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Abstract—Many group activities can be represented as a
complex network where entities (vertices) are connected in pairs
by lines (edges). Uncovering a useful global structure of complex
networks is important for understanding system behaviors and
in providing global guidance for application designs. We briefly
review existing network models, discuss several tools used in
the traditional graph theory, distributed computing, distributed
systems, and social network communities, and point out their
limitations. We discuss opportunities to uncover the structural
properties of complex networks, especially in a mobile envi-
ronment, and we summarize three promising approaches for
uncovering useful structures: trimming, layering, and remapping.
Finally, we present some challenges in algorithmic techniques,
with a focus on distributed and localized solutions, to represent
various structures.

Index Terms—Complex networks, distributed and localized so-
lutions, dynamic systems, social networks, structural properties.

I. INTRODUCTION

Many group activities can be represented by a complex
network where entities (vertices) are connected in pairs by
lines (edges). Such a complex network is applicable in multiple
different fields and can impact everything from the Internet,
food web, and metabolic networks, to social networks. Un-
covering the useful global structure (or simply, the structure)
of a complex network is important since structural properties
can facilitate efficient implementation of various applications,
for instance, information dissemination. Many structures are
embedded and are influenced by various factors. For example,
complex networks may consist of multiple layers [1] from ap-
plication sessions and social relationships to physical network
layers. Interactions and influences between layers may play
important roles in shaping network structures.

There are several success stories of using special structures
to support various applications. In a small-world network
with six-degrees of separation, if node connection follows the
inverse-square distribution (i.e., the probability that two nodes
u and v are connected is proportional to distance(u, v)−2),
a localized solution [2] exists in which each node knows
only its own local connections and is capable of finding short
paths with a high probability. This paper will focus on three
areas of research related to structures in a complex network:
(1) determining the appropriate graph models, (2) uncovering
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useful structures for a given graph model, and (3) designing
algorithmic techniques to represent structures.

Some discussion on each topic is in order. The traditional
graph model is commonly used in modeling a complex net-
work. However, the graph model is not convenient in modeling
the dynamic nature of complex networks where node connec-
tions change over time. A structure can be “logical” like a
special property associated with a network (e.g., small-world)
or “physical” like a special subnetwork (e.g., the backbone in
the Internet). A structure considered in this paper is global
that spans the whole network. Research on social networks
reveals some interesting metrics and properties, such as the
centrality associated with nodes and the power-law and heavy-
tail distributions on node degree distribution. These metrics
and properties are not considered structures in this paper unless
they are connected and can span the whole network. Algo-
rithmic techniques deal with ways of representing structures.
Structures can be determined either ahead of time in a static
setting or on-the-fly in a dynamic setting.

We will discuss the challenges we faced dealing with all
three areas and explore possible solutions. In a dynamic
environment, node connections (or contacts) are based on
the notion of “vicinity” among nodes across time and space.
We will examine two special intersection graphs, unit disk
graphs and interval graphs, and explore their limitations before
looking at a more general time-evolving graph. In uncovering
useful structures, we do not have simple solutions for different
types of applications. Instead, we study three strategies that
can be used for a range of applications: trimming, layering,
and remapping. Each strategy is illustrated through several
applications. Finally, each structure is represented in either a
distributed or localized solution. We advocate distributed or
local labeling schemes that use colors and labels to identify
logical and physical structures.

Throughout the paper, we describe approaches used in
different communities, including graph theory, distributed
computing (such as PODC in the theoretical community),
distributed systems (such as ICDCS in the system commu-
nity), and social networks. Discussion will be focused on the
differences between different methods and possible extensions.
Because the area under study is vast, this position paper covers
only a subset of problems in the computing field; it does not
intend to be a comprehensive survey.

The remainder of this paper is organized as follows. Section



II surveys relevant graph models for complex networks with a
focus on special intersection graphs and general time-evolving
graphs. Section III describes three ways of uncovering struc-
tures. Section IV discusses algorithmic techniques that are
distributed or localized to represent a structure. Finally, Section
V concludes the paper.

II. GRAPH MODEL

Traditionally, a complex network can be represented as a
graph G = (V,E) with a vertex (node) set V and an edge
(link) set E. In computing, networks include, but are not
limited to, the Internet, peer-to-peer (P2P), mobile ad hoc
(MANET), sensor, vehicular ad hoc (VANET), social, and de-
lay/disruption tolerant (DTN) networks. These networks oper-
ate under special environments which pose unique challenges
to the network design. For example, in mobile networks like
DTNs and VANETs, network connection is highly dynamic
and disruptive due to node mobility. In these networks, links
are also called contacts between two nodes with appropriate
contact duration and inter-contact time. The traditional graph
model cannot sufficiently capture the dynamic nature of the
connections in the mobile networks.

• Which graph model is suitable for representing a complex
network?

Unfortunately, there is no model that can fit all cases. We
first explore models for special cases and follow with a more
general model.

