∂qVk(t)

+
1

2
ϱ2q∂

2
qqVk(t) +Uk(t, xk, Sk, λ)

]
+ ∂tVk(t) = 0. (20)

Based on the value function Vk(t) acquired by solving Eq.
(20), the optimal caching strategy can be derived by Thm. 1.

Theorem 1. In the MFG-CP framework, the optimal caching
strategy can be determined by

x∗k(t) =

[
− (

w4

2w5
+

ηQk
2Hcw5

+
Qkw1∂qVk(t)

2w5
)

]+
, (21)

where the function [x]+ is defined as: [x]+=1 when there is
x>1, [x]+=0 when there is x<0, and [x]+=x otherwise.

Proof. According to the HJB equation in Eq. (20), the op-
timal strategy of the MFG game is the argument of the
supremum term, i.e., x∗k(t) = max(Ω(t, xk, Sk, λ)), where
Ω(t, xk, Sk, λ) = 1

2 ςh(υh − h(t))∂hVk(t) + 1
2ϱ

2
h∂

2
hhVk(t) +

Qk[−w1xk(t)−w2Πk(t)+w3ξ
Lk(t)]∂qVk(t)+ 1

2ϱ
2
q∂

2
qqVk(t)+

Uk(t, xk, Sk, λ). The maximum term is a convex function of
xk(t) for all time t, because the second order derivative is
lower than zero. Therefore, we can employ the Karush-Kuhn-
Tucker conditions to find the critical point, i.e., computing the
first order derivative of Ω(t, xk, Sk, λ) as follows:
∂Ω(t, xk, Sk, λ)

∂xk(t)
=−Qkw1∂qVk(t)−(w4+2w5xk(t))−

η2Qk
Hc

.

We let the above derivative equal to zero, and then the
closed-form expression of the optimal caching strategy can
be derived as presented in Eq. (21).

Besides, it is noteworthy that x∗k(t) is associated with Vk(t),
which is the solution of Eq. (20). By substituting x∗k(t) back
into Eq. (20), the final version of the HJB equation without
the variable xk(t) can be directly obtained.

The solution under the MFG-CP framework outlined above
is nearly equivalent to that of the stochastic differential game
when dealing with a large number of players, ensuring consis-
tency in the optimization problem. Additionally, the mean-field
approximation method designed in our framework exhibits
lower complexity compared to the original game. As can be
seen from Eqs. (15) and (20), these two modules interact with
each other, forming an integral part of the overall MFG-CP
framework. More specifically, the solution of the HJB equation
has a great impact on the FPK equation to update the mean
field. Conversely, the solution of the FPK equation is also
required by the HJB equation to estimate the generic player’s
utility and update strategies. These interlinked modules com-
prehensively construct the core structure of MFG-CP, which
will be elaborated further below.

C. Framework Description

The detailed game framework for mobile edge caching and
pricing in a continuous optimization epoch is presented in Alg.
1, in which the optimal caching strategy can be determined
by the iterative learning process according to Alg. 2. First of
all, the state of each EDP and the data size of each content
are initialized (Line 1). By utilizing parallel processing, each
EDP takes the finite time horizon T as an optimization epoch
(Lines 2-14). Specifically, each EDP initially records the
requirements of requesters Ii,k(t) and determines the content
set K′ that needs to be cached (Lines 4-5). Here, we assume
that the change in requesters’ demands occurs at a relatively
slow rate compared to the time scale of the optimization
epoch. Therefore, some contents need not be considered in
the following optimization. Subsequently, each EDP conducts
the edge caching and content trading for each content k∈K′

(Lines 6-14). Based on Defs. 1 and 2, the content popularity
and content timeliness can be calculated (Line 8). Then, EDP



Algorithm 1: The Proposed Framework (MFG-CP)
input : The parameters w1∼w5, η1, η2, ςh, υh, ϱh, ϱq, and

