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Abstract—Federated learning faces significant challenges in
balancing communication efficiency, model accuracy, and privacy
protection. While model compression effectively reduces commu-
nication overhead, existing approaches typically adopt a fixed
compression rate, failing to dynamically balance compression
efficiency and model performance while often overlooking privacy
concerns. To address these issues, we propose FedCP—a Feder-
ated learning framework with personalized model Compression
and Privacy protection. This novel framework integrates a
Personalized Compression Mechanism (PCM) and an Optimized
Piecewise noise Mechanism (OPM). PCM dynamically adjusts
the model compression rate based on clients’ privacy budgets
and communication costs, achieving an optimal trade-off be-
tween communication overhead and model accuracy. Since model
compression inherently provides a degree of privacy protec-
tion, OPM further refines the noise injection strategy through
mathematical formulations, optimizing the noise addition process
for larger privacy budgets and enhancing model performance.
Experimental results on multiple real-world datasets demonstrate
that FedCP outperforms existing baseline methods in both model
accuracy and communication efficiency while ensuring rigorous
privacy protection. This paper presents an effective solution to
communication optimization in federated learning and introduces
a more advanced privacy-preserving mechanism with significant
theoretical and practical implications.

Index Terms—Federated Learning, Personalized Compression
Mechanism, Optimized Privacy Protection, Stackelberg Game.

I. INTRODUCTION

Federated Learning (FL) is a distributed machine learning
paradigm that enables multiple devices or data sources to
collaboratively train models without centralizing data on a
central server. Its core advantage lies in preserving user privacy
through local data processing [1], while simultaneously en-
hancing model generalization by leveraging diverse distributed
datasets. Although FL has been widely adopted in various
fields such as retail, finance, and healthcare [2], its practical
deployment still faces significant challenges, particularly in
terms of communication efficiency and privacy protection.

In a typical FL framework, the server is responsible for
coordinating clients, including collecting, aggregating, and
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distributing model parameters to iteratively refine the global
model. However, this process often requires multiple rounds of
communication, resulting in substantial communication over-
head and severely impacting training efficiency. To address
this, existing research primarily relies on quantization [3],
[4], [5], [6] and sparsification [7], [8], [9], [10] techniques,
which compress client-uploaded model parameters to reduce
communication costs. However, most studies adopt fixed com-
pression rates, overlooking key factors such as privacy budgets,
data heterogeneity, and communication costs. This limitation
prevents clients from optimizing compression rates based on
their individual characteristics, leading to inefficient use of
communication resources and potential degradation of model
convergence speed. Furthermore, model compression may
negatively impact performance, especially in scenarios with
high data complexity or stringent task requirements. Therefore,
achieving a fine-grained trade-off between compression rate
and model accuracy remains a critical challenge.

Privacy protection is another crucial aspect of FL. Differ-
ential Privacy (DP) has emerged as a mainstream technique
for mitigating privacy threats in FL systems [11], [12], [13],
[14]. Integrating model compression can effectively reduce the
amount of shared data in each iteration, thereby enhancing
privacy protection at the transmission level. This reduction in
potential information leakage enables clients to be allocated
higher privacy budgets, ensuring stronger privacy guarantees
while maintaining model utility. However, designing an effi-
cient and personalized compression mechanism that balances
privacy protection, model performance, and communication
efficiency remains a significant challenge. Specifically, these
challenges include optimizing the trade-off between compres-
sion rate and model accuracy, adapting to client heterogeneity,
and ensuring robust privacy protection.

To address the above-mentioned challenges, this paper
proposes a federated learning framework with personalized
model compression and privacy protection (FedCP). First,
we design a Personalized Compression Mechanism (PCM)
that dynamically determines the compression rate for each
client to balance communication efficiency and global model
performance. Then, we formulate the problem of determining
the optimal compression rate for each client as a Stackelberg
game, where the server acts as the leader and the clients act



as the followers, each independently optimizing their utility
function. The server’s utility depends on the improvement of
the global model and the rewards allocated to the clients, while
each client’s utility is influenced by the received rewards,
communication costs, privacy loss, and computational over-
head. By deriving the unique equilibrium for this Stackelberg
game, we can determine the optimal payment strategy for
the server and the optimal compression strategies for clients
to ensure system convergence. Additionally, we propose an
Optimized Piecewise Noise Injection Mechanism (OPM) to
enhance privacy protection in high-privacy-budget scenarios.
Extensive experiments on real-world datasets confirm that
FedCP effectively reduces communication costs, strengthens
privacy protection, and maintains model stability in resource-
constrained environments.

The key contributions of this paper are listed as follows:
1) We propose FedCP, a novel FL framework that jointly

optimizes communication efficiency, model performance, and
privacy protection while integrating game-theoretic compres-
sion optimization.

2) We propose PCM, which enables clients to dynamically
adjust their compression rates based on their individual charac-
teristics, thus achieving an optimal balance between communi-
cation overhead and global model performance. Furthermore,
for higher privacy budgets, we introduce OPM to further
enhance the model performance by combining with PCM.