A. Special cases of the graph model

There are several types of networks where node connections
are based on their vicinities in time (such as online social
networks) and in space (such as sensor networks, MANETs,
and VANETs). Intersection graphs can be used for these cases.
Intersection graphs [3] are formed from a family of sets Si,
i = 1, 2, ... by creating one vertex vi for each set Si and
connecting two vertices vi and vj by an edge whenever the
corresponding two sets have a nonempty intersection: E =
{(vi, vj)|Si ∩ Sj 6= ∅}.

Among special intersection graphs, unit disk graphs are a
family of unit disks (for set Si) in the 2-D space. Each unit disk
is a vertex. An edge exits wherever the corresponding vertices
lie within a unit distance of each other. Unit disk graphs have
been extensively studied for sensor network, MANET, and
VANET applications. Note that not all graphs are unit disk
graphs. A star graph with one center node and six or more
leaves is such an example. As a special graph, unit disk graphs
have some unique properties that general graphs do not have. A
constant approximation algorithm exists to solve the minimum
traveling salesman problem (TSP) in unit disk graphs, but not
in general graphs.

An interval graph is an intersection graph of a family
of intervals on the real line (for set Si). Each line interval
represents a vertex. An edge exists if the corresponding
intervals intersect. If a line interval represents a time period,
an interval graph can be used to represent an online social
network (see Figs. 1 (a) and (b)). Not all graphs are interval
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Fig. 1. Illustration of interval graphs.

graphs. cannot be part of an interval graph because the time is
linear, not circular. In fact, if G is an interval graph, it must be
a chordal graph. A chordal graph is one in which all cycles of
four or more vertices have a chord, which is an edge that is not
part of the cycle but connects two vertices of the cycle. The
impossibility of a large chordless cycle is that time is linear,
not circular. In an online social network, each user can be
online multiple times, and multiple-interval graphs (interval
graphs where each vertex may have more than one interval
associated with it) can be used. The following question arises:
what are the unique properties we can explore for multiple-
interval graphs?

Vertices in interval graphs are not necessarily connected in
pairs. In Fig. 1 (a), three nodes A,C, and D are intersected
at a particular time moment; this example is analogous to
an online social network with three users online at the same
time. A hyperedge, a generalized edge connecting more than
two vertices, seems to be more appropriate in this case.
An interval hypergraph can be defined where an additional
hyperedge among A, C, and D should be added to Fig 1
(b). What type of distribution of hyperedge cardinality will
follow? More importantly, what types of properties of online
social networks can be revealed through the edge density dis-
tribution? Understanding the edge density distribution can also
play an important role in understanding online social network
behaviors like social influencing and recommendation.

B. Time-evolving graph model

Time-evolving graphs [4] try to present graphs in both
time and space. Such graphs have also been called temporal
graphs and time-varying graphs in different settings. We start
with a brief overview of time-evolving graphs, time-sensitive
connectivity, and different performance measures for a path.

Let G = (V,E) be a graph. G0, G1, ..., Gk is an or-
dered sequence of spanning subgraphs for the time sequence
t0, t1, ..., tk. Gi = (Vi, Ei) is called a subgraph during
[ti, ti+1). The corresponding time-evolving graph, denoted as
EG, is the collection of Gi in which each edge (u, v) is
associated with an edge label set {i|(u, v) ∈ Ei}. Figs. 2 (a)
and (b) show two snapshots of a VANET that has three mobile
nodes and three static nodes. Fig. 2 (c) is the corresponding
time-evolving graph. Edge labels have cycles, e.g., (B,D)
and (C,D) have a cycle of 6, (A,D) has 2, and (A,B)

and (B,C) have 3. In EG, u
i→ v denotes the edge label

which indicates the existence of edge (u, v) during time unit
i. Message transmission over an edge (also called a contact)
is instantaneous. A path u

∗→ v is an alternative sequence of
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Fig. 2. A VANET example with three mobile nodes, B, C, and D, with moving cycles 3, 3, and 2, respectively and three static nodes.

vertices and edges with non-decreasing edge labels. Vertex u
is said to be connected to v at time unit i if a path u

∗→ v exists
whose first edge label is larger than or equal to i. In Fig. 2
(c), path A

4→ B
5→ C exists, therefore, A is connected to C

at starting time units 0, 1, 2, 3, and 4, assuming each vertex,
including A, has sufficient storage capability to store messages
from the previous contacts. At a particular time unit, two
vertices may not be connected. In fact, A and C in Fig. 2 are
not connected at any particular time unit. Hence, the network
is not connected at any given time. However, carry-store-
forward routing can still deliver messages. A weighted time-
evolving graph has a definition similar to the time-evolving
graph except that each edge at time unit i is associated with
a weight wi, which have different interpretations based on
the application. For example, a weight can be the bandwidth,
transmission delay, or reliability.

Using EG, any topological terminology can be extended
to a temporal one. For example, path is extended to journey
(which is a path over time), distance to temporal distance,
and diameter to dynamic diameter (which is flooding time).
We can consider the following path optimization problems
as extensions of the traditional shortest path problem, but
still solvable using the variations of the classical Dijkistra’s
shortest path algorithm: (1) Earliest completion time path: find
a path with the earliest completion time at the destination. (2)
Minimum hop path: find a path with the minimum number
of hops to the destination. (3) Fastest path: find a path with
the minimum span (i.e., elapsed time) between its first contact
and its last contact. We assume that the transmission at each
contact is instantaneous.