ξ; the maximum epoch number σmax;
1 Initialize: the state S(0); the data size of each content Qk;
2 for each EDP i = 1, 2, · · · ,M in parallel do
3 while each optimization epoch σ ≤ σmax do
4 Record requests {Ii,k(t)|k∈K, t∈ [σT, (σ+1)T )};
5 Determine the content set K′ = {k|qi,k(t) < Qk

and
∑(σ+1)T
σT |Ii,k(t)|>0} that needs to be cached;

6 for each content k ∈ K′ do
7 // Mobile Edge Caching;
8 Compute content popularity Πi,k(t) and con-

tent timeliness Li,k(t) for all contents;
9 Call for Alg. 2 to obtain the optimal caching

strategy x∗i,k(t) as its best response;
10 Update the current state based on x∗i,k(t);
11 // Pricing and Trading;
12 Case 1: sell the content at a unit price pi,k(t);
13 Case 2: buy the uncached content from an

adjacent EDP at p̄k and sell it to requesters;
14 Case 3: download the uncached content from

the center and sell it to requesters;

i invokes Alg. 2 to give the best response, i.e., customizing its
optimal caching strategy (Lines 9-10). After that, the trading
process between the EDP and the corresponding requesters
will be carried out, where the EDP needs to take different
actions under various cases (Lines 11-14).

Alg. 2 describes the iterative process for learning the best
response for each EDP. When ψ<ψth or |xψk (t)−x

ψ−1
k (t)| is

greater than a preset threshold, we iteratively solve the coupled
HJB equation and FPK equation: the backward HJB models
the induction process of the optimization of each individual,
while the forward FPK models the evolution of the mean-field
as a whole. According to Eqs. (20) and (21), we solve the HJB
equation to update the strategy xψk (t) (Lines 4-5). Then, we
compute the FPK equation to update the mean-field estimator
based on Eq. (15) and the current strategy. Meanwhile, the
utility function can be updated according to Eq. (10), which
will be used for solving the HJB equation in the next iteration.

Remark: For each optimization epoch, the computational
complexity of Alg. 1 is O(Kψth), where ψth is the iterative
threshold. It is worth noting that the complexity of MFG-
CP is significantly lower than the complexity O(MKψth) of
a general framework that requires frequent information ex-
change among all EDPs. Consequently, the convergence time
of MFG-CP does not increase with M , effectively addressing
the scaling problem of the original game. Moreover, MFG-CP
can be easily extended to the scenario whereby the caching
capacity of each EDP is less than a fixed threshold. In fact,
this further optimization can be seen as a knapsack problem,
in which the weight and value of each content are considered.
Based on the solution of MFG-CP, the final caching strategy
will be further derived by solving the knapsack problem.

Algorithm 2: Iterative Best Response Learning Scheme
input : The iterative number ψ; iterative threshold ψth;
output: The optimal caching strategy;

1 Initialize: ψ=0; xψk (0); V
ψ
k ((σ+1)T ); λ;

2 while ψ < ψth do
3 ψ = ψ + 1;
4 Solve the HJB equation using xψ−1

k (t) and λ;
5 Update the strategy vector xψk (t) based on Eq. (21);
6 if |xψk (t)− xψ−1

k (t)| < a preset threshold then
7 Break the iterative learning process;

8 Solve the FPK equation using xψk (t) to update λ;
9 Update the mean-field estimator: pk(t), q̄−,k(t),∆q(t);

10 Update the utility function according to Eq. (10);

11 return xψk (t) for t∈ [σT, (σ+1)T ).

D. Theoretical Analysis
The optimal caching policy can be determined by the mutual

iterative calculation of HJB-FPK equations over the finite time
horizon. Hence, we first prove the existence and uniqueness
of the HJB equation and the FPK equation, respectively.

