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Abstract—Cyber-security research often focuses on attack-
defense games where a strategic attacker seeks to destroy the
defender’s targets or kill him. In such a game there is a defender
who just try to protect himself. In the real world, players can
choose to protect themselves as well as kill their opponents to
maximize their overall gain. In this case, the player allocates their
budget for both defending and attacking actions and decides
how well to attack and how well to defend against others.
Players should allocate their budgets appropriately for each
action throughout multiple rounds when playing such a game.
The probabilities of surviving and killing in each round are
determined by what happened in the previous rounds and the
amount of the remaining budget. Players can continue playing
until they die or run out of money. It is possible for the player not
to be aware of everything his opponent does. Despite knowing
that his opponent is playing according to one of the possible
types, he cannot see which action exactly he is taking. Likewise,
it may be the case that the player only sees the opponent’s
action, but does not know what its objective is. To meet this
challenge, this paper develops a game where players decide how
to allocate resources when they have partial information. For
a model with complete information, equilibrium can be found
and, as an extension, models with incomplete and imperfect
information are also discussed. Our simulation examines how
utility changes based on prior beliefs, total budgets, costs, and
uncertainty.

Index Terms—Defender-attacker games, (in)complete informa-
tion, (im)perfect information, repeated games, sequential games.

I. INTRODUCTION

The attack and defense game is a game in which an attacker
has an incentive to destroy the defender’s targets and a de-
fender wants to protect it. Game theory is widely used to study
this conflict between the players. In theory, each player should
aim to maximize their gains by devising an optimal strategy
according to their preference. In [1], Hausken analyzed the
attack and defense strategies of systems according to different
probabilities of detection by the attacker. It is not only each
player’s own actions that affect their welfare, but also those
of others. Generally, players in the security domain prefer
to attack their opponents or defend themselves against them.
Consider a situation where players have both attacking and
defending preferences, i.e. defending themselves and at the
same time trying to kill opponents. The players must determine
how they will allocate their limited budget for defending and
attacking throughout multiple rounds of a sequential game.
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Fig. 1. Possible budget allocations and associated payoffs in a game with two
players. Red line shows path of the best strategy in case of expected payoff.

In such a scenario, a proper resource allocation can protect
players against possible attacks, while improper decisions
result in a waste of resources, some damages, and even death.
As a player tends to deploy more budget on attacking, he
prefers to kill other players instead of defending himself.
While spending more of his budget on defense, he prefers
to survive even if he cannot kill the opponent. Consequently,
balancing the allocation of budgets plays a crucial role in
the interactions between players and their utilities. In other
words, it is imperative to know how to manage defensive and
offensive resources under budget constraints.

To facilitate this explanation, consider a game G in Fig. 1;
the player set consists of Player 1 and Player 2 where the
total budget is $100 for both. For simplicity, suppose that
there are three possible actions for Player 1 and two possible
actions for Player 2. There is also a predefined payoff function.
Player 1 can allocate $70 for defending and $30 for attacking.
Additionally, he can allocate $90 of his budget for defending
and the remainder of his budget for attacking. Third action,
this player can split his budget for defending and attacking
evenly. Player 2’s actions are $70 : $30 and $40 : $60. The
tree structure shows the order of playing. The values in leaf
nodes are obtained as the gain after the sequence of actions.
The red lines in Fig. 1 show the best actions for players based
on the obtained gain. For Player 2, by considering Player 1’s
possible actions, the action $70 : $30 has a higher gain value
than $90 : $10. For Player 1, $40 : $60 has a higher gain value
which is 9 against 5 and 7.

As in the real world, players are unaware of all information
about the opposing side. They can see what the other side’s
reactions are. However, they cannot find out what kind of
reaction it is and for what purpose the opponent took such
an action. In incomplete information games, players need to
learn from opponents’ actions in order to devise the most
effective strategy against them. Similarly, in a similar situation,



the player will know all possible payoffs in each case of all
possible actions, but they will not know what the specific ac-
tion is. They have imperfect information about others. Players
have trouble selecting the most useful action and allocating the
proper budget due to such a lack of information. Therefore, it
is essential to analyze the equilibrium allocation of defenders
or attackers for different information availability scenarios and
under budget constraints.

In the case of multiple players with different preferences
in a game, each player should decide on their own budget.
If a player dies during the game, the game will continue
with the remaining ones and may involve multiple stages. We
assume that staying in the game even without any investment
for attacking has some base cost and gain for the player. In
other word, there is a base cost for staying in the game. To
ensure that the game will not continue forever, a measurement
of cost is introduced. By considering the cost, player will stop
playing when there is not enough budget for him to pay for
the cost. If the cost of continuing the game is more than its
benefits for the remaining players, it will stop. This cost value
is considered in the utility function. In summary, we make the
following contributions:
• We introduce a new game with two players who have

preferences of both protection and destruction. As a
result of their preferences and intentions, players allocate
their resources to actions against their opponents. Based
on how much they prefer attacking or defending, these
players can be described as attacker-minded or defender-
minded.

• We define the new utility function that includes both
gains from staying in the game and gains from killing the
opponents. Each player’s incentive determines the amount
of gain associated with their actions.