3) We conduct extensive experiments on multiple real-
world datasets, demonstrating that FedCP outperforms existing
baseline methods in communication efficiency, privacy protec-
tion strength, and model performance, providing a promising
direction for practical FL deployment.

II. RELATED WORK

Communication efficiency and privacy protection are two
critical challenges in FL that require urgent solutions. In recent
years, numerous innovative approaches have been proposed to
address these challenges.

Regarding communication efficiency optimization, re-
searchers have focused on quantization and sparsification
techniques to reduce communication overhead. Quantization
reduces data precision to minimize transmission costs, with no-
table works including QSGD [3], which introduces a gradient
quantization encoding scheme, and SignSGD [6], which em-
ploys a gradient sign transmission mechanism. Sparsification,
on the other hand, optimizes communication by selectively
transmitting key gradients. Representative methods include the
Top-k gradient selection strategy [8] and fixed sparsity-based
gradient transmission [10]. Notably, Gaia [16] introduces a
dynamic communication content selection mechanism, while
STC [17] achieves bidirectional data compression through a
joint optimization of sparsification and ternarization.With the
rapid advancement of deep learning models, compression algo-
rithms tailored for specific models have also made significant
progress. For instance, Laptop-diff [18] proposes a structured
pruning method for diffusion models, DepGraph [19] develops

a dependency-graph-based general model optimization frame-
work, and LLM-Pruner [20] achieves efficient compression
and performance retention for large-scale language models.

In terms of privacy protection [21], existing research primar-
ily focuses on techniques such as Homomorphic Encryption
(HE) [22], Secure Multi-party Computation (SMC) [23], and
DP. Among these, DP has gained significant attention due to
its lower computational and communication overhead. Wei et
al. [12] proposed a privacy-preserving mechanism based on
gradient clipping and Laplacian and Gaussian noise injection.
Meanwhile, the LDP-FL framework [14] further enhances data
perturbation effectiveness through adaptive range adjustment
and parameter transformation. There has also been notable
progress in leveraging incentive mechanisms to ensure privacy
protection. For instance, one study integrates reputation and
contract theory to design an effective incentive mechanism
that encourages high-quality local data owners to participate
in model training while protecting their privacy [30]. Zhang et
al. [31] proposed an incentive mechanism based on reputation
and reverse auction theory, which selects and rewards high-
performing participants by considering their reputation and
bidding behavior under limited privacy budgets. Xu et al. [32]
introduced a personalized privacy-preserving mechanism for
crowdsourced federated learning, modeling the personalized
privacy budget optimization as a two-stage Stackelberg game
to determine the optimal privacy budget for each participant.

However, existing research on communication optimization
in federated learning often overlooks the heterogeneity of
clients, focusing primarily on model compression techniques
without effectively balancing privacy protection, model accu-
racy, and overall communication overhead. To address this
limitation, we propose an innovative Personalized Compres-
sion Framework—FedCP. This framework enables clients to
dynamically adjust their compression rates based on individ-
ualized factors such as privacy budget and communication
cost, while ensuring privacy protection. As a result, FedCP
achieves efficient global model convergence, significantly re-
duces communication overhead, and enhances privacy protec-
tion strength.

III. SYSTEM MODEL

The FedCP framework is briefly described as shown in Fig.
1. Consider a federated learning system consisting of a param-
eter server, M edge nodes, and N clients. The server collects
model parameters from the N clients for model aggregation,
which results in the global model, with the client set denoted
as N = {1, 2, · · · , N}. The set of edge nodes is denoted by
M = {1, . . . , j, . . . ,M}, where the edge nodes establish a
coordination mechanism between the server and the clients
to enhance client anonymity and assist the server in quickly
aggregating local models and propagating the global model.
Each client i ∈ N collects data through mobile smart devices
and stores it in its local dataset Di. The system operates in
time slices, with the entire process divided into T rounds.
The joint training process in round t ∈ T = {1, 2, · · · , T} in
FedCP includes the following steps:



TABLE I: Symbols and their descriptions

Symbol Description
i, N Client i and the client set.
j,M Edge node j and the edge node set.
N,M The number of clients and edge nodes.

ccmi , cpvi , ccpi Communication cost, privacy cost, and computation cost.

ρcmi , ρpvi , ρcpi
Unit communication cost, unit privacy cost, and unit
computation cost.

γt
i , R

t
i

The model compression rate γt
i and the payment reward

Rt
i for client i.

γt∗
i , Rt∗ The personalized optimal model compression rate γt∗

i
and the server’s optimal payment Rt∗ for client i.

T,wk The interaction rounds and the positive adjustment factor.
Ut
i , U

t The utility functions for client i and the server.

wi
t, w̃

i
t

The model parameters uploaded by client i, before and
after noise addition.

1) Server broadcasts the global model: The server receives
the global model from the previous round, wt−1, and broad-
casts it to all clients along with the payment rules.