One challenge is how a graph model can capture the essence
of complex networks while still being simple enough that
many optimization problems are tractable. In this spirit, we
should exclude non-essential parameters. Another approach
uses a macro-level model instead of micro-level time-unit
labels for each edge. In the system community, time-unit labels
are abstracted as contacts that follow a certain distribution
based on a given mobility model [5]. Two measures are
often used: contact duration distribution and inter-contact time
distribution. The exponential distribution is frequently used
due to the simplicity of its mathematics. However, a random
waypoint mobility without a boundary does not meet the

exponential distribution for either contact duration or inter-
contact time. In the theoretical community, the Markovian
process in which network topology at time unit i depends
only on its topology at time unit i − 1 is commonly used,
and it has a unique stationary distribution. For example, the
elegant two-state edge-Markovian process is used to describe
edge dynamics. If an edge exists at time i, at time i+1, it dies
with probability p. If the edge does not exist at time i, it will
appear at time i + 1 with another probability q. This model
has been successfully used to calculate the dynamic diameter
[6]. However, Markovian models are still overly simple for
various mobility patterns. The question of the existence of
other models, which are both mathematically elegant and
which better match practical mobility models, remains.

In general, there is a trade-off between the expressiveness
and the decision power of a model. We should strive for
the simplest model, e.g., a model focused on space or time
only with just enough power to study the problem at hand.
However, a more powerful model focused on both time and
space potentially reveals more properties than a weaker one.

III. UNCOVERING USEFUL STRUCTURES

This section focuses on uncovering useful network struc-
tures. There has been a good amount of work done in social
networks in terms of centrality [7]. Among various forms of
centrality, node degree measures the number of neighbors of
a node. Closeness is the average length of the shortest path
between a node and all other nodes in the graph. Betweeness
quantifies the number of times a node acts as the bridge along
the shortest path between two other nodes. Eigenvector cen-
trality, including PageRank, measures a node score as the score
summation of its neighbors. Centrality primarily measures the
importance of a single node. Here, we focus on structures or
structural properties that span the whole network. In addition,
such structures or structural properties are useful in supporting
network-wide applications. Like centrality, a network structure
that is optimal for one application is often sub-optimal for a
different application. We discuss three approaches that can be
used to uncover such useful structures for various applications.

A. Structural trimming

Structural trimming deals with removing links and/or nodes
to form a subgraph as a useful structure. Usually a subgraph



maintains several of the global properties of the original
graph. Basic properties include connectivity and inclusion of
a minimum spanning tree or a shortest path tree. In some
cases, a property is an approximate for a global measure. For
example, subgraph distances closely resemble the distances in
the original graph for designing the approximation algorithms
for the graph problems [8]. There is also a vast literature
concerning P2P networks [9] that add connections to form an
overlay network. Here, we focus on structural trimming instead
of overlay. The main purpose of trimming is to reduce the
complexity of information dissemination or to reduce the com-
plexity of network searching without losing the desirable prop-
erties of the original network topology. In wireless networks,
topology sparsity also reduces the bandwidth contention that
occurs during simultaneous wireless transmissions. Structural
trimming can be conducted by static and dynamic trimming.

Static trimming is usually conducted through topology con-
trol [10]. Various localized trimming processes for unit disk
graphs with known locations or with neighborhood connectiv-
ity information have been studied. Certain properties are more
difficult to maintain than others. For example, maintaining a
minimum shortest path tree using local location information
is more involved than maintaining a minimum spanning tree.

As most existing work on trimming has been on the tradi-
tional graph, we use the time-evolving graph EG to illustrate
the use of local information to trim “useless” or “redundant”
nodes and links. Usually, local information (within k hops
for a small k) does not cause excessive propagation delay.
For example, for 2-hop information, each node maintains its
own neighborhood information in the EG and exchanges
this information with its neighbors. When a node or link is
removed, the network connectivity remains the same. More
specifically, if the network is time-i-connected, it remains
connected after using the following trimming rule: node u

can be trimmed if for any path w
i→ u

j→ v such that
i ≤ j there is another path, called a replacement path,

w
i
′

→ u1 → ... → uk
j
′

→ v such that i ≤ i
′

and j
′ ≤ j. Here,

we only compare the edge lables of the first and last hops in
these two paths. In Fig. 2 (c), any path A→ D → C can be
replaced by a path A→ B → C. For example, A 3→ D

6→ C

can be replaced by A
4→ B

5→ C. Therefore, A can ignore
neighbor D. It is possible that two paths can replace each
other. To avoid circular replacement, each node u is assigned
a distinct priority p(u). A node can be replaced only if its
priority is lower than all intermediate nodes in the replacement
path. We assume that p(A) > p(B) > p(C) > ... based on
node IDs. We can also assign priority, say using node degree
or node betweenness, based on the strategic importance of the
node in the network topology.