Lemma 1. In the MFG-CP framework, there exists the unique
value function Vk(t) of the HJB equation.
Proof. When the two conditions hold, the value function is
the unique solution of the HJB equation [36]: (i) the caching
strategy space is a compact subset of R; (ii) the drift term of
the state dynamics and the utility function are bounded and
Lipschitz continuous. The first condition is clearly satisfied
since the caching strategy space is confined to [0, 1]. For the
second condition, we need to analyze the drift terms and the
utility function, respectively. Based on Eqs. (1) and (4), the
drift terms are listed as follows:
DF1(t, hk, xk) = ςh(υh − hk(t))/2,

DF2(t, qk, xk) = Qk[−w1xk(t)− w2Πk(t) + w3ξ
Lk(t)].

We observe that DF1 and DF2 are bounded because hk(t)
is bounded and ξ∈ (0, 1). Therefore, the drift term of system
dynamics |DF (t, Sk, xk)|=

√
DF 2

1 +DF
2
2 is bounded. Due

to ∆DF1= |DF1(t, hk, xk)−DF1(t, h
′
k, xk)|= ςh(h′k−hk)/2

and ∆DF2= |DF2(t, qk, xk)−DF2(t, q
′
k, xk)|=0, there is:

|DF (t, Sk, xk)−DF (t, S′
k, xk)|=

√
(∆DF1)2+(∆DF2)2

≤ |ςh/2|
√

|h′k − hk|2 + |q′k − qk|2. (22)
Therefore, the drift term is Lipschitz continuous.
For the utility function shown in Eq. (10), we can easily find

that Uk(t) is bounded, and the partial derivative of Uk(t) is:
∂SUk(t)=∂SΦ

1
k(t)+∂SΦ

2
k(t)−∂SC2

k(t)−∂SC3
k(t). (23)

Based on Eq. (23), we further deduce the derivative of
Uk(t) with regard to qk(t), which can be calculated as:

∂qUk(t)≤Ik(t)pk(t)
[
∂qP1(Qk−qk(t))+∂qP2(Qk−q−,k(t))

−P1+Qk∂qP3
]
−

∑
j∈Ik(t)

[
∂qP1Qk − qk(t)

Hj(t)
− P1

Hj(t)

∂qP2Qk − q−,k(t)

Hj(t)
+ ∂qP3(

qk(t)

Hc
+

Qk
Hj(t)

) +
P3

Hc

]



−∂qP2p̄k(qk(t)−q−,k(t))− P2p̄k, (24)

where ∂qP1=f ′(α·Qk−qk(t)), ∂qP2 = f ′(qk(t)−α·Qk)·f(α·
Qk−q−,k(t)), ∂qP3 = f ′(qk(t)−α ·Qk) ·f(q−,k(t)−α ·Qk),
and f ′(x) = 2le−2lx(1+e−2lx)−2. Since Eq. (24) is the ele-
mentary function of qk(t) and qk(t) is bounded, the derivative
∂qUk(t) is also bounded. Similarly, we can verify that the
partial derivative with regard to hk(t) is bounded. Therefore,
the utility function is bounded and Lipschitz continuous. In
other words, the second condition is also satisfied.

Lemma 2. In the MFG-CP framework, there exists the unique
mean-field distribution λ(Sk(t)) of the FPK equation.
Proof. According to existing works [30], [36], we use the
following form to describe a parabolic partial differential equa-
tion: ∂tλ(Sk(t))+Θ = d, where Θ=−

∑k
i,j=1 ai,jλ(SiSj)+∑k

i=1 biλ(Si)+cλ. We assume that there is λ ∈ Ξ, where Ξ
represents the mean-field distribution space. If the following
conditions hold: ai,j , bi, c∈L∞(Ξ), d∈L2(Ξ), and ai,j=aj,i,
then there exists a weak unique solution λ. After observing
the designed FPK equation (i.e., Eq. (15)), we can obtain:

c = d = 0; ai,j =


1

2
ϱ2h +

1

2
ϱ2q, i = j = 1,

0, Otherwise.
(25)

Furthermore, we directly get ∥ai,j ∥∞≤ 1
2ϱ

2
h+

1
2ϱ

2
q , ∥c∥∞=

0, and ∥d∥2=0. Hence, these conditions ai,j , c∈L∞(Ξ), d∈
L2(Ξ), and ai,j = aj,i are satisfied. According to Lemma 1,
we have demonstrated the boundedness of the drift term bi, so
that bi∈L∞(Ξ) can also be satisfied. Hence, we establish the
existence and uniqueness of the solution for the FPK equation,
thereby completing the proof of this lemma.

