Accelerate Cooperative Deep Inference via Layer-wise Processing Schedule Optimization

Ning Wang, Yunbin Duan, and Jie Wu

Rowan University

Temple University
Background

- Internet-of-Things (IoT) devices are pervasive. We want to run Deep Learning (DL) applications everywhere! Not just in data center.

- smartphone
- drone
- autonomous driving
- VR/AR
Background

- Deep Neural Networks (DNN) complexity vs IoT speed.
- IoT devices are not powerful enough for DL.

Objective

- **Goal:** Minimizing DL inference latency
- **Method:** Computation Offloading via edge computing.
 - IoT end device: environment awareness
 - edge server: accurate event inference

Related Works

- Computation offloading introduces extra latency
 - Inference completion time = data transmission delay + data processing delay
 - The network may not be that fast and communication delay cannot be ignored*.

Related Works

- Cooperative Deep Inference
 - Stage 1: local computation at IoT device
 - Stage 2: intermediate result transmission
 - Stage 3: remote server computation

- Rationale
 - Intermediate DNN layers output is significantly smaller than that of raw input data

Challenges

- **DNN Computation Model**
 - abstracted as a **Directed acyclic graph (DAG)** denoted as \(G(V, E) \), where a vertex \(v_i \in V \) represents a layer and a link \(e_{ij} = (v_i, v_j) \in E \) represents the processing dependency relationship between two layers.

- **Cooperative Deep Inference Optimization**
 - Task assignment (i.e., how to partition a DNN)
 - abstracted as a cut in DAG
 - Scheduling (i.e., how to process vertices)
 - **Our major contribution!**

Recurrent Neural Networks (RNN) models such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) are out of the scope of this paper.
Why Is Scheduling Important?

A Toy Example

- The local processing time, transmission time, and remote processing time is denoted as a tuple.

(a) Toy DNN

(b) No schedule

(c) Schedule 1

(d) Schedule 2
Solutions in Three Different DNNs

- We summarize state-of-the-art DNNs into three categories.
 - line, multi-path, and general DAG

Examples
 - LeNet, Inception and Inception-ResNet

https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d
Multi-Path DNNs

- **Problem Hardness**
 - **Line/Single-path**
 - Straightforward solution, even without a given cut
 - **Multi-path** *(Theorem 1: NP-hard)*
 - Path: a sequence of layers which have sequential dependency relationship (except input and output vertices)
 - Non-overlaps among paths (e.g., v_2-v_4, v_3-v_5)

- **Theorem 2**: In multi-path DNNs, the optimal schedule can be achieved via the non-preemptive path-based schedule.
Multi-Path DNNs

- Extended Johnson (EJ) Algorithm
 - Path $p(i)$ in three stages $p_1(i), p_2(i), p_3(i)$
 - Dividing paths into H and L (Linear)
 - E.g., $H = \{1\}, L = \{3, 4, 2\}$

Algorithm 1 Extended Johnson (EJ) Algorithm

Input: $G(V, E), X, t_i$ and $t_i', \forall v_i$

Output: The offloading schedule σ

1: $H \leftarrow L \leftarrow \emptyset$
2: for $i = 1$ to m do
3: if $p_1(i) + p_2(i) \leq p_2(i) + p_3(i)$ then
4: $H = H \cup p(i)$
5: else
6: $L = L \cup p(i)$
7: end if
8: end for
9: Sort H increasingly based on $p_1(i) + p_2(i)$
10: Sort L decreasingly based on $p_2(i) + p_3(i)$
11: Concatenate H and L to obtain σ

(a) EJ Algorithm
Multi-Path DNNs

- Extended Johnson (EJ) Algorithm
 - Theorem 3*: If stage 2 is dominated by either stage 1 or 3, \(\max \{ \min p_1(i), \min p_3(i) \} \geq \max p_2(i) \), EJ is optimal.

<table>
<thead>
<tr>
<th>Path</th>
<th>(p_1(i))</th>
<th>(p_2(i))</th>
<th>(p_3(i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i = 1)</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>(i = 2)</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(i = 3)</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>(i = 4)</td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

- Theorem 4^: If Theorem 3 fails, EJ still achieves an approximation ratio of 5/3.

*Chen et al, A new heuristic for three-machine flow shop scheduling, OR, 1996.

DAG DNNs

- Graph Conversion Algorithm
 - Convert DAG DNNs to multi-path DNNs
 - Replicate nodes via `join` and `fork operations` until it becomes a multi-path DNN.
 - Replicated nodes only execute once (the first time)
Experiments

- **Testbed:**
 - IoT device: Raspberry Pi 4 model B
 - Server: A desktop in our lab which has a six-core CPU (i7-8700) @ 3.20GHz, a GTX 1080 GPU, and 32 GB RAM

- **Experiment results:**
 - LO algorithm: run on the Raspberry Pi; RO algorithm: run DNN on the server

<table>
<thead>
<tr>
<th>Model</th>
<th>LO</th>
<th>3G</th>
<th>4G</th>
<th>WiFi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RO</td>
<td>RO</td>
<td>RO</td>
</tr>
<tr>
<td>AlexNet-P</td>
<td>406</td>
<td>4422</td>
<td>406</td>
<td>877</td>
</tr>
<tr>
<td>GoogLeNet</td>
<td>848</td>
<td>4475</td>
<td>848</td>
<td>879</td>
</tr>
<tr>
<td>ResNet18</td>
<td>871</td>
<td>4463</td>
<td>871</td>
<td>946</td>
</tr>
<tr>
<td>Siamese</td>
<td>3919</td>
<td>8783</td>
<td>1998</td>
<td>1702</td>
</tr>
<tr>
<td>Multi-stream</td>
<td>1198</td>
<td>13146</td>
<td>931</td>
<td>2513</td>
</tr>
</tbody>
</table>
Experiments

- **Experiment results:**
 - DSL: best existing work (no scheduling optimization)
Q&A

❖ Thanks!

❖ Contact Information
 ❑ wangn@rowan.edu