2) Local training: Each client i receives the global model
wt−1 from the server and performs local training to obtain the
model parameters wi

t0. To improve communication efficiency,
client i first applies the PCM mechanism, which determines
a personalized compression rate γt

i based on the server’s
payment reward Rt, and compresses the local model to obtain
wi

t. To protect privacy and prevent sensitive data leakage, the
client then applies the OPM mechanism to introduce noise to
the compressed model, resulting in the final uploaded model
w̃t

i .
3) Uploading local models: Clients upload their trained local

models to the corresponding edge node j ∈ M. The edge
node performs partial aggregation to obtain an intermediate
parameter matrix w̃t

j =
∑

i∈N t
j
w̃t

i , where N t
j ⊆ N represents

the set of clients whose disturbed model parameters are
uploaded to edge node j in round t.

4) Incentive mechanism: The server collects the compressed
models from all edge nodes and then pays clients according to
their contributions (model accuracy). For fairness, the reward
Ri

t for each worker is set to be proportional to its privacy
budget ϵi and the ratio of retained parameters (1− γt

i ). The
total reward the server must pay to clients is Rt =

∑
i∈N Ri

t.
5) Model aggregation: The server updates the global model

by aggregating all the edge node model parameters w̃t
j .

The objective of this paper is to design a privacy-preserving
personalized compression mechanism that comprehensively
addresses the trade-offs between communication overhead, pri-
vacy protection, and global model performance. Specifically,
we first aim to identify the optimal balance between commu-
nication cost and model performance. Subsequently, for larger
privacy budgets, we propose an optimized privacy protection
mechanism to further enhance the model’s effectiveness.

IV. GAME-THEORETIC PERSONALIZED COMPRESSION
MECHANISM

This section introduces PCM, modeling the interaction be-
tween the server and clients as a two-stage Stackelberg game.
The server, as the leader, aims to incentivize clients to upload
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Fig. 1: Overview of the FedCP Framework.

more model parameters at minimal cost to accelerate global
model convergence. Clients, as followers, balance monetary
rewards against communication overhead when choosing their
compression rates.

Clients must trade off between reducing communication
costs and preserving model update quality, while the server
must balance incentive costs with the quality of received
updates.

We first define utility functions for both the server and
clients, and then derive their optimal strategies based on
the Stackelberg equilibrium, enabling joint optimization of
communication efficiency and model performance.

A. Utility Function Design

The server’s objective is to minimize the total payment to
all clients while maximizing the convergence rate of the global
model. Thus, its utility function is influenced by both the
degree of global model optimization and the total payment
amount. In contrast, the client’s objective is to maximize its
individual utility by balancing reduced communication costs
and higher rewards from the server. Consequently, the client’s
utility depends on both the received reward and the incurred
communication cost. The server optimizes its utility by adjust-
ing the payment amount Rt, while each client optimizes its
utility by adjusting its compression rate γt

i .
In the following sections, we provide a detailed formulation

of the utility functions for both the server and clients. For
ease of reference, Table I summarizes the key notations used
throughout this paper.

Server’s Utility Function: The server’s utility function
increases with the degree of global model optimization and
decreases with the increase in payment amounts. Therefore,
the server’s utility function is positively correlated with the
accuracy of local models and is then reduced by the client
rewards and the platform’s operational costs.

Firstly, we define model performance as a function of the
compression ratio γt

i and the privacy budget ϵi. Generally,
a lower compression ratio and a higher privacy budget lead
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Fig. 2: The Model Accuracy varies with Privacy Budget and
Compression Ratio.

to improved model performance, such as higher classification
accuracy or prediction accuracy. We conduct experiments
using machine learning models on different datasets to obtain
model accuracy under various compression ratios and privacy
budgets. The collected data is then used for nonlinear function
fitting to derive the functional relationship between model
accuracy, compression ratio, and privacy budget. As illustrated
in Fig. 2, we present the functional graphs depicting how
the test accuracy of a CNN model on the MNIST dataset
and a ResNet12 model on the CIFAR-10 dataset vary with
the compression ratio and privacy budget. Our observations
indicate that the local model accuracy of client i, denoted as
Ωt

i, can be approximated as a convex function of the com-
pression ratio and privacy budget, specifically, Ωt

i(γ
t
i , ϵi) =

−αeλγ
t
i − µe−ηϵi + β, where α, λ, µ, η, and β are dataset-

dependent parameters, all of which are positive.
Fig. 2a presents the test results on the MNIST dataset, where

the fitted function is given by Ωt
i(γ

t
i , ϵi) = −0.0038e5.8γ

t
i −

0.85e−0.57ϵi + 0.99. Fig. 2b presents the test results on the
CIFAR-10 dataset, where the fitted function is given by
Ωt

i(γ
t
i , ϵi) = −0.0024e7.8γ

t
i − 2.4e−0.56ϵi + 0.88.