Building on the aforementioned lemmas, we have estab-
lished the existence of unique solutions to the HJB and FPK
equations in one iteration. Consequently, the optimal caching
strategy and mean-field distribution can be acquired through
iteratively solving these coupled equations. In the following,
we need to guarantee the convergence of the updating process,
i.e., proving the uniqueness of the solution pair for the two
coupled partial differential equations.

Theorem 2. In the MFG-CP framework, there exists a unique
Nash equilibrium.
Proof. By using the temporary solutions acquired in the previ-
ous iteration as the initial values for the next iteration, each it-
eration actually involves a contraction mapping Ξ×Ξ → Ξ×Ξ.
Similar to Lemma 1, we can also prove that the mapping
satisfies the assumptions (H1-H5) in [37]. Next, given this
contraction mapping, there exists a unique fixed-point based
on the fixed-point theorem, i.e., the fixed point can be found by
initializing the iterations with an arbitrary point. Owing to the
existence of the unique solutions of HJB and FPK equations
proven in Lemma 1 and Lemma 2, the iterations for solving
Eqs. (15) and (20) are guaranteed to converge to a fixed point
[V∗
k (t), λ

∗(Sk(t))], which represents the unique solution pair
of the HJB-FPK equations. As a result, the existence and
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Fig. 3. Channel evolution in the network.

uniqueness of the Nash equilibrium can be guaranteed in the
MFG-CP framework. The proof is now completed.

V. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of MFG-CP
with extensive simulations on real-world datasets. We first
present the simulation settings and introduce the compared
algorithms, followed by the detailed experimental results.

A. Evaluation Methodology
Simulation Settings: We consider an MEC scenario where

EDPs and requesters are randomly distributed within a certain
range. In our simulations, we choose a set of K=20 content
categories and M = 300 EDPs. The number of requests for
each category is obtained from real-world YouTube Data [38].
Each trace of the dataset records content id, tags, views,
comment count, description, etc. The network parameters are
set as follows: B=10MHz, and τ =3. Meanwhile, the edge
caching parameters are set as: w1 = 1, w2 = 1/20, w3 = 10,
w4=2.5∗103, w5=0.65∗108, ξ=0.1, ϱq=0.1, Qk=100MB,
p̂=5 ∗ 10−7, α=20%, and T =1. For simplicity, we assume
that all EDPs hold the same transmission power G=1W, and
the initial distribution λ(0) obeys a normal distribution with
mean and standard deviation. Here, the mean value is produced
from [0.5, 0.8] and the standard deviation value is chosen from
{0.05, 0.1}. By default, we set λ(0)∼N (0.7, 0.12). Finally,
the conversion parameter η1 changes from [0.1, 0.4], the range
of the channel fading coefficient is set as [1, 10]∗10−5, and the
caching state of any EDP ranges from [0, 100MB]. Moreover,
we employ the finite difference method to numerically solve
the coupled HJB and FPK equations.

Compared Algorithms: Since existing works do not consider
content caching and pricing in incomplete information game
scenarios, they cannot be directly applied in our system.
Hence, we borrow the basic idea in these works and carefully
design four content placement algorithms for comparison:
Random Replacement (RR), Most Popular Caching (MPC)
[18], MFG [27], and Ultra-Dense Caching Strategy (UDCS)
[28]. The RR policy adopts random caching decisions; the
MPC method only caches currently most popular contents; the
MFG scheme is a downgraded version of MFG-CP, in which
the content sharing is not considered; and the UDCS approach
takes into account the content overlap and interference, with-
out considering the pricing issue and content sharing.