Trimming rules can vary depending on the specific proper-
ties being preserved. In the current rule, the minimum comple-
tion time is preserved, but not necessarily the minimum hop
count. To enforce this, we can require that each replacement
path have, at most, one intermediate node. Other options
include removing a specific label on a link and developing

(a) A P2P network with all peers. (b) Top 50% peers.

Fig. 3. NSF in a Gnutella dataset [11].

a link replacement rule. Note that the link replacement rule
is a refinement of the node replacement rule. When a node
is trimmed, all of its adjacent links are removed as well.
In situations where link labels are not deterministically, but
rather, probabilistically, known, it would be interesting to
explore different probabilistic versions of the trimming rule.
Clearly, more research is needed on local trimming in time-
evolving graphs maintaining a given set of global properties.

Dynamic trimming is much more involved since its perfor-
mance depends on various factors in different applications.
Dynamic trimming is an online version of a trimming process
based on local information only for a particular application
(e.g., routing). This can lead to efficiency improvement be-
cause the decision is based on timely local information. In
Fig. 2, path D → A→ B cannot be replaced by D → B, but
it can be replaced at time unit 1. A more complex trimming
occurs in a time-evolving graph with a probabilistic contact
distribution. In a routing process in a dynamic network, should
a message be forwarded at a new contact (which may lead to
a less favorable path) or at a future contact (which may lead to
a favorable path)? The notion of a forwarding set (a neighbor
subset) is used in [12]. In this approach, the single-copy
message is forwarded to a new contact if the contact belongs
to the forward set (i.e., the link connects to the neighbor in
the set). This is analogous to a multi-bus riding: should a
passenger ride on the first bus to arrive, even though its route
may be longer, or should the passenger wait for a later bus
with a shorter route but an uncertain arrival time?

• How can we design a general methodology to derive a
forwarding set in a dynamic network?

The answer to this question depends on the contact distribution
and the settings for objectives and constraints. For example,
in a multi-copy message deliver application, the forwarding
set becomes copy-varying if the objective is to minimize the
delivery time of the first copy. On the other hand, if the utility
of the message is time-sensitive and it decays over time, the
forwarding set becomes time-varying when the objective is
to maximize utility. [13] shows that if the inter-contact time
follows the exponential distribution and the message utility
decays linearly over time, an optimal time-varying forwarding
set can be derived. In fact, the forwarding set at the same
intermediate node shrinks over time.
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Fig. 4. A full link reversal process (a)-(e) after a broken link (A,D) in destination-oriented DAG (a). Labels inside nodes correspond to heights.

B. Structural layering

The second approach is based on layering through the
assignment of hierarchical levels to the nodes. Such a structure
is either embedded in a given graph or man-made by assigning
an appropriate height to each node that will either define the
levels of nodes or control the orientations of the links.

Embedded layering. In many unstructured P2P systems,
including Gnutella and Bitcoin, system structures are not
only scale-free (SF) (i.e., node degree distribution follows
the power-law distribution), but also nested scale-free (NSF)
[11]. SF hierarchy is defined by ranking levels based on node
degrees. Let G

′
denote the set of subgraphs generated by

iteratively removing the local lowest-degree nodes and their
connections in a network G. G satisfies NSF if (1) G and all
subgraphs in G

′
satisfy SF, and (2) the standard deviation of

power-law exponents in G and all subgraphs in G
′

is o(1).
Condition (2) states that G and all subgraphs in G

′
are “simi-

lar” in structure, as shown in Fig. 3. Fig. 3 (a) shows the largest
strongly-connected component formed in a Gnutella dataset
[14]. Fig. 3(b) is derived from G by iteratively removing the
local lowest-degree peers until only half of the peers remain.
The hierarchical levels can be maintained by a labeling scheme
(to be discussed in the next section) that assigns each node a
level called “height”. The hierarchical structure can facilitate
efficient implementations of the pub-sub systems through push
(moving up through the layered structure) and pull (coming
down through the layered structure).

• Can we uncover more inherent layered structures, not
only in the space dimension, but also in time-and-space?

A possible solution is to present an application in a dynamic
network. A good collection of data traces that can represent
time-and-space dimensions is also needed to gain insights. The
work done on the small-world behavior of the real-world in
time-and-space dimensions [15] has the potential to explore
the layered structure of a complex network.

Man-made layering. Several layered structures are man-
made to assist certain applications. Suppose that when routing
to a given destination, a destination-oriented directed acyclic
graph (DAG) has been maintained initially, as shown in Fig. 4
(a) with one destination sink D (ignore labels inside nodes as
they will be discussed in the next section). A given source node
can take any route without using a routing table to reach the
destination. When a non-destination node (say A in Fig 4 (b))

has no outgoing link (A becomes a sink) due to a broken link,
it reverses all adjacent links through a full link reversal process
[16]. This may trigger the full link reversal of other nodes,
as shown in Figs.4 (c), (d), and (e). Eventually, the process
terminates forming a new destination-oriented DAG, as shown
in Fig. 4 (e). The orientation of each link is systematically
determined by assigning appropriate heights of two connecting
nodes (details to be discussed in the next section). Another
application of the dynamic destination-oriented DAG is used to
construct an efficient implementation of the classical max-flow
problem [17]. In this approach, the orientations of the links
are dynamically calculated and adjusted by the heights of each
node (except the destination sink) in multiple rounds, while
maintaining the destination-oriented DAG structure. Flows
associated with neighboring nodes iteratively and gradually
flow among themselves, but eventually flow towards the sink,
based on link orientations determined by the node’s heights.
The efficient maintenance of DAG in a dynamic network is
certainly a challenge, as we will discuss in the section. A
related challenge is finding an efficient way of maintaining
DAGs simultaneously for multiple destinations.