• We propose modeling the behaviors of players under bud-
get constraints when players have incomplete or imperfect
information at the time of decision making.

• We analyze the effects of the players’ preferences, budget,
and cost/expenditure on the model. Finding equilibrium
involves balancing budget allocations with satisfying
preferences.

The remainder of the paper is organized as follows: Sec-
tion II describes related works on different approaches to
model the interactions between attackers and defenders. Sec-
tion III explains modeling a two-player game with two possible
preferences of defending and attacking. In Section IV, we
elaborate a little about incomplete and imperfect information
game. In Section V, we evaluate our proposed algorithm by
conducting experiments. This section contains some simula-
tion results to evaluate our model. Section VI summarizes
the results of experiments. Finally, we conclude our paper in
Section VII and provide some suggestions for future work.

II. RELATED WORKS

This section presents related works on different approaches
to modeling a game in a security domain. Most of the work
on algorithms for finding an equilibrium has focused on

TABLE I
MAIN NOTATIONS

Symbol Meaning
B/B′ Total budget of the Player 1/2
Di/D

′
i Defensive efforts of the Player 1/2 at round i

Ai/A
′
i Attacking efforts of the Player 1/2 at round i

ki/k
′
i Probability that Player 1/2 kills the opponent

exactly at round i
di/d

′
i Probability that Player 1/2 gets killed exactly at

round i
U(K)/U ′(K) The Utility functions of Player 1/2
α/α′ The reward for staying in the game for Player 1/2
G/G′ The reward of killing the opponent for Player 1/2
C General cost of being in the game
B Player’s belief
θ/θ′ Type of Player 1/2
Sθ/S

′
θ′ Strategy of Player 1/2 when his type is θ/θ′

the non-repeated game [2]–[5]. Hausken and Zhuang in [6]
analyze allocating resources for a defender and attacker in
a two-stage sequential game. Guan et al. in [7] analyze the
equilibrium allocation of defenders and attackers based on a
budget constraint in a multi-target attacker–defender game,
but only for a one-shot game. Nevertheless, most of the
interactions between agents are repeated many times.

There are some interesting papers that consider analyzing
multiple rounds of the game, but most of them neglect the
possibility of the lack of information about the game. Z. Xu et
al. in [8] design a sequential game with complete information
between one defender and multiple attackers. Wu et al. in
[9] propose a model for a game with one defender and two
attackers. When both players have complete information and
common knowledge, they consider the effect of risk attitude
on their decisions. Zhai et al. in [10] introduce asymmetric
utilities when there is no consistency between the attack target
and the defense target. These papers all made some unrealistic
assumptions. They do not cover scenarios in which players do
not have enough information about the actions or preferences
of other players. There is not complete information about the
opponent’s side in the real world.

In the approach of [11], an attacker and a defender play a
signaling game. They suppose that there is incomplete infor-
mation about the type of defender for the attacker. Attackers
may attack immediately or wait until they are stronger against
defenders. The authors in [12] consider multiple strategies and
targets in a sequential defender-attacker game. With the zero-
sum game, they model a scenario in which the defender is
the first mover, and both players have the same preferences,
without additional rewards. Zhang et al. in [13] compare this
model with the traditional game where the attacker behaves
rationally to study how the attacker’s rationality affects the
defender’s optimal defense. Aziz et al. in [14] study a sequen-
tial game-theoretical resource allocation model where there are
multiple defensive budget allocations among multiple potential
targets. The idea is that the defender and attacker believe that
the different types of resources are independent, but there
are complementary effects between them. Neither of them



Fig. 2. The relation between k and A with varying values of m and D = 1.

take into account a situation where players with preferences
for attacking and defending have incomplete or imperfect
information.

To address these research gaps, we analyze the model
on budget constraints with the possibility of different pref-
erences for players in a repeated game. Players can have
both preferences of attacking and defending. The model of
this paper is more practical since it considers limited budget,
time, and limited information in a repeated game. In the case
of computing the value of the utility function, we take into
account gain for players in the case of protecting themselves or
terminating the opponent. There is a constant gain for survival
and staying in the game, but the gain of killing is based on
the probability of winning for the players.

III. THE DEFEND-ATTACK MODEL

We model a two-player game where each player has two
possible preferences: protecting itself and killing the oppo-
nent. When a player has more preference for defending in
comparison to attacking, we can call him a defender-minded
(D-minded). Similarly, a player who prefers to allocate more
resources to attacking would be called attacker-minded (A-
minded). By considering this, possible type of players in this
game are the following: both players are D-minded, both
players are A-minded, and one of the players is A-minded
while another player is D-minded.