B. Evaluation Results
1) Evaluation of Mean-Field Equilibrium: First, we evaluate

the channel evolution in the network to verify the rationality
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Fig. 6. A heat map description of the mean-field distribution under different Qk and λ(0) ∼ N (0.7, 0.12).

Fig. 7. A heat map description of the mean-field distribution under different Qk and λ(0) ∼ N (0.7, 0.052).

of Eq. (1), in which we observe the trend of the channel gain
by varying the values of the long-term mean and standard
deviation. As illustrated in Fig. 3, the channel gain tends to
revert or move back toward a certain mean or equilibrium
level under different values of υh. Since we set the fixed
distance between EDPs and requesters, the evolution of the
channel fading coefficient is consistent with Eq. (1). It is
important to realize that the fluctuations in this process are
caused by the Brownian motion, and we change the values of
standard deviation to assess the channel gain. We find that a
larger ϱh leads to a greater channel deviation trajectory and
a less stable channel condition. Consequently, this unstable
network transmission environment will certainly have an effect
on the performance of EDPs’ caching strategies. Therefore, we
choose ϱh = 0.1 in the later simulations.

Then, given an initial caching state, we evaluate the evo-
lution of the mean-field distribution over time at the equilib-
rium, as shown in Fig. 4. When we fix the time slot, Fig.
4 represents the instantaneous density of EDPs having the
remaining caching space qk(t), and we notice that the size
of the remaining caching space will increase first and then
decrease. This curve occurs because each EDP dynamically
adjusts the trading price and content placement to cache more
popular or urgent contents. Subsequently, we maintain the
remaining caching space and observe the changing distribution
trend. As the time evolves, the remaining caching space with
{60MB, 70MB} will vanish due to the improvement of space
utilization. Correspondingly, the remaining caching space with
30MB will present an upward trend as time goes by.

Finally, Fig. 5 depicts the evolution of the caching policy at

the mean-field equilibrium, where each EDP can determine its
optimal caching strategy xi,k. When we choose a certain time
slot, we observe that the optimal caching strategy will increase
along with the growth of the caching state. This phenomenon
is consistent with real-world scenarios, since each EDP will
cache more contents when the remaining caching space is
sufficient. Afterwards, we choose the caching states from
[10, 50] with a step of 10 and then observe the trend of the
caching strategy under different caching states. As the time
evolves, the EDP gradually decreases its own caching rate
when the caching space is small (e.g., qk(t)=10), which can
demonstrate the caching efficacy of MFG-CP. Certainly, the
optimal caching strategy will continue to increase as long as
there is sufficient remaining caching space.

2) Impact of Parameters: As depicted in Fig. 6, we provide
the heap map description of the mean-field distribution under
different Qk values. It is notable that the caching space will
gradually reach saturation with the increase of Qk. This phe-
nomenon occurs because the corresponding caching strategy
will grow according to Eq. (21). To demonstrate the robustness
of our algorithm, we further alter the standard deviation of the
normal distribution in Fig. 7, which indicates the dispersion
of the EDP’s initial caching state. When we decrease the
values of variance from 0.12 to 0.052, the heat map displays
more concentrated results, i.e., the caching states among EDPs
will be closer. By modifying the different values of Qk, the
observed trend in Fig. 7 is similar to that in Fig. 6.

Then, we vary the control coefficient w5 of Eq. (8) in
the range of [0.65, 1.55] ∗ 108, as depicted in Fig. 8. Here,
we abbreviate the value of w5 in the legend for clarity. We
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observe that a smaller w5 will reduce the caching state more
slowly. The reason is that the EDP would opt to lower its
caching strategy when the content placement cost is large.
Meanwhile, it is also clear that a larger w5 will lead to a
higher staleness cost, since the EDP needs to spend more time
acquiring contents from the center or other EDPs.