Next, for generality, we use a continuous invertible con-
vex function Θ(

∑
i Ω

t
i) to represent the evaluator’s function,

which assesses the overall model performance. Therefore, the
server’s utility function U t

(
Rt, γt

i , γ
t
−i

)
is defined as:

U t (Rt, γt
i , γ

t
−i

)
= Θ

(
N∑
i=1

(
−αeλγ

t
i − µe−ηϵi + β

))
−Rt −Rt

p.

(1)
In the above equation, Rt represents the reward paid by the

server in the t-th round, and Rt
p represents the rent paid to the

platform in the t-th round.
Client’s Utility Function: In the t-th round, the utility

function U t
i (R

t, γt
i , γ

t
(−i)) of each client i depends on the

reward received from the server and the costs incurred in
communication, privacy, and computation. It is defined as:

U t
i

(
Rt, γt

i , γ
t
−i

)
= Rt

i − ccmi − cpvi − ccpi

=
ϵi
(
1− γt

i

)∑N
i=1 ϵi (1− γt

i )
Rt−ω1ρ

cm
i

(
1− γt

i

)
−ω2ρ

pv
i ϵi−ω3ρ

cp
i |Di| f2

i .

(2)

In the above equation, ωj (where j ∈ {1, 2, 3}) is a
positive adjustment factor, and γt

(−i) represents the vector
< γt

1, γ
t
2, . . . , γ

t
N > excluding γt

i . The detailed explanation
of each term is as follows:

• Reward Rt
i: The reward for client i comes from the total

payment provided by the server, and it is proportional to
ϵi and (1 − γt

i ), as higher privacy budgets and lower
compression ratio enables the client to provide more
effective local model information.

• Communication Cost ccmi : The communication cost for
client i represents the communication resources con-
sumed to upload the local model. It is a linear function
of (1− γt

i ). ρ
cm
i is a positive coefficient representing the

unit communication cost. According to references [24],
[25], our unit communication cost is defined as follows:

ρcmi =
|Ψ|ϱtij

Bt
i log2

(
1 +

gt
ijϱ

t
ij

Bt
iM

t
0

) +
|Ψ|ϱtji

Bt
i log2

(
1 +

gt
jiϱ

t
ji

Bt
iM

t
0

) .
(3)

Here, |Ψ| represents the model size, and ϱtij , Bt
i , gtij , and

M t
0 are known parameters.

• Privacy Cost cpvi : The privacy cost represents the risk of
privacy leakage and is proportional to the privacy budget.
Here, ρpvi is the unit privacy cost, where a higher unit
privacy cost indicates that maintaining a higher level of
privacy requires greater privacy costs.

• Computational Cost ccpi : According to reference [24],
we define the computational cost of client i as ccpi =
ω3ρ

cp
i |Di|f2

i , representing the computational resource
consumption for training the local model. Here, fi is the
computational capacity of client i, which depends on the
clock frequency of the Graphics Processing Unit (GPU).
ρcpi is the unit computational cost.

The two-stage Stackelberg game we established is summa-
rized as follows: By modeling the two-stage Stackelberg game,
the optimal strategy set ⟨Rt∗, γt∗⟩ can be determined, where
the server plays the role of the leader and the clients play
the role of the followers. In the first stage, the server will
choose the optimal payment Rt∗ to maximize its utility U t.
Then, in the second stage, each client attempts to determine
the optimal personalized compression rate γt∗ to maximize
its own utility U t

i , given the payment Rt. For the two-stage
Stackelberg game, our optimization objective is as follows:

Server’s side : Maximize U t
(
Rt, γt

i , γ
t
−i

)
, (4)

Client’s side : Maximize U t
i

(
Rt, γt

i , γ
t
−i

)
, (5)

Subject to :
N∑
i=1

(
1− γt

i

)
≤ C, 0 ≤ γt

i < 1, t = {1, 2, . . .} .

(6)
Eq. (6) indicates that

∑N
i=1(1 − γt

i ) has a strict upper
bound. In other words,

∑N
i=1 γ

t
i has a strict lower bound,

which ensures that our communication cost does not exceed
the maximum communication resource limit. As shown in Fig
2, as the compression rate decreases, the growth rate of model



accuracy becomes very slow, meaning that retaining too many
parameters does not contribute significantly to improving
model accuracy.

B. The determination of the optimal strategy set

To obtain the optimal strategy set ⟨Rt∗, γt∗⟩, it is first
necessary to determine the clients’ optimal compression rate
γt∗ based on the payment Rt provided by the server, as
presented in Theorem 1.