A. Contest Success Function and Utility

In order to find the player’s success in obtaining their
objective, A Contest Success Function [15] is used. Success
probability of a player is determined not only by the amount
he invests, but also by the opponent’s investment. That is why
it is a game. It helps to measure the interplay between the
players in case of attacking and protection efforts. The Contest
Success Function (CSF) is defined as:

k =
Am

Am +Dm
, (1)

where A refers to the amount of effort that the player makes
toward his objective and D is the effort of opponent’s side. In
the case of attacker and defender, A represents the amount
of attack and D represents the amount of defense. If the
player has attacking investment A and his opponent has
defense investment D, the probability of a successful defense k
decreases by the defensive investment D, and increases by
the offensive investment A. The decisiveness parameter m

Fig. 3. Attack-defense game in three rounds.

should be set based on the contest intensity. It reflects how the
survival of the opponent depends on the resources extended.
The higher m expresses high intensity, whereas a low m
expresses low intensity [16]. Fig. 2 illustrates how the level of
decisiveness m affects the success probability of k for different
values of the effort. We can see that with A = 1.6 there is
success probability 0.7 when m = 2.

We can generalize the Eq. (1) to a multiple rounds game
with two players who both are interested in maintaining a
defense system against the opponent as well as spending some
resources on killing the other side. For sake of simplicity, we
consider m = 1 from so on. In this ratio form of CSF, Ai,
Di, A′i, and D′i refer to the attacking and defending efforts of
Player 1 and 2 during round i respectively. The values of ki
and k′i are the probability of killing the opponent for Player 1
and Player 2, respectively. In fact, by considering B and B′

as the total budget of Player 1 and Player 2, Di and D′i are
equal to some portion of total budget B and B′ associated
with defending at round i, Ai and A′i is equal to some portion
of total budget B and B′ associated with attacking at round i.
In this multiple rounds game, we can rewrite Eq. (1) as the
probability that Player 1 kills Player 2 exactly at round i:

ki =
Ai

Ai +D′i
. (2)

As well as the probability that Player 2 kills Player 1 exactly
at round i:

k′i =
A′i

A′i +Di
. (3)

The expected utility function for Player 1 is based on the
gain of remaining in the game as well as killing the opponent.
It should be noted that the number of rounds is based on the
total budget and the probability of killing the opponent. There
is constant gain α for surviving or staying in the game and
G which is the gain of killing the opponent. The value G
is the amount of reward that the player will receive if he
can kill the opponent, which depends on the probability of
wining, ki, exactly at round i which is shown in Eq. (2).
The value α represents the amount of reward that Player 1
obtains by surviving for a round. Based on the preference
of the player between A-minded or D-minded strategy, there
are different values for G and α. For example, if there is a
higher value for the gain of surviving in comparison with the
gain of killing, then players prefer to allocate more budget on
defending. Therefore, a D-minded player finds higher α than
an A-minded player for surviving in a given round. Suppose
that the game ends after the first round. The utility for Player 1
would be:

U1 = α+G
A1

A1 +D′1
. (4)



Fig. 4. Attack-defense game in two rounds.

As mentioned before, A1/(A1 + D′1) represents the prob-
ability of killing Player 2 when Player 1 has A1 amount
of investment for attacking and Player 2 has D′1 amount of
investment for defending at round 1. If there are two rounds,
the utility function for Player 1 includes the gain of staying in
the game for two rounds, which is 2α, and the gain of killing
the opponent in the first round or in the second round. We need
to consider the probability of killing Player 2 in the first round,
which is k1, as well as the probability of killing Player 2 in
the second round (1 − k1)k2. It is important to consider the
conditional probability for each round based on what happened
during the previous rounds. Therefore, the utility function for
Player 1 when the game ends in two rounds is as follows:

U2 = 2α+G(
A1

A1 +D′1
+ (1− A1

A1 +D′1
)× A2

A2 +D′2
). (5)

According to Eq. (2), it can be written as :

U2 = 2α+G(k1 + (1− k1)k2). (6)

If there are three rounds, Player 1’s utility function includes
the gain of staying in the game for three rounds, which is 3α.
In addition, it includes the gain of killing the opponent during
the first round, during the second round, or during the third
round. Here, we need to consider the probability of killing
Player 2 at round 1 or 2 or 3. Accordingly, Player 1 can benefit
from the utility function as follows when the game is over after
three rounds:

U3 = 3α+G(k1 + (1− k1)k2 + (1− k1)(1− k2)k3). (7)

To find the expected utility function for Player 1, we must
consider the probability of ending the game in the first round,
the probability of ending the game in the second round, the
third round, etc., and the probability of ending the game in
round T . Based on the total amount of the budget, T represents
the number of rounds that are possible. Another variable is
defined to represent the probability that Player 1 gets killed
exactly at round i, which is called di. The probability of death
for Player 1 at the very beginning of the game is d0 = 0. The
probability that Player 1 gets killed at rounds 1, 2, and 3 are
as follows:

d1 = k′1, d2 = (1− k′1)k′2, d3 = (1− k′1)(1− k′2)k3. (8)

Algorithm 1 Multi-round Attack-defense Game
Require: B,B′, C

1: i = 1
2: while B > C do
3: Players allocate budget for (Ai, Di) and (A′i, D

′
i).

4: Calculating ki and k′i
5: Calculating Ui and U ′i .
6: if Player 1 killed player 2 at round i then
7: while B > 0 do
8: Player 1 continues game with spending C
9: Update remaining budget B.

10: Break
11: Go to round i+ 1
12: return U(K)

Therefore, the probability that Player 1 gets killed exactly at
round i is as follows:

di = (
∏i−1

x=1
(1− k′x))k′i.