Next, we verify the convergence of MFG-CP by observing
the caching state and the utility of an EDP. We randomly select
a content k and set different initial caching states qk(0) in the
range of [30, 90]. From Fig. 9, we see that the utility of qk(0)
is lowest at first. This is because a larger initial caching state
means that the EDP needs to spend more time caching more
contents. In addition, we find that the remaining caching space
and the utility of an EDP gradually tend towards stability, i.e.,
the EDP reaches an equilibrium state.

Finally, we evaluate the impact of the initial distribution
and the conversion parameter η1. As presented in Fig. 10,
we initialize λ(0) following a normal distribution with mean
values from {0.5, 0.6, 0.7, 0.8}, and then assess both the utility
of an EDP and the average sharing benefit brought by the
mean-field group. We find that the average sharing benefit
will have a slight fluctuation while the utilities can achieve
stability. After adjusting the values of η1 in the range of
{0.1, 0.2, 0.3, 0.4} ∗ 10−6, we observe that the utility will
gradually increase while the trading income has a gradual
decrease over time. The reason is that many EDPs have cache
enough contents and the trading processes between EDPs will
be reduced. Moreover, a larger η1 corresponds to a smaller
utility and a lower trading income. This is because the trading
price increases in accordance with Eq. (5).

TABLE II
COMPARISONS ON COMPUTATION TIME (SECOND)

Methods
Number 50 100 200 300

MFG-CP 0.4319 0.4442 0.4336 0.5121
RR 0.1697 0.5527 0.9766 1.7832

MPC 0.1657 0.3157 0.8694 1.7094

3) Performance Comparisons: We first analyze the total
utility and total trading income of an EDP under various
values of η1, as depicted in Fig. 12. Here, the accumulative
utility/trading income is calculated over the finite time horizon.
It is evident that improving the value of the conversion
parameter leads to a reduction in total utility, which is consis-
tent with the trend illustrated in Fig. 11. Notably, the total
utility of MFG-CP surpasses that of MFG, UDCS, MPC,
and RR, which can directly corroborate the superiority of
our proposed framework. On the other hand, we find that
the total trading income of MFG-CP is lower than that of
MFG. This phenomenon is reasonable as EDPs can sell entire
contents downloaded from the center when they cannot share
contents with each other. Nonetheless, the staleness cost of
MFG obviously exceeds that of MFG-CP. Hence, the behavior
of content sharing is beneficial for improving the utility of each
EDP, and our proposed MFG-CP framework enables each EDP
to possess a higher utility than these compared algorithms.

Subsequently, we compare the five schemes by varying the
popularity of content k within the range of [0.3, 0.7]. Here, we
assume that the popularity is fixed during a certain time. Fig.
13 shows that MFG-CP exhibits a higher utility and a lower
staleness cost compared to other baselines. This is because
MFG-CP can make the best response even when dealing with



system dynamics and information unpredictability. Particu-
larly, UDCS holds the minimal variations in utility values
under different content popularity and ignores the staleness
cost. The reason is that UDCS focuses on minimizing the
long-run average cost when considering overlapping contents
and aggregate interference. Additionally, a higher Πk brings
in a higher utility owing to the growth of requests. In essence,
caching more popular contents for EDPs will contribute to
gaining more profits, which is in line with our design concept.

Next, we compare the utility and trading income of an EDP
under different schemes, as depicted in Fig. 14. We observe
that the utility of MFG-CP surpasses that of the compared
algorithms. Notably, the utility of MFG-CP is 2.76 times and
1.57 times higher than that of MPC and UDCS, respectively.
The reason is that RR and MPC do not consider the mutual
influence among EDPs, and UDCS can reduce its cost while
ignoring the economic competition among EDPs. Similar to
Fig. 12, although there is a small gap in the trading income
between MFG-CP and MFG, the staleness cost of MFG-
CP is lower. Consequently, our proposed framework offers
significant advantages in maximizing the utilities of EDPs.