Theorem 1: Given an arbitrary payment Rt, the optimal
personalized compression rate for each client, γt∗

i , is:

γt∗
i =

(N − 1)Rt
[
(N − 1)ρcmi − ϵi

∑N
i=1

(
ρcm
i

ϵi

)]
ω1ϵ2i

(∑N
i=1

(
ρcm
i

ϵi

)) +1. (7)

Proof: First, we can derive the first-order and second-
order partial derivatives of each client’s utility function
U t
i (R

t, γt
i , γ

t
−i) with respect to γt

i . The results are shown as
follows:

∂U t
i

∂γt
i

= ω1ρ
cm
i −

ϵiR
t
∑

k∈N\i ϵk (1− γt
k)[∑N

i=1 ϵi (1− γt
i )
]2 , (8)

∂2U t
i

∂ (γt
i )

2 = −
2ϵ2iR

t
∑

k∈N\i ϵk (1− γt
k)[∑N

i=1 ϵi (1− γt
i )
]3 < 0. (9)

According to Eq. (9), the utility function of the client
U t
i (R

t, γt
i , γ

t
−i) is strictly convex within the domain of

γt
i . Therefore, when ∂U t

i /∂γ
t
i = 0, the utility function

U t
i (R

t, γt
i , γ

t
−i) reaches its maximum, leading to the desired

optimal compression rate γt∗
i . From the equation ∂U t

i /∂γ
t
i =

0, we obtain:

ω1

(
ρcmi
ϵi

)[ N∑
i=1

ϵi
(
1− γt

i

)]2
= Rt

∑
k∈N\i

ϵk
(
1− γt

k

)
.

(10)
Simultaneously summing both sides of Eq. (10), we obtain:

ω1

N∑
i=1

(
ρcmi
ϵi

)[ N∑
i=1

ϵi
(
1− γt

i

)]2
= (N−1)Rt

N∑
i=1

ϵi
(
1− γt

i

)
.

(11)
According to Eq. (11), we can solve for the expression of∑N
i=1 ϵi(1− γt

i ) as follows:

N∑
i=1

ϵi
(
1− γt

i

)
=

(N − 1)Rt

ω1

∑N
i=1 (ρ

cm
i /ϵi)

. (12)

By substituting Eq. (12) into Eq. (10), we can obtain the
optimal compression rate for the client γt∗

i .
Based on Theorem 1, we find that the optimal compression

rate γt∗
i is related to the payment Rt, the privacy budget ϵi,

and some known public parameters (i.e., ω1, . . . , N , ρcm
i , and∑N

i=1
ρcm
i

ϵi
). That is, as long as the leader (i.e., the server)

confirms the payment, the follower (i.e., the client) can easily
determine their optimal strategy. Therefore, the following
Theorem 2 will provide the method for determining Rt∗.

Specifically, we assume that the global communication
resource is upper bounded by C. We introduce a parameter
ϕ to transform the communication constraint into the form∑N

i=1 ϵi(1 − γt
i ) ≤ ϕC. Based on this transformation, the

Lagrangian function in the t-th round can be written as:

L
(
Rt, γt

i ,γ
t
−i, ϖ

)
≜ U t

i

(
Rt, γt

i ,γ
t
−i

)
+ϖ

(
ϕC −

N∑
i=1

ϵi(1− γt
i )

)
,

(13)
where ϖ is the Lagrange multiplier associated with the com-
munication resource constraint. Since the two-stage Stackel-
berg game essentially involves a convex optimization problem,
its optimal solution must satisfy the Karush-Kuhn-Tucker
conditions:(

∂L

∂γt
i

)∣∣∣∣
γt
i=γt∗

i

= 0, (14)

ϖ ≥ 0, ϖ

(
ϕC −

N∑
i=1

ϵi(1− γt∗
i )

)
= 0, (15)

N∑
i=1

ϵi(1− γt∗
i ) ≤ ϕC. (16)

Therefore, the optimal personalized compression rate for
each client i, denoted by γt∗

i , can be re-derived as:

γt∗
i = − ϕC

ϵiN
+

ϕ2C2ω1

ϵiRt

(
ρcmi
ϵi

− K
N

)
+ 1, (17)

where K =
∑N

i=1
ρcm
i

ϵi
.

Theorem 2: Given the optimal compression rate γt∗
i de-

termined in Theorem 1, the server’s optimal payment Rt∗

satisfies the following equation:

∂Θ

∂Ωsum

N∑
i=1

(
αλeλγ

t∗
i · ∂γ

t∗
i

∂Rt

)
+ 1 = 0. (18)

Proof: Before proceeding with the detailed proof, we pro-
vide the definition of an equilibrium solution: In a game,
if the strategies of all participants are determined, and each
participant, knowing the strategies of the others, has no
incentive to unilaterally change their own strategy to achieve a
better outcome, then this strategy combination is called a Nash
equilibrium [27]. The set of optimal personalized compression
rate vectors γt∗ = {γt∗

1 , γt∗
2 , . . . , γt∗

N } constitutes a Nash
equilibrium. Thus, for any client i, we have:

U t
i

(
Rt, γt∗

i ,
(
γt
−i

)∗) ≥ U t
i

(
Rt, γt

i ,
(
γt
−i

)∗)
. (19)

The second stage can be considered a non-cooperative game
because each client attempts to maximize its utility in a
rational and self-interested manner. According to Eq. (19)
and the Nash equilibrium theorem, the optimal personalized
compression rate vector set γt∗ = {γt∗

1 , γt∗
2 , . . . , γt∗

N } forms
a Nash equilibrium in the non-cooperative game among the
clients [28].