Utility Function for Player 1:

U(K) = α
∑T

x=1
((x−1)dx)+G

∑T

x=1
(kx(

∏x−1

j=1
(1−k′j))),

(9)
where K is the vector of parameters k1, k′1, k2, k

′
2, . . . and x

stands for number of rounds. We consider the subspace of
strategies where

k1 ≥ k2 ≥ · · · ≥ kT and k′1 ≥ k′2 ≥ · · · ≥ k′T .

Suppose that Player 1 and Player 2 are supposed to protect
themselves and attack the opponents, respectively, to maximize
their utility value with limited resources B and B′. The utility
can be formulated by considering C as the base cost of staying
in the game:

max U(K)

subject to
∑

1≤i≤T

(Ai +Di) ≤ B

Di, D
′
i ≥ C

(10)

Theorem 1. The utility function in Eq. (9) is a concave
function for all budget allocations. Moreover, there is at least
one Nash equilibrium for a game with a concave utility
function.

Proof: An equilibrium point exists for every concave n-person
game [17]. We need to investigate the concavity of the utility
function in Eq. (9). In Appendix A, we prove the concavity
of utility function. �

IV. (IN)COMPLETE AND (IM)PERFECT INFORMATION

As with any repeated game, the key to analyzing the
outcome is to analyze how much information is available
about the game, because how the game proceeds will be
determined by the result of each round. Each decision made
early affects the decisions made by others later. Depending
on the information that has been provided in previous stages,



Algorithm 2 Backward Induction
Require: Decision node n

1: if n ∈ Leaf then
2: return U(n)
3: Best-Utility ← −∞
4: for each action a ∈ S(n) do
5: U ← Backward Induction(n, a)
6: if U > Best-Utility then
7: Best-Utility ← U
8: return Best-Utility

Algorithm 3 Perfect Bayesian Equilibrium
Require: S, S′,B

1: The Player 1 starts with S.
2: Calculates updated B about Player 2 by using Bayes rule.
3: Calculates the Player 2’s optimal action based on B.
4: if S is the best response to the Player 2’s strategy then
5: PBE has been found.
6: return (S∗,B)

players can adjust their play accordingly. Information can be
categorized into complete information, incomplete informa-
tion, and imperfect information.

As opposed to perfect information games in which all play-
ers are aware of previous actions taken by others, imperfect
information games tend to have one or more players unaware
of previous actions. A game with complete information has
strategies and payoffs that are known by all players. In an
incomplete information game, at least one player does not
know the strategies and rewards of their opponents [18]. In
what follows, we review each of the types in turn.

A. Complete and Perfect Information

In games with complete and perfect information, players
are fully aware of everything that has happened. Players are
aware of their opponents’ behavior and their preferences. The
equilibrium paths of the game in such a case are determined
by backward induction. It begins at the end of the game and
moves backwards one stage at a time.

Definition 1 (Backward Induction). A Nash equilibrium strat-
egy can be derived from backward induction for every finite
game of perfect information [19]. With the help of backward
induction, the equilibrium path can be found.

Algorithm 2 presents the steps of the backward induction
when n is a node in the tree of the game and a shows the action
(branch in the tree). The results of backward induction are used
to find the best utility value. To capture the notion of backward
induction, we need to define the subgame. According to the
Subgame Perfect Nash Equilibrium, the selected strategy of
all players should be rational not only at the beginning of the
game, but also in all subgames.

Theorem 2. The pair of strategies S∗ = (A,D) and S′∗ =
(A′, D′) is a Subgame Perfect Nash Equilibrium (SPNE) in the

Fig. 5. Partial information for Player 1’s preference.

Fig. 6. Game with imperfect information for one of the players.

extensive form game G, if it induces a Nash in every subgame
with the following conditions:
1. Player 1 chooses S to maximize her expected utility U by
assuming that Player 2 will choose his best response S′. That
is, S∗ = argmaxS U(S, S′).
2. Player 2 chooses his best response S′ against S∗

to maximize his expected utility U ′. That is, S′∗ =
argmaxS′ U ′(S, S′).

Proof: At any point in the game, the players’ subsequent
behavior should reflect the Nash equilibrium of the continua-
tion game (of the subgame), regardless of what has happened
before. Each player will attempt to respond to the other side
as effectively as possible [20]. �

According to Theorem 2, in every part of the game, players
are going to choose their actions optimally based on what
others did. It should be noted that the order of the players in
case of taking actions is important. It is obvious that the second
mover can see what the action of the first mover was, and
then select the proper action. This advantage applies only to a
game with complete information. When there is not complete
information for the players about the other players’ action, the
order of the playing the game would not be important. In fact,
such a sequential game should be considered as a simultaneous
game. In the subsections IV-B and IV-C, this type of game will
be explained in detail. In the real world, we need to model
games where complete information is not available. In such
a scenario, there is partial information about the strategy and
target of other players.