C. Structural remapping

In some applications, the complexity of a problem can be
reduced or even removed by carefully remapping from one
representation to another representation or from one domain
to another.

Remapping representation. In the Euclidean space, greedy
geographic routing [18] is commonly used to greedily reduce
the Euclidean distance between the source and destination.
However, such a greedy process may get stuck at a local
minimum, such as at one of three non-convex hole shown in
Fig. 5 (a). This situation happens when the bottom-right node
sends a message greedily to the top-left node and the message
becomes stuck at a non-convex hole; it cannot make further
progress towards the destination. By mapping the Euclidean
space to the hyperbolic space, [19] shows that carefully
assigning each node a virtual coordinate in the hyperbolic
plane allows the greedy algorithm to succeed in finding a route
to the destination. Conformal mapping [20] using Ricci flow
will guarantee delivery for the greedy forwarding. A key idea
is transforming holes into perfect circles, as shown in Fig. 5
(b), to avoid being stuck at an intermediate node during a
greedy routing process.



Figure 6 shows the effect of greedy routing on the virtual
coordinates. The routing cannot be successful under normal
greedy routing (Figure 6(a)). The path under the virtual co-
ordinates, however, easily gets past the hole to the other side
(Figure 6(b)).

The domain can also be triangulated using landmarks as
described in section 3.1.2. Figure 7 shows the CDM trian-
gulation of the domain of Figure 6, and the corresponding
virtual coordinates.

(a) (b)

Figure 7. (a) Landmark based triangulation of domain of fig 6. (b)
The corresponding virtual coordinate map.

Routing in the landmark based scheme is achieved in the
usual way. At every stage, the next Voronoi tile to visit is
decided based on the virtual coordinates of the landmarks of
neighboring tiles. Then a local routing scheme is applied to
reach the chosen neighboring tile. This local routing can be
executed in different ways. For example, since the size of the
tiles are constant in a bounded density network, it is possible
to store a routing table for the entire tile. Alternatively, it is
possible to flood a tile from the boundary with each neighbor,
and thus obtain paths to neighboring tiles from each node.

In theory, and in practice, the method also works for very
fragmented networks with many holes. Figure 8 shows an
example.

Figure 8. (a) Network of 7000 nodes with many holes (b) Virtual
coordinates

4. EXPERIMENTAL RESULTS
We conducted extensive experimentation on UDG or quasi-

UDG based network of Figure 6 with about 8700 nodes,
and on networks of similar topology but different number
of nodes. From a routing performance point of view, the fol-
lowing are important observations from the experiments and
simulations:

• 100% Routing guarantee. We selected 10,000 ran-
dom source-destination pairs in the network, and per-
formed greedy routing based on the real coordinates
and using our virtual coordinates. With the real coor-
dinates, the success rate of routing is only about 52.29%,
while with the virtual coordinate greedy routing, we
achieve 100% success rate.

• Small routing stretch. The path length of the vir-
tual coordinate routing was compared with the shortest
path in the graph for 5000 random source-destination
pairs. The average stretch (ratio of routing path length
to shortest path) was 1.59, while the maximum stretch
was 3.21.

Since our mapping algorithm uses a numerical method,
we carried out some tests to estimate the convergence time
of the algorithm, and compared the results with the conver-
gence of NoGeo [28]. While NoGeo does not guarantee de-
livery even on full convergence, the comparison is interest-
ing, as described in the introduction. The results are shown
in Figure 9. Note that NoGeo iterates on the actual node
coordinates, whereas the Ricci-flow reduces the error in the
curvature. The result shows that in this case, the Ricci-flow
method converges faster than NoGeo, and guarantees deliv-
ery.
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pairs. The average stretch (ratio of routing path length
to shortest path) was 1.59, while the maximum stretch
was 3.21.

Since our mapping algorithm uses a numerical method,
we carried out some tests to estimate the convergence time
of the algorithm, and compared the results with the conver-
gence of NoGeo [28]. While NoGeo does not guarantee de-
livery even on full convergence, the comparison is interest-
ing, as described in the introduction. The results are shown
in Figure 9. Note that NoGeo iterates on the actual node
coordinates, whereas the Ricci-flow reduces the error in the
curvature. The result shows that in this case, the Ricci-flow
method converges faster than NoGeo, and guarantees deliv-
ery.
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Figure 9. The solid blue curve shows the error in curvature after
a number of iterations by the Ricci flow method, the dashed green
curve shows the error in location after a number of iterations by
NoGeo.

We further compared our method with NoGeo on routing
stretch and delivery guarantee on the network of Figure 6,
over 5000 source-destination pairs. The results are shown

(b) Virtual coordinate map.