Next, we need to prove that the optimal payment obtained in
the first stage also satisfies the Nash equilibrium condition. In
this way, the entire game constitutes a Stackelberg equilibrium.



Substituting Eq. (7) into Eq. (1), we obtain U t(Rt, γt∗
i , γt∗

−i).
Next, we derive the second-order partial derivatives of the
server’s utility function U t(Rt, γt∗

i , γt∗
−i) with respect to Rt,

as shown below:

∂2U t

∂ (Rt)
2 =

∂2Θ

∂ (Ωsum)
2 ·

(
N∑
i=1

(
−αλeλγ

t∗
i
∂γt∗

i

∂Rt

))2

− ∂Θ

∂Ωsum

·

((
N∑
i=1

αλ2eλγ
t∗
i

(
∂γt∗

i

∂Rt

)2
)

+

(
N∑
i=1

αλeλγ
t∗
i

∂2γt∗
i

∂ (Rt)
2

))
.

(20)
Since the function Θ we set is an increasing convex function

(e.g., the widely used logarithmic function [29]), it always
holds that ∂Θ/∂δsum > 0 and ∂2Θ/∂(δsum)

2 ≤ 0. Meanwhile,
according to Eq. (7), we have ∂2γt∗

i /∂(Rt)2 ≤ 0.
Thus, it follows that ∂2U t/∂(Rt)2 < 0, which indicates

that U t is a strictly convex function within the domain of Rt.
When ∂U t/∂Rt = 0, we obtain the unique optimal payment
solution Rt∗, which further leads to Eq. (18).

Since the exact solution for Rt∗ is difficult to obtain, but γt∗
i

is a linear function of Rt, we can approximate the solution to
the equation using numerical methods. Specifically, common
numerical methods, such as binary search or Newton’s method,
can be effectively used to find an approximation for Rt∗.

Based on the above game-theoretic analysis, both the work-
ers and the requester can find optimal strategies to maximize
their utilities. Therefore, in such a complete-information game,
there exists a unique Stackelberg equilibrium. In summary, the
server can choose the optimal payment Rt∗ based on Theorem
2, while each client i can determine their optimal personalized
compression rate γt∗

i by submitting Rt∗.

V. OPTIMIZED PIECEWISE NOISE MECHANISM DESIGN

In this section, we design an efficient local differential pri-
vacy algorithm for clients to protect their privacy. We propose
OPM to implement random noise addition. In this process, we
not only consider the impact of model compression but also
observe that when the privacy budget is large, the worst-case
noise variance of OPM is significantly smaller than that of the
traditional Piecewise Noise Mechanism (PM) [26]. Next, we
will introduce the detailed content of this mechanism.

A. Optimized Denoising Mechanism
Given the compressed model wi

t as input, after passing
through the OPM, we obtain the noisy model w̃t

i . We as-
sume that all the parameters of wi

t have a value range of
[C − R,C + R], where C and R represent the center and
radius of the range of wi

t, respectively. For a specific parameter
w of wi

t, the true value is x = w − C, and the perturbed
value x̃ satisfies the following probability density function (for
simplicity, we assume ϵ = ϵti):

F [x̃ = y | x] =


e
4ϵ
3 (eϵ−1)

2R
(
e

ϵ
3 +eϵ

)2 , y ∈ [f(ϵ, x), g(ϵ, x)]

e
ϵ
3 (eϵ−1)

2R
(
e

ϵ
3 +eϵ

)2 ,

y ∈ [−RL, f(ϵ, x)) ∪ (g(ϵ, x), RL]
(21)

where

L =

(
eϵ + eϵ/3

) (
eϵ/3 + 1

)
eϵ/3 (eϵ − 1)

,

f(ϵ, x) =

(
eϵ + eϵ/3

) (
xeϵ/3 −R

)
eϵ/3 (eϵ − 1)

, and

g(ϵ, x) =

(
eϵ + eϵ/3

) (
xeϵ/3 +R

)
eϵ/3 (eϵ − 1)

.

Let L be the carefully designed noise range adjustment
parameter, used to limit the range of noise values. There-
fore, based on the designed probability density function, the
perturbed parameter w̃ is given by w̃ = C + x̃. The per-
turbed model w̃ is determined by the dynamic privacy budget
ϵti, the disturbance range [f(ϵ, x), g(ϵ, x)], and the intervals
[−RL, f(ϵ, x)) ∪ (g(ϵ, x), RL].

B. Theoretical Analysis

Theorem 3: The OPM privacy protection mechanism sat-
isfies ϵ-DP for each client i ∈ N .

Proof: For any pair of inputs x and x′, we obtain:

F (x = x̃ | x)
F (x′ = x̃ | x′)

⩽
maxx F (x = x̃ | x)
minx′ F (x′ = x̃ | x′)

=

[
e

4ϵ
3 (eϵ − 1)

2R
(
e

ϵ
3 + eϵ

)2
]/[ e

ϵ
3 (eϵ − 1)

2R
(
e

ϵ
3 + eϵ

)2
]
= eϵ. (22)

According to the definition of differential privacy in [33],
our OPM mechanism clearly satisfies ϵ-DP.