B. Incomplete Information

Most of the stochastic game models are composed of matrix
game and Markov decision, which assumes that the player
has known the opponent’s information. This assumption does
not conform to the actual situation. The uncertainty of the
opponent’s income can be converted to the indeterminacy of
the player type, and an incomplete information game. When a
player does not know all the information about the other play-
ers, e.g. their type, strategies, payoffs, or preferences, the game



Fig. 7. A player observes his or her opponent’s actions with error probabilities
α, λ, ε, and µ.

is called incomplete/asymmetric information or Bayesian [21].
A Bayesian game considers incomplete information scenarios
where players have beliefs about unknown factors and seek
to maximize their expected utility. The reason for this is
that players are not given enough information about what is
happening in the game [22].

Each player in a game of complete information has a
utility function that maps action or strategy into payoffs. As
they observe one another’s actions, they adjust their strategies
accordingly. They may not be accurate with their observations,
however. In a game of incomplete information, each player
may have one of many possible utility functions. Players can
form beliefs about one another based on their common knowl-
edge. Different types of players are categorized according to
their preferences. Although they know their own types (i.e.
their preferences), they are unsure about the other player’s
types (i.e. their preferences). Despite this, there is a common
understanding of the types of the other players. The setup of
the game is shown in Fig. 7. Without loss of generality, it is
assumed that 0 ≤ α, λ, ε, µ ≤ 0.5.

According to Harsanyi, in [23], the game begins after a
move by chance that selects the different preferences or types
of players. In the game, each player can observe his own
type, but not those of the other players, so he or she needs to
make predictions about their types. Based on the probability
distribution over the different possible types of players, players
should form beliefs about the strategies of the others. Such
an equilibrium is known as Bayesian Nash equilibrium. It
is a straightforward extension of Nash equilibrium. All types
of players choose a strategy that maximizes expected utility
based on the actions of all other types and their beliefs about
other types. By predicting other types’ behavior, players can
maximize their own utility.

Definition 2. A game G with incomplete information is a
tuple < N,A,Θ, S, U > where N is the number of players,
A is the set of actions, Θ is the set of types of players, S is
the set of possible strategies, and U is the utility function.

For such a game, perfect Bayesian equilibrium, or PBE, is
the solution. AS mentioned above, Bayes-Nash equilibrium
is a generalization of Nash equilibrium for incomplete infor-
mation games. The result of PBE is a pair (S,B) such that
strategy S is sequentially rational given beliefs B. Algorithm 3
presents the steps of PBE. Let P (θ′|θ) denotes the probability
that Player 2 has the type θ′ given that Player 1 has type θ.

If Sθ and S′θ′ stand for the strategy of players with types of θ
and θ′, the expected utility for Player 1 can be defined as:

U(S, S′|θ) =
∑

θ′
P (θ′|θ) · U(Sθ, S

′
θ′) (11)

Definition 3. For the player with type θ, the strategy S is a
Bayesian Nash equilibrium if:

Sθ = arg maxS
∑

θ′
P (θ′|θ) · U(Sθ, S

′
θ′). (12)

The idea underlying this definition is identical to that for
existence of Nash equilibrium in the complete information
game. Consider game a G where there are two possible
types, θ1 and θ2. Suppose that player 2 is not aware of the
type of player 1. Based on his belief, the type of player 1 is
θ1 with probabilities P and θ2 with probability (1− P ) [24].
Fig. 5 displays such an incomplete information game. After
taking strategy S, a player needs to update his belief based
on the Bayesian rules if it is possible. Suppose that P = 0.5
for the player 1 to be a D-minded player. Also suppose that
as prior knowledge player 2 knows that player 1 with the
probability of 0.75 allocates 70% of his budget for protection.
If player 2 observes a large amount of protection investment,
say D, he can update his belief about P (θ1|D) with the help
of the Bayesian rule of P (D|θ1)× P (θ1)/P (D).

C. Imperfect Information

With perfect information, a player is able to perfectly
observe every action they have taken in the past. Nevertheless,
in the absence of perfect information, players cannot see
the actions taken by their adversaries [25]. A game with
imperfect information represents games where a player does
not know what actions other players have taken at a given
time. Consequently, it is computationally challenging to follow
the history of actions during a multistage game. Nevertheless,
all players may know their opponents’ types, strategies, and
payoff functions, which may create a complete, imperfect
information game. In cybersecurity games, both the attacker
and the defender are considered to be playing an imperfect
information game [26] [27]. A game of imperfect information
is an extensive-form game in which each player’s choice
nodes are divided into information sets. This information
set I contains all the nodes that the player may be at. A
player cannot distinguish between nodes in an information set.
Player i’s information sets are Ii1, ..., Iim for some m, where
{Ii1 ∪ ... ∪ Iim} is all nodes where it’s player i’s move. For
all j 6= k there is Iij ∩ Iik = ∅.

All players know who the other players are, what their pos-
sible strategies/actions are, and what their preferences/rewards
are. As a result, in an imperfect information game, the in-
formation about the other players is complete. Each player’s
decision node is located in an information set. The authors
in [28] presented a repeated game with finite steps or infinite
steps based on imperfect information. When two decision
nodes are in the same information set, the player cannot
distinguish between them and needs to rely on his beliefs to
make a decision.



(a) B′ = 20, C = 10 (b) B′ = 20, C = 1 (c) B = 20, C = 10 (d) B = 20, C = 1

Fig. 8. Utility of Player 1 in the case of simultaneous and sequential games with varying budgets.