Lastly, Table II presents the computation time of the three
methods under different numbers of EDPs. Here, we omit the
comparison of MFG and UDCS since their runtime is close
to MFG-CP. We find that the advantages of MFG-CP become
gradually pronounced as the number of EDPs increases. This is
because the RR scheme requires M iterations of random num-
ber generation operations, whereas MFG-CP directly analyzes
the average characteristics of the entire population rather than
individual EDPs. In other words, the computational complexity
of MFG-CP does not increase with the number of EDPs. This
observation further validates the efficiency and scalability of
MFG-CP in large-scale MEC systems.

VI. RELATED WORKS

We review the related works from the following aspects:
Mobile Edge Caching and Pricing: Several studies have

paved the way for efficient edge caching solutions [15]–[18],
[39]–[44]. For example, Sun et al. [16] developed an edge
cache deployment strategy based on the prediction of users’
preferences. Zong et al. [40] studied cocktail edge caching via
deep reinforcement learning. Liu et al. [41] devised a dynamic
caching replacement mechanism with privacy constraints and
unobservable popularity. Meanwhile, great effort has been
devoted to the pricing issue in MEC [45]–[47], e.g., Xiao et al.
[45] proposed a reputation management scheme to maximize
the revenue of vehicles in data trading. Huang et al. [46]
designed a game-based profit sharing mechanism to decide the
optimal revenue sharing ratio. However, these studies primarily
focus on single-role scenarios, where caching and pricing are
treated separately for all contents. Especially, when introduc-
ing content sharing into MEC systems, determining caching
strategies and trading prices becomes more challenging. Only
a handful of studies take caching and pricing into account
[20]–[25], [33]. For instance, Li et al. [21] tackled the cache
placement problem with auction-based trading to maximize the

social welfare. Zou et al. [22] found the video pricing and the
cache placement strategy by exploiting the Stackelberg game.
Yang et al. [25] proposed a blockchain incentive scheme to
determine the price vector and caching strategies, involving
only the interaction between an EDP and users. Nevertheless,
these works establish the homogeneity price with complete
information and ignore the strategic behaviors of EDPs, so
they are unsuitable for large-scale dynamic MEC systems.

Mean-Field Game: The MFG theory has drawn widespread
attention across various large-scale systems, such as ultra-
dense networks [26], [48], multi-access networks [49], [50],
federated learning [51], the medical field [52], and so on. For
instance, Narasimha et al. [26] utilized the MFG approach to
identify the optimal probing strategies for devices in ultra-
dense wireless networks. Shi et al. [50] proposed an MFG-
guided task placement method by employing deep reinforce-
ment learning so as to effectively reduce decision-making
delays in task placement. However, these studies primarily
focus on determining control strategies and do not consider
the dynamics of EDPs and requesters. Only a few works
study the instability of requesters and caching state [27], [28].
For example, Feng et al. [27] addressed a caching control
problem with time-varying content requests to achieve cost
minimization. Kim et al. [28] developed a spatio-temporal
popularity dynamics model to minimize the long-run average
cost. Nevertheless, these works aim at optimizing caching
performance from the system perspective, without capturing
the strategic and economic interplay among EDPs. In a
nutshell, none of the existing works take strategic caching,
economic content sharing, and dynamic pricing into account
together, which involves a complex incomplete information
game without knowing other players’ states.

VII. CONCLUSION

In this paper, we study the competitive content placement
issue in large-scale dynamic MEC systems. We first model
the problem as a non-cooperative stochastic differential game,
which considers the heterogeneous content demands, real-time
trading prices, and paid content sharing. To facilitate decen-
tralized decision-making, we propose the MFG-CP framework
for joint content caching and pricing. Meanwhile, we develop
an iterative best response learning scheme to determine the
optimal caching strategy for each EDP. We also prove that
these optimal strategies form a unique NE. Finally, extensive
experiments validate the great performance of MFG-CP.
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