Theorem 4: The OPM perturbation mechanism does not
introduce any bias, i.e., E(w̃) = w.

Proof: For any perturbation parameter w̃, the expectation
is as follows:

E(w̃) = E(C + x̃) = E(x̃) + C

=
xeϵ

eϵ − 1
− x

eϵ − 1
+ C = w. (23)

This shows that the OPM perturbation parameter does not
introduce any bias. Thus, the proof of Theorem 4 is complete.

Theorem 5: Given any parameter w, the variance of the
perturbed model parameter w̃ has explicit upper and lower
bounds.

Proof: For a given parameter w, the variance of the
perturbed model parameter w̃ is derived as follows:

Var(w̃) = Var(x̃+ c) = Var(x̃)

= E
(
x̃2
)
− [E(x̃)]2 = E

(
x̃2
)
− x2

=
eϵ/3 + 1

eϵ − 1
x2 +

(
eϵ + eϵ/3

) [(
eϵ/3 + 1

)3
+ eϵ − 1

]
3e2ϵ/3 (eϵ − 1)

2 R2.

(24)

Since x ∈ [−R,R], the variance Var(w̃) has explicit upper
and lower bounds. Specifically, when x = 0, Var(w̃) attains its
minimum value, whereas when x = −R or x = R, Var(w̃)
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Fig. 3: Accuracy comparison under different datasets.
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Fig. 4: Test performance of different differential privacy algo-
rithms.

attains its maximum value. Thus, we obtain the upper and
lower bounds for Var(w̃):

Var(w̃) ≥

(
eϵ + e

ϵ
3

) [(
e

ϵ
3 + 1

)3
+ eϵ − 1

]
3e
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(25)

VI. EXPERIMENTAL RESULTS AND ANALYSIS

To evaluate the performance of FedCP, we conducted sim-
ulations on real datasets. The experiment uses the MNIST
and CIFAR-10 datasets, which are widely used in federated
learning. The MNIST dataset contains 70,000 images, with
60,000 used for training and 10,000 for testing. Each image is
a 28× 28 grayscale handwritten digit. The CIFAR-10 dataset
consists of 10 classes of 32 × 32 RGB images, containing
50,000 training samples and 10,000 test samples.

In the simulations, the total number of clients N is chosen
from the range [40, 120]. The initial learning rate is set to
0.001, the local batch size is set to 16, and the number of local
training rounds per client is set to 5. To ensure the reliability of
the experiments, we randomize the unit privacy cost ρpvi and
unit computation cost ρcpi , both of which are selected from the
range [5, 15], as well as the privacy budget ϵ of each client,
which is chosen from the range [1, 10]. Finally, we set M =
N/2, where clients are randomly assigned to edge nodes, and
each edge node is guaranteed to have at least one client. We
also set ωj = 1 (j ∈ 1, 2, 3), and Rt

p = 600. Additionally, we
use a linear function Θ to simplify the server’s utility function,
i.e., U t

(
Rt, γt

i , γ
t
−i

)
= k

(∑N
i=1

(
−αeλγ

t
i − µe−ηϵi + β

))
−

Rt −Rt
p, where k is a transformation parameter set to 100 in

our experiments.

A. Simulation experiments of PCM

Given that existing research has not yet explored the dy-
namic adjustment of client model compression rates during the
training process, this paper designs two rigorous and impartial
controlled experiments. To ensure the scientific validity and
verifiability of the experimental comparisons, we first conduct
a systematic statistical analysis of the client model compres-
sion rates across different training rounds in the federated
learning model incorporating the PCM mechanism. Based
on this analysis, we construct the following two types of
controlled experiments:

First controlled experiment (Baseline A): This experi-
ment adopts a round-based dynamic average compression rate
strategy. Specifically, in each training round of the federated
learning model with the PCM mechanism, we compute the
arithmetic mean of the model compression rates for all clients
in the current round and use this mean value as the uniform
compression rate for all clients in this controlled experiment
for that round.

Second controlled experiment (Baseline B): This ex-
periment employs a global static compression rate strategy.
Specifically, across all training rounds of the federated learning
model with the PCM mechanism, we first compute the global
average of client model compression rates. This fixed compres-
sion rate value is then consistently applied to all clients in this
controlled experiment throughout the entire training process.