Fig. 5. Conformal mapping [20].

• Instead of mapping from one representation to another,
such as when mapping Euclidean space to non-Euclidean
space, can we remap a problem from one domain to a
different domain?

Fourier analysis, which converts a signal from its original time
or space domain to a representation in the frequency domain,
provides a good example of how to address the question above.
Fast Fourier Transform (FFT) is usually used to compute
the discrete Fourier transform of a sequence. We show one
potential mobile application below.

Remapping domain. In mobile applications in MANETs and
VANETs, due to the high mobility of nodes, contacts are
highly irregular. It is difficult to derive a useful structure for
dynamic graphs. [21] observes that in social contact networks,
node (personal) contacts in the physical layer are influenced
by the corresponding social features in the social relation-
ship layer. As confirmed from several real traces, including
INFOCOM 2006 and MIT Reality Mining, the frequency of
the personal contacts of two nodes (persons) is dependent on
their feature distance. The closer the distance, the higher the
contact frequency. Here, each person is represented by a social
feature profile. The social features represent either physical
features, such as gender, or logical ones, such as occupation.
In Fig. 6, each person is described by three features: gender
(male and female), occupation (professional and student), and
nationality (say, country 1, country 2, and country 3). Suppose
we group all individuals with the same features in one node.
Two nodes are connected if they differ in exactly one feature;
a generalized hypercube is generated. In this way, we convert
a routing process in a highly mobile and unstructured contact
space (M-space) to one in a static and structured feature
space (F-space) represented as a generalized hypercube. A
generalized hypercube can easily support shortest-path routing
as well as node-disjoint multiple-path routing. Note that links
in a generalized hypercube correspond to strong links (ter-
minology commonly used in social networks) among nodes
with one feature difference. Each node corresponds to one
community of people with common features and the most
frequent contacts. Although links that are not in a generalized
hypercube do exist, they correspond to weak links with lower
probabilities for their larger feature distance.

The above example shows one application of social net-
works’ influence on the underlying contact network. As more
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Fig. 6. A static and structured feature space as a 3-D generalized hypercube.

and more applications are related to social networks, we need
to address the following question:

• How can we systematically uncover the influence that so-
cial relationships have on the structure of an underlying
network for socially-rich applications?

More data traces need to be collected to validate any hypothe-
sis on the influence that social relationships and features have
on underlying network contact structure.

IV. DISTRIBUTED AND LOCALIZED SOLUTIONS

A distributed solution involves nodes that interact with
others in a restricted vicinity. Each node usually performs
simple tasks, such as maintaining and propagating information
labels. Collectively, these nodes achieve a desired global
objective. A localized solution is a distributed solution in
which there is no sequential propagation of information. A
set of labels are usually used to describe nodes at different
levels or with different link orientations. It is assumed that
each node knows k-hop information (or local horizon in the
theoretical community) for a small constant k. Each node
has a distinct ID within k-hop for symmetry breaking. A
centralized solution can be converted to a distributed solution.
For example, Dijkstra’s shortest path can be implemented in
a distributed way; each leaf node will report to the root its
distance information at each round of relaxation. The root
will inform whichever leaf node corresponds to the shortest
path from the root to all potential new leaves. Back-and-forth
propagation between the root and the leaves is not efficient
because it requires multiple rounds of information exchanges.

A. Static Labels

The static labeling process refers to a labeling process in
which each node is labeled a small number of times for a
given network topology. In a localized connected dominating
set (CDS)1 selection for a virtual backbone in senor networks
and MANETs [22], two colors are used: black for CDS nodes
and white for non-CDS nodes. Initially, all nodes are white. If
a node has two unconnected neighbors, it labels itself black.
All black nodes form a CDS. In Fig. 8, all nodes except A are
labeled black. A trimming process can be applied locally to
change black back to white if a black node’s neighborhood is

1Subset D ⊆ V is a dominating set (DS) if every node in V \D has a
neighbor in D. D is connected, i.e., CDS, if the induced G[D] is connected.
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Fig. 7. Labeling based on (a) node degree and (b) nested node degree.

covered by other connected and higher priority black nodes.
In Fig. 8, B, C, and D are three black nodes remained after
the trimming process. Distributed clusterhead calculation uses
three colors to determine a maximal independent set (MIS)2 a
DS also, in log n rounds, where n is the number of nodes.
Initially all nodes are white. If a node is the local 1-hop
maximum (in terms of priorities) among white neighbors, it
is colored black (and becomes a clusterhead). A and B are
colored black in Fig. 1 (c). A node with a black neighbor
is labeled gray (and is removed from the next round of
competition). This process repeats until there is no white node.
The final MIS in Fig. 8 is A, B, and E, all colored black. The
color of each node does not have to be self-determined. It can
also be neighbor-designated like in the following localized DS
calculation: each node selects one winner (say, the one with the
highest priority) from its 1-hop neighborhood including itself.
A node is colored black if it is selected by at least one node.
This process terminates in one round. In Fig. 1 (c), A, B, and
C are selected as DS (but not a CDS or an IS). One question
can be posed: is there another efficient, localized labeling
scheme besides self-determined and neighbor-designated?