(a) Initial Belief:(10%:90%) (b) Initial Belief:(50%:50%) (c) Initial Belief:(30%:70%)

Fig. 9. Speed of convergence in the case of different belief. Dashed lines show the time of converging to the Nash equilibrium.

Consider the game in Fig. 6. In the first round, Player 1
starts the game and takes his action. Then Player 2 should
make a decision based on observing what Player 1 did. Sup-
pose that at the beginning of the second round, Player 1 cannot
observe what Player 2 has done in the last round; however,
Player 1 knows what the payoff is. Dashed lines in Fig. 6
shows the uncertainty of Player 1 in realizing where he is. The
blue box represents information set I1 and I2. The two nodes
in each of the information sets show imperfect information
for Player 1. In this case, Player 1 has to consider all possible
actions and find Nash equilibrium for each information set.
The imperfect information game can be converted to a normal
form and finding the Nash equilibrium is possible [29].

If we assume that players are not informed about their
payoffs until the end of the final round, the repeated game can
be modeled by a hidden Markov chain and can be classified
as imperfect information. Such a game can be called a hidden
Markov Bayesian game [30]. Using a hidden Markov model
to group opponents into types and learn models for each type
is helpful in case of imperfect information.

V. EVALUATION

In this section, we present the results of analyzing optimal
strategies of players and show the impacts of different param-
eters on interactions between players. Preference of players
in the cases of attacking and defending, level of knowledge,
amount of budget, cost, and m are parameters that can have
an impact on the decision-making processes of players and
their utility. We model a finite repeated game with limited
budget for players. We investigate the trend of players in the
case of complete and partial information and analyze the con-
vergence to the Nash equilibrium. In a complete information
game, each player has complete information about the total

budget, taken actions, and preference of the other players.
In a partial information game, the player cannot observe the
actions or preferences of the other players and needs to learn
about the game. We suppose that there are two players, one
attacker-minded (A-minded) player and one defender-minded
(D-minded) player in the game with complete information,
incomplete information, or imperfect information. Without
loss of generality, it is assumed that there are different values
for α, c, and G in different scenarios. The value of α = 1 or
5, C = 1 or 10, and G = 10 or 15.

A. Impact of Different Amounts of Budget and Different Costs

In this section, we analyze the trend of players’ behavior in
case of different amounts of budget. Players need to spend
their budget for the attack and defense as well as cost.
More budget helps the player to more investments and it
increases the chance of having a successful result. Fig. 8
shows the change in utility for Player 1 who is A-minded
and Player 2 who is D-minded while keeping the budget of
one side constant and varying the budget of other side. The A-
minded player’s expected gain increases when the total budget
B′ = 20 and there is increasing total amount of budget B.
The result is similar when there are different base cost C = 1
and C = 10. There are decreasing values for utility of an A-
minded player in a scenario with a constant amount of budget
B = 20 for the A-minded player and increasing budget for D-
minded. Therefore, the amount of budget plays an important
role in the game. In addition, Fig. 8 compares the results for
sequential and simultaneous game. In the simultaneous game,
both players cannot find any information about the action and
preference of another player before making a decision about
their action. Hence, there is higher gain for the player in the
sequential game compared to the simultaneous one.



(a) B′ = 20, α = 1 (b) B′ = 40, α = 1 (c) B′ = 20, α = 5 (d) B′ = 40, α = 5

Fig. 10. The effect of different values of cost and gain on utility.

(a) D′ = 20 (b) A = 20

Fig. 11. Effect of m on utility with varying amount of attack and defend.

B. Convergence in Different Information and Initial Beliefs

Availability of information is an effective item in the pro-
cess of decision-making for players. When there is complete
information for the player about the action and intention of the
opponent side, the player can select the best action without a
doubt. In the case of partial information, players cannot see
what the exact actions of opposing sides are or cannot find
what the exact intentions are. After any observation, if it is
possible, they update their prior belief about the other sides
and find what the best action against these opponents is. In
this section, we want to investigate the speed of convergence
to the Nash equilibrium equilibrium in different availability
of information for players. As Fig. 9 illustrates, the speed
of converging to the Nash in the complete information game
is higher than one with partial information. Similarly, in
an imperfect information game, player needs to spend more
time to reach the Nash equilibrium in comparison to an
incomplete information. With different initial beliefs, predict
other players’ behavior, eventually the game will converged.

C. Impact of Different Amounts of Gain and Cost

In this part of the evaluation, we evaluate the effect of
different values for cost of staying in the game which is
presented by C, gain of staying in the game α, and gain of
killing the opponent G on the utility function. As mentioned
before, we need to consider a base cost for staying in the
game, otherwise the final remaining player can be in the game
forever. The value of C helps us to estimate the total number
of rounds in a game if there is a budget limitation for the
players. Fig. 10 shows the utility value for an attacker-minded
player in four scenarios that are based on the total amount

of budget and the value of α. We consider a fixed amount of
budget for the opponent, then evaluate the utility value with a
varying amount of budget for the attacker-minded player. It is
obvious that the lower cost C helps the player to keep more
budget for attacking and increase the probability of staying in
the game. Also, as a result of the higher gains, players can
find higher utility at the end of the game. The total amount
of budget belonging to the opponent has a significant effect
on the result of the game as well. The more budget, the more
chance of winning for the player.

