Selection of Virtual Machines Based on Classification of MapReduce Jobs

Adam Pasqua Blaisse, Zachary Andrew Wagner, and Jie Wu

Department of Computer and Information Sciences, Temple University

Cloud Computing

- Large number of physical machines (PM)
- Strongly networked together
- Resources sold on an hourly basis as virtual machines (VM)
- Eucalyptus
- Amazon EC2

EUCALYPTUS

Region:	JS East (N. Virginia)		\$			
	vCPU	ECU	Memory (GiB)	Instance Storage (GB)	Linux/UNIX Usage	
General Pu	rpose - Curre	ent Generat	ion			
t2.micro	1	Variable	1	EBS Only	\$0.013 per Hour	
t2.small	1	Variable	2	EBS Only	\$0.026 per Hour	
t2.medium	2	Variable	4	EBS Only	\$0.052 per Hour	
m3.mediur	m 1	3	3.75	1 x 4 SSD	\$0.070 per Hour	
m3.large	2	6.5	7.5	1 x 32 SSD	\$0.140 per Hour	
m3.xlarge	4	13	15	2 x 40 SSD	\$0.280 per Hour	
m3.2xlarge	e 8	26	30	2 x 80 SSD	\$0.560 per Hour	

• Find the minimal virtual machine that will run a Map Reduce job as fast as possible

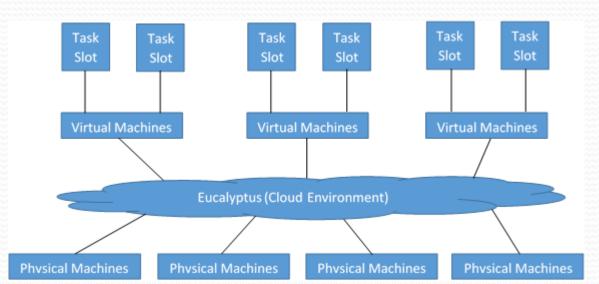
- Programming Paradigm for distributed computing
- Two phases
 - Map Phase
 - Reduce Phase
- Apache Hadoop
 - Open source implementation used

• Map

- Many small Map tasks
- Each task takes a small chunk of data
- Turn the data into Key value pair (i.e <the,1>)
- Number of Map tasks varies based on input data size
- When all Map task are finished data is Pasted to the Reduce Phase

Reduce

- Very few set number of Reduce tasks
- Combine all the input key value pairs from the maps
- Also takes care of shuffling data from Map Locations to Reduce Locations



- Reduce
 - All Mapping must finish before Reducing can start
 - Shuffling can start before Mapping ends

Shuffle Stage Sort Stage	Shuffle Stage	Sort Stage		
		Sort Stage		
Reduce Stage			Reduce Stage	

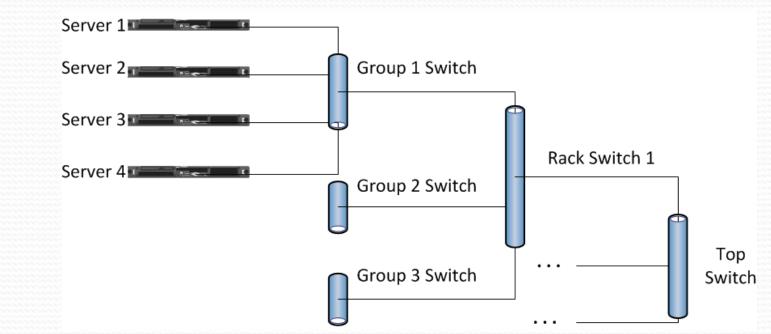
Issues when Used Together

- Some jobs run better on different configurations of virtual machines
- Different configurations of virtual machines have different costs
- Some jobs may need more CPU's while others may need I/O

• Hardware

- 12 Dell Power Edge R614 Servers
- 96 conventional CPU Cores
- 4-Way redundant 10 GB Ethernet
- 2-Way redundant InfiniBand
- Software
 - Eucalyptus 3.3 (Amazon EC2 compatible)

Net Cloud (Physical Cluster)


• Hardware

- 32 Dell PowerEdge R210 servers
- Each server has
 - 4 GB of RAM Memory
 - 500 GB HDD
- Software
 - Hadoop version 1.2.1
 - CentOS 6.6

Net Cloud (continued)

Networking

- Tree like structure
 - 4 machines to 1 group swith
 - 4 group switchs to 1 rack switch
 - 2 rack switches connected to 1 Top Switch

Our Approach

- Attempt to classify tasks into two types
 - CPU Based Jobs
 - Jobs spent more time doing CPU work then I/O
 - Jobs need more CPUS's and less I/O
 - Smaller more numerous machines
 - I/O Based Tasks
 - Jobs spent more time doing I/O work then CPU
 - Jobs need more I/O and less CPU
 - Less Larger Machines

- If a job is classified as
 - CPU Bound Job
 - Many virtual machines
 - Little memory per virtual machine
 - I/O Bound Job
 - Fewer virtual machines
 - Each virtual machine has larger amounts of memory



- If a job is I/O bound
 - Would like to keep job running in memory rather then hit HDD
 - I/O more important then number of cores
- If a job is CPU bound
 - More important to have many cores running the maps
 - Less likely to hit HDD while running

- Metrics
 - Shuffle_bytes
 - CPU_time
- (Shuffle_bytes/CPU_time)
 - Take the average of the map tasks
 - If value is over 1, then job is I/O Bound
 - Else CPU Bound

Results from Physical Machine runs

Log₁₀ Scale

Results on the Virtual Clusters

Job	Large Time (S)	Small Time (S)
Word Count	257.2338	235.2299
PI	473.3364	419.88242
Pentomino	408.1599 &	355.0055
TeraSort	603.9358	183.1389
TeraGen	89.2324	116.62483
Grep	217.8305	188.0857
MRBench	21.0116	18.6668
DFSCIOTest read	24.5882	19.5072
DFSCIOTest write	25.2971	20.2712

- Selection is quick and simple
- Most jobs are mapped to the correct virtual machine type

- Contact
 - Adam.blaisse@temple.edu
 - Astro.temple.edu/~tuc47904