Labels are frequently used to represent levels in the node
hierarchy. For NSF [11], labels are given iteratively as follows:
Initially, all nodes are unassigned. An adjusted node degree is
defined as the number of unassigned neighbors. In the first
round, nodes that are local minimum in terms of the adjusted
node degree are assigned to level 1. These nodes become
assigned. We repeat the above process and adjust the level
by adding 1, until all nodes are assigned. Note the difference
between Figs. 7 (a) and (b) in terms of node hierarchy. We
aim to derive a structure with only one node at the top level.
In NSF, there may still be multiple top-level nodes that are
not connected to each other. In this case, it is assumed that an
external server is used to connect them.

B. Dynamic Labels

The dynamic labeling process refers to a labeling process
where several nodes are repeatedly labeled a large number
of times. By large, we mean a non-constant number. The
Bellmen-Ford algorithm maintains the shortest path and dis-
tance information from each node to a destination. Each
distance estimation at a node can be considered a labeling
process which involves many rounds of routing table update
in case of a link failure. PageRank and HITS (also known

2Subset I ⊆ V is an independent set (IS) if no two nodes in I are adjacent.
I is maximal, i.e., MIS, if it cannot be extended. In a unit disk graph, because
no node can have six neighbors that are mutually independent, no MIS can
be more than five times minimum CDS. MIS is frequently used to construct
a minimal CDS using a small number of gateways to connect nodes in MIS.

E
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B

Fig. 8. An example for static labeling for DS, CDS, and MIS.

as hubs and authorities) [23] are another two examples of
dynamic labeling used to rank websites.

In link reversal, the levels associated with the nodes corre-
spond to the node’s heights. In Fig. 4, each node is initially
assigned a distinct level, called height, with the destination
being the lowest level: 0. The orientation of each link is
defined by the relative heights of two end nodes; the node
with the higher height points to the node with the lower height.
Suppose that a connected digraph is no longer a destination-
oriented DAG. Then, there are sinks other than the destination.
We can simply raise the levels of these sinks, but only so that
they are higher than their highest neighbors by 1. All links
associated with these nodes reverse their links in the full link
reversal. A link reversal may cause ripple-effects and trigger
surrounding nodes to reverse their links. In fact, each node
may be involved in multiple rounds of reversals, like node A
in Fig. 4. Overall, the number of reversals is O(n2), where n
is the number of nodes. This high cost in a slow convergence
is detrimental to the practicality of this elegant approach.
Although partial link reversal [16] improves performance by
reversing a subset of links at each reversal, it does not reduce
the overall complexity.

We pose two questions: (1) are there any other ways to
represent labels? and (2) can a label be associated with a link?
The answer to both queries is “yes”. One recent result shows
the use of a binary label associated with each link as a label for
a link reversal [24]. A destination-oriented DAG is maintained
initially. Two rules are used on non-destination sinks due to
broken links. Rule 1: if at least one link incident on node i is
labeled 0, then all the links incident on node i that are labeled
0 are reversed. The other incident links are not reversed, and
the labels on all the incident links are flipped. Rule 2: if all
the links incident on node i are labeled 1, then all the links
incident on i are reversed, but none of their labels change. This
approach not only unifies the full link reversal (1 for all links
initially and using Rule 1 only) and the partial link reversal (0
for all links initially and using Rule 1 and Rule 2), but also
provides a more convenient way of complexity analysis.

C. Challenges

A good amount of survey has been done in the theoretical
community on the merits and limitations of distributed [25]
and localized solutions [26]. We discuss here some additional
challenges, starting with one fundamental question:

• In a complex network, especially in a dynamic environ-
ment, how can we deal with the complexity of building a
structure along with the change of topology?



In a dynamic network, network topology and node status
change; how can the construction of an underlying structure
be better integrated with changes? Unless these changes are
infrequent, many solutions will be rendered useless if they can-
not be executed quickly enough. However, a quick execution
may not offer optimal results. Localized algorithms seem to
be the answer, but they have limitations in terms of obtaining
a competitive approximation ratio [27]. An open discussion
of the relative merits of an asymptotic bound analysis vs. an
average case bound is needed. In some cases, an asymptotic
bound analysis has a hidden large constant coefficient. An
average case bound, on the other hand, has some rare bad
cases, but is generally competitive. The notion of average case
itself is a subject of research. Smoothed analysis [28] gives a
promising approach of expressing the average case through a
natural model of noise or perturbation on a given distribution.

Mobility will create another serious problem: view inconsis-
tency. In a mobile application, both neighborhood information
exchanges (for k-hop information) and asynchronous Hello
message exchanges cause delays, which will generate inconsis-
tent neighborhood and location information. Some early results
on maintaining multiple views [29] seem promising, but more
work is needed to address the general challenge in this area.
Another promising area is integrating the process of building a
structure with the change of topology due to node movement.
This approach is different from most existing approaches
where structure re-building occurs after a topology change.
A simpler version of topology change is adding and deleting
nodes and/or links that frequently appear in sensor networks.
[30] shows that although constructing an MIS requires log n
rounds, if MIS is built based on a graph with random priority
nodes, an adding/deleting operation requires one round of
adjustment in expecttion. Another challenge is the convergence
time for the dynamic labeling process:

• How do we handle the long convergence time for the
dynamic label usually occurring in a distributed solution?