This paper first conducted systematic experimental valida-
tion on the MNIST dataset, setting the total number of global
rounds to 20 and the number of clients to 40. The experiment
was performed in a distributed learning framework, where each
client was equipped with a lightweight neural network consist-
ing of two convolutional layers and one fully connected layer.
The experimental results are shown in Fig. 3a. This figure
illustrates the variation in the average compression ratio of
clients across training rounds in federated learning. This metric
directly reflects the efficiency of communication resource
utilization, where a higher compression ratio corresponds
to lower communication resource consumption. The experi-
mental results indicate that the global average compression
ratio is 70 %, implying that our method effectively reduces
communication costs by approximately 70 %. Although our
method achieves slightly lower classification accuracy on the
test set compared to the baseline method (with an average
difference of 0.21 %), it demonstrates significantly superior
model performance and stability compared to the Baseline A
and Baseline B approaches. This ensures high communication
efficiency while substantially enhancing model performance.

We also conducted systematic experimental validation on
the CIFAR-10 dataset. Due to the increased dataset size and
learning complexity, the total number of global rounds was
set to 30. The experiment was performed in a distributed
learning framework, where each client was configured with
a ResNet-12 deep learning neural network. The experimental
results are shown in Fig. 3b. The results indicate that the global
average compression ratio is 63 %, meaning that our method
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effectively reduces communication costs by approximately
63 %. Furthermore, compared to other methods, our approach
achieves significantly higher model accuracy and stability.

B. Simulation experiments of FedCP

We use the global model’s test accuracy to evaluate the
performance of the OPM. First, for the model compression
rate of each client, we uniformly apply our proposed PCM.
The comparative experiments use different privacy algorithms,
which are: (1) the baseline method No Compression and No
Privacy; (2) the PM algorithm; (3) the Laplace algorithm. We
then test on the MNIST and CIFAR datasets. Based on the
task difficulty, the total global training rounds are set to 20
and 30, respectively, with the number of clients set to 40.
Our experimental results are shown in Fig. 4. Clearly, the
accuracy and convergence speed of our proposed OPM are
significantly better than the other algorithms. This is because
OPM adds smaller noise variance, and the perturbed values
are more likely to be close to the original values. Moreover,
we observe that the performance gap on the CIFAR dataset is
more pronounced, as the model used is more complex, leading
to more significant improvements in performance.

Next, we gradually increase the total number of clients
to 60, 80, 100, and 120 to investigate the impact on model
accuracy. The experimental results are shown in Fig. 5. In
the simulation process, we evenly distribute the total training
samples among the clients, forming their respective local
datasets. As a result, with the increase in the number of
clients, the size of each local dataset decreases accordingly.
The experimental results show that as the number of clients
increases, the performance gap between the baseline method
and the proposed method becomes more significant. We also
conducted experiments on a Non-Independent and Identically
Distributed (Non-IID) dataset to further validate the proposed
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Fig. 7: Model Accuracy versus. Rounds under communication-
constrained scenarios.

method’s robustness. As shown in Fig. 6, the performance
gap between the baseline method and our approach is even
more pronounced in this scenario. The primary reason for this
phenomenon is that the Non-IID datasets further amplify the
heterogeneity among clients. Our proposed method effectively
adapts to this heterogeneity by dynamically adjusting the
personalized compression rate, thereby enhancing the overall
model performance.

C. Scenarios with Limited Communication Resources

We conducted a simulation to explore the impact of com-
munication resource limitations on model performance. In
the experiment, the number of clients was set to 100, and
it was assumed that the global communication resources
required without model compression were referred to as
Communication Resources (CR). We tested two scenarios:
one on the MNIST dataset with a communication resource
limit of 0.15 CR, and the other on the CIFAR dataset with
a communication resource limit of 0.30 CR. In the baseline
experiment (Baseline), all clients used a uniform compression
rate. The experimental results are shown in Fig. 7a and 7c.
The accuracy of the FedCP model converges to the optimal
result at a significantly faster rate. Compared to the case
without communication resource limitations, FedCP shows a
particularly significant improvement in global model accuracy.
This phenomenon occurs because, when communication re-
sources are limited, FedCP ensures that clients with higher
contributions receive more communication resources, rather
than dividing the limited resources equally among all clients,
as in the baseline method.



Furthermore, we progressively increased the communication
resource limits, and the experimental results are shown in
Fig. 7b, 7d, 7e, and 7f. The results demonstrate that as
the communication resource limits increase, the performance
gap between the baseline method and FedCP becomes more
pronounced. This phenomenon can be attributed to the fact that
when communication resources are scarce, it is particularly
important to allocate them efficiently to each client. FedCP
achieves this by dynamically adjusting the compression rate
of each client, thus ensuring the efficient use of communication
resources.

VII. CONCLUSION

This paper proposes FedCP, a two-stage Stackelberg game-
based federated learning framework that balances communi-
cation overhead, privacy protection, and model performance.
In this framework, the server and clients act as the leader
and followers, respectively, optimizing payment and com-
pression strategies through game-theoretic decision-making.
FedCP also integrates differential privacy with an optimized
noise addition mechanism to enhance robustness and security
under high privacy budgets. Experimental results demonstrate
that FedCP significantly reduces communication costs and
strengthens privacy protection while maintaining global model
performance. Future work will explore its scalability and ro-
bustness in large-scale, asynchronous, and unreliable environ-
ments, with further optimization for real-world applications.
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