D. Impact of Different Values of m

In CSF, m represents the intensity of the contest. Fig. 11
illustrates the effect of different values of m on the utility of
Player 1 when there is a fixed amount of investment for one
of the players and a varying investment for another one. It
turns out that a higher value for m corresponds to a higher
intensity. An A-minded player will have a smaller amount of
investment for attacking than D′, or in this case 20, so that
a large m will have a lower utility value than a small m.
However, when the amount of attack against D′ is greater, the
utility value of a large m is greater than a small m. Similar
results are obtained when we consider fixed attack A for the
A-minded player and different investments from the D-minded
player, D′, for defending. Fig. 11 (b) represents the effect of
m on decreasing utility for the A-minded player when he has
lower or higher effort against the D-minded player.

VI. DISCUSSION

It is evident from the results above that the overall budget
and cost of remaining in the game play an important role in
the outcome of the game. The result of analyzing the effect
of m on the utility turns out that with a higher value for
m, there is a higher intensity and higher impact related to
the opponent’s investment. An important factor determines
the result of the game and the amount of utility that can be
obtained is the amount of total budget and the ratio of budgets
between players. Taking into account the imperfectness of the
observations for both players and the lack of information about
the opponent’s motivations, players need to update their prior
belief about the other side after any observation, and then find
the best way to deal with these opponents. When each player
believes correctly about his opponent, he eventually reaches
the Nash Equilibrium, which is the point at which the player



maximizes the gain against all of the opponent’s strategies. The
cost of remaining in this game is another significant factor.
In the case of the lower cost C and high gain α, there is
a possibly greater utility for an attacker-minded player who
receives a higher reward G for killing the opponent.

VII. CONCLUSION

Among studies on defense-attack games, no previous ap-
proaches have explicitly considered both attacking and de-
fending preference in the resource allocation alongside the
constraints of partial information and restricted budget. In
this paper, we investigated how optimal defense and offense
could change when both players are rational and their strategy
relies on strategic interactions, in which both players benefit
from defending and killing. Possibly one of them would
prefer designing a defense system against an attack, while the
other would rather kill another player. By considering budget
constraints, finding equilibrium and optimizing solutions and
their respective payoffs is an interesting challenge. Verifying
the influences of various parameters on the equilibrium helps
to better understand the attacker’s activities and obtain a better
defensive strategy. As a future work, we can evaluate a game
with more than two players. Different preferences determine
the priorities and order of actions in such a game. Additionally,
players can share their budgets with one another.
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APPENDIX

Proof of Theorem 1: An equilibrium point exists for
every concave n-person game [17]. We need to investigate
the concavity of the utility function in Eq. (9). Here we prove
the concavity of the utility function for Player 1:

U(K) = α

T∑
x=1

((x− 1)dx) +G

T∑
x=1

(kx(

x−1∏
j=1

(1− k′j))),

where K is the vector of parameters k1, k′1, k2, k
′
2, . . . and x

stands for number of rounds. We consider the subspace of
strategies where k1 ≥ k2 ≥ · · · ≥ kT and k′1 ≥ k′2 ≥ · · · ≥
k′T . As we mentioned before, ki is the probability that Player 1
kills Player 2 exactly at round i.

ki =
Ami

Ami +D′i
m
, k′i =

A′i
m

A′i
m +Dm

i

.



By considering B and B′ as the total budget of Player 1
and Player 2, Di and D′i are equal to some portion of total
budget B and B′ associated with defending at round i, as
well as Ai and A′i is equal to some portion of total budget B
and B′ associated with attacking at round i. We do prove the
concavity of U(K) by the following statement:

U(λK1 + (1− λ)K2) ≥ λU(K1) + (1− λ)U(K2),

where K1 are the parameters of the first game
(k11, k

′1
1 , k

1
2, k

′1
2 , . . . ) and K2 are the parameters of the

second game (k21, k
′2
1 , k

2
2, k

′2
2 , . . . ), when ∀λ ∈ [0, 1]. Without

loss of generality, we consider the case k11 ≥ k21, k12 ≥ k22, . . . .
We start from the left hand side and replace K1 and K2 with
the parameters of the attack-defense game:

U(λK1 + (1− λ)K2)

= α(1− (λk
′1
1 + (1− λ)k

′2
1 ))(λk

′1
2 + (1− λ)k

′2
2 )

+ 2α(1− (λk
′1
1 + (1− λ)k

′2
1 ))(1− (λk

′1
2 + (1− λ)k

′2
2 ))

(λk
′1
3 + (1− λ)k

′2
3 ) + . . .

+G
∑
x=1

(λk1x + (1− λ)k2x)(

x−1∏
j=1

(λk
′1
j + (1− λ)k

′2
j ))

= αλk
′1
2 + α(1− λ)k

′2
2 − αλ2k

′1
1 k

′1
2 αλ(1− λ)k

′1
1 k

′2
2

− αλ(1− λ)k
′2
1 k

′1
2 − α(1− λ)2k

′2
1 k

′2
2 + . . .