A centralized solution is efficient and flexible, but it is less
scalable and suffers from a single point of failure. A localized
solution supports parallel executions for scalability and is
quick to respond to changes because local information does not
propagate. However, localized solutions are limited in prob-
lem solving capabilities [27]. Distributed solutions are fault-
tolerant and scalable, and they offer good problem solving
capabilities. They suffer from a slow convergence, as shown
in the Bellman-Ford algorithm for distributed routing and in
the link reversal for computing a destination-oriented DAG.

We can explore two fronts. The first is designing a hybrid
centralized-and-distributed method that can enjoy the merits
of both the centralized and distributed solutions. The key
issue is how a centralized solution can offer some “guidance”
to a distributed one. Internet routing offers some ideas. The
distributed solution (the distance vector using the Bellman-
Ford solution) is used in intra-domain routing, whereas the
centralized (but implemented in a distributed way) path vector
is applied in inter-domain routing. A recent work on central
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Fig. 9. Safety level labeling in a 4-D binary hypercube.

SDN control over distributed routing offers some interesting
insights as well [31]. The proposed architecture achieves
both flexibility and robustness by controlling over distributed
routing; it inserts fake nodes and links to create an augmented
topology for a distributed solution.

The second front is devising a hybrid distributed-and-
localized method that has the problem-solving capability of
a distributed solution and uses the static labels. The work in
[32] sheds some light on such a labeling method, design for
supporting optimal fault-tolerant routing in an n-dimensional
binary hypercube (or n-D cube) with faulty nodes. Instead of
maintaining labels for routing capabilities to a particular desti-
nation, it maintains a label that indicates the routing capability
to a set of destinations within a hop-count. The distributed
labeling process enjoys some of properties of a localized
solution. This labeling method codes faulty information that
propagates only to the affected region. Specifically, if a node is
labeled i, then it can find a shortest path to any nodes within i
hops, and there is at least one node i+1 hops away that cannot
be reached through a shortest path. When the safety level of a
node is n in an n-D cube, this node can reach any node through
a shortest path since the diameter of an n-D cube is n. Such
a node is called a safe node. The safety level of a node and
the safety levels of its neighbors satisfy a special constraint3.
The safety level of a node is iteratively determined based on
the safety levels of its neighbors by rounds of calculation.
Initially, all faulty nodes have a level 0 (the lowest) and all
non-faulty nodes have a level n (the highest). Differing from
link reversal, each safety level is decided, at most, once. In
fact, if the safety level of a node is i, then the level of this
node is decided exactly in round i. As the diameter of an n-D
cube is n, at most, n− 1 rounds are needed.

Safety levels not only provide routing capability informa-
tion, but can also guide the routing process. No routing table
is needed for optimal routing. Fig. 9 shows a 4-D cube with
three faulty nodes (colored black). At an intermediate node

3The safety level of a faulty node is zero. For non-faulty node u, let (l0, l1,
l2, ..., ln−1), 0 ≤ li ≤ n, be the non-decreasing safety level sequence of node
u’s neighboring nodes in an n-D cube, such that li ≤ li+1, 0 ≤ i < n− 1.
u’s safety level, l(u), is defined as follows: if (l0, l1, l2, ..., ln−1) ≥ (0, 1,
2, ..., n − 1), then l(u) = n; otherwise, if (l0, l1, l2, ..., lk−1) ≥ (0, 1, 2,
..., k− 1) ∧ (lk = k− 1) then l(u) = k. seq1 ≥ seq2 if all the elements in
seq1 are larger than or equal to the corresponding elements in seq2.



of the self-guided process, the next hop is the highest safety-
level neighbor selected from a subset of neighbors. This subset
includes only neighbors that are on the shortest paths from
the intermediate node to the given destination. The binary
addresses of these neighbors are closer to the destination by
one binary bit. In Fig. 9, node 1101 selects 0101 (with a safety
level of 2) between two neighbors 1001 and 0101 on route to
0001. Overall, safety levels show a delicate balance between
efficiency (in terms of quick structure building) and utility (in
terms of structure utility). The application of safety level has
been used in optimal fault-tolerant broadcast. The model itself
has been extended to more sophisticated binary safety vectors
and directed safety levels. Whether a similar approach can be
adopted for a more general setting still remains to be seen.

V. CONCLUSIONS

In this paper, we take a snapshot of several key issues
in uncovering useful structures in a complex network. We
review the existing graph model for a complex network and
then provide a discussion of intersection graphs with two
special cases: a unit disk graph along space dimension and
an interval graph along time dimension. Further, we discuss a
general time-evolving graph across both time and space. We
look at three possible ways to build a useful structure for
a complex network: trimming, layering, and remapping. We
offer concrete ideas and possible solutions for each approach
in the hopes of triggering further discussions. Finally, we
list some challenges in designing distributed and localized
solutions used to represent useful structures, and we explore
several possible ways to address these challenges.
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