+G
∑
x=1

(λk1x + (1− λ)k2x)(

x−1∏
j=1

(λk
′1
j + (1− λ)k

′2
j ))

We replace K1 and K2 with in the parameters of the attack-
defense game in right hand side statement, therefore we have:

λU(K1) + (1− λ)U(K2)

= α(λ(1− k
′1
1 )k

′1
2 + (1− λ)(1− k

′2
1 )k

′2
2 )

+ 2α(λ(1− k
′1
1 )(1− k

′1
2 )k

′1
3

+ (1− λ)(1− k
′2
1 )(1− k

′2
2 )k

′2
3 ) + . . .

+Gλ
∑
x=1

(k1x(

x−1∏
j=1

(1− k
′1
j )))

+G(1− λ)
∑
x=1

(k2x(

x−1∏
j=1

(1− k
′2
j )))

= αλk
′1
2 + α(1− λ)k

′2
2 − αλk

′1
1 k

′1
2 − α(1− λ)k

′2
1 k

′2
2 + . . .

+Gλ
∑
x=1

(k1x(

x−1∏
j=1

(1− k
′1
j )))

+G(1− λ)
∑
x=1

(k2x(

x−1∏
j=1

(1− k
′2
j )))

Now, we need to show that

U(λK1 + (1− λ)K2)− (λU(K1) + (1− λ)U(K2)) ≥ 0

To do so, subtracting the corresponding terms yields:

U(λK1 + (1− λ)K2)− (λU(K1) + (1− λ)U(K2))

= αλk
′1
2 + α(1− λ)k

′2
2 − αλk

′1
2 − α(1− λ)k

′2
2

− αλ2k
′1
1 k

′1
2 + αλk

′1
1 k

′1
2 − αλ(1− λ)k

′1
1 k

′2
2

− αλ(1− λ)k
′2
1 k

′1
2 − α(1− λ)2k

′2
1 k

′2
2 + α(1− λ)k

′2
1 k

′2
2

+ . . .

+G
∑
x=1

(λk1x + (1− λ)k2x)(

x−1∏
j=1

(λk
′1
j + (1− λ)k

′2
j ))

−Gλ
∑
x=1

(k1x(

x−1∏
j=1

(1− k
′1
j )))

−G(1− λ)
∑
x=1

(k2x(

x−1∏
j=1

(1− k
′2
j ))) = 0

We can rewrite this statement as:
U(λK1 + (1− λ)K2)− (λU(K1) + (1− λ)U(K2))

= αλ(1− λ)k
′1
1 k

′1
2 − αλ(1− λ)k

′1
1 k

′2
2

− αλ(1− λ)k
′2
1 k

′1
2 + αλ(1− λ)k

′2
1 k

′2
2 + . . .

+G
∑
x=1

(λk1x + (1− λ)k2x)(

x−1∏
j=1

(λk
′1
j + (1− λ)k

′2
j ))

−Gλ
∑
x=1

(k1x(

x−1∏
j=1

(1− k
′1
j )))

−G(1− λ)
∑
x=1

(k2x(

x−1∏
j=1

(1− k
′2
j ))) = 0

Then:
U(λK1 + (1− λ)K2)− (λU(K1) + (1− λ)U(K2))

= αλ(1− λ)(k
′1
1 k

′1
2 + k

′2
1 k

′2
2 − k

′1
1 k

′2
2 − k

′2
1 k

′1
2 ) + . . .

+G
∑
x=1

(λk1x + (1− λ)k2x)(

x−1∏
j=1

(λk
′1
j + (1− λ)k

′2
j ))

−Gλ
∑
x=1

(k1x(

x−1∏
j=1

(1− k
′1
j )))

−G(1− λ)
∑
x=1

(k2x(

x−1∏
j=1

(1− k
′2
j ))) = 0

Now, since k11 ≥ k21, k
1
2 ≥ k22, . . . , and k1 ≥ k2 ≥ . . . as

well as k′1 ≥ k′2 ≥ . . . , we conclude that:

(k
′1
1 k

′1
2 + k

′2
1 k

′2
2 − k

′1
1 k

′2
2 − k

′2
1 k

′1
2 ) ≥ 0.

The same would apply for the remaining 2α, 3α, . . . terms.
Furthermore, the last three G terms reduce to the exact formula
except that while replacing the factor k′i by ki. Hence, the
inequality applies. By that, we have proven the concavity of U
in k1, k′1, k2, k

′
2, . . . . Now, since both −ki(Ai) and k′i(Di) are

convex ∀i,m ≥ 1, and Ua is nonincreasing in each of the
arguments in K. Hence, U is concave on A1, D1, A2, D2, . . . .

�


	Introduction
	Related Works
	The Defend-Attack Model
	Contest Success Function and Utility

	(In)complete and (Im)perfect Information
	Complete and Perfect Information
	Incomplete Information
	Imperfect Information

	Evaluation
	Impact of Different Amounts of Budget and Different Costs
	Convergence in Different Information and Initial Beliefs
	Impact of Different Amounts of Gain and Cost
	Impact of Different Values of m

	Discussion
	Conclusion
	References
	Appendix

