
ICCCN 2022          July 25 - July 28, 2022

Design and Implementation of a Strong 
Representation System for Network 

Policies

Fangping Lan, Sanchari Biswas, Bin Gui, Jie Wu and Anduo Wang 
Temple University



• Managing networking policies remains hard:


• One has to fully understand the policy


• Understanding SDN is difficult for someone not involved in the 
coding process

Motivation

1



• Managing networking policies remains hard:


• One has to fully understand the policy


• Understanding SDN is difficult for someone not involved in the 
coding process


• Managing relational database is easier:


• Self-explaining and has a common understanding 


• Little expertise required for non-programmers

Motivation

1



• Managing networking policies remains hard:


• One has to fully understand the policy


• Understanding SDN is difficult for someone not involved in the 
coding process


• Managing relational database is easier:


• Self-explaining and has a common understanding 


• Little expertise required for non-programmers

Motivation

1

Can we provide a network policy management 
experience comparable to that on a database?



Network Policy Representation 

3

Two prefixes 1.2.3.4 and 
5.6.7.8 over two alternative 

paths [ABC] and [ADC] 
A

B

C

D 1.2.3.4

5.6.7.8

⋯

⋯



Network Policy Representation 

3

dest path condition
1.2.3.4 x x=[ABC]∨x=[ADC]
5.6.7.8 y y=[ABC]∨y=[ADC]

PR

Two prefixes 1.2.3.4 and 
5.6.7.8 over two alternative 

paths [ABC] and [ADC] 
A

B

C

D 1.2.3.4

5.6.7.8

⋯

⋯

The destination 
of the path



Network Policy Representation 

3

dest path condition
1.2.3.4 x x=[ABC]∨x=[ADC]
5.6.7.8 y y=[ABC]∨y=[ADC]

PR

Two prefixes 1.2.3.4 and 
5.6.7.8 over two alternative 

paths [ABC] and [ADC] 
A

B

C

D 1.2.3.4

5.6.7.8

⋯

⋯

The path to its 
destination



Network Policy Representation 

3

dest path condition
1.2.3.4 x x=[ABC]∨x=[ADC]
5.6.7.8 y y=[ABC]∨y=[ADC]

PR

Two prefixes 1.2.3.4 and 
5.6.7.8 over two alternative 

paths [ABC] and [ADC] 
A

B

C

D 1.2.3.4

5.6.7.8

⋯

⋯

The constraints 
over variables



Network Policy Representation 

3

dest path condition
1.2.3.4 x x=[ABC]∨x=[ADC]
5.6.7.8 y y=[ABC]∨y=[ADC]

PR

Two prefixes 1.2.3.4 and 
5.6.7.8 over two alternative 

paths [ABC] and [ADC] 
A

B

C

D 1.2.3.4

5.6.7.8

⋯

⋯

dest path
1.2.3.4 [ABC]
1.2.3.4 [ADC]
5.6.7.8 [ABC]
5.6.7.8 [ADC]

I

Represent



Network Policy Representation 

3

dest path condition
1.2.3.4 x x=[ABC]∨x=[ADC]
5.6.7.8 y y=[ABC]∨y=[ADC]

PR

Two prefixes 1.2.3.4 and 
5.6.7.8 over two alternative 

paths [ABC] and [ADC] 
A

B

C

D 1.2.3.4

5.6.7.8

⋯

⋯

Conditional Table



• Traffic balance policy

dest path flag
1.2.3.4 [ABC] u u = 1
5.6.7.8 [ABC] u u ≠ 1
1.2.3.4 [ADC] v v = 1
5.6.7.8 [ADC] v v ≠ 1

P3

Balance traffic to 
1.2.3.4 and 5.6.7.8

A

B

C

D 1.2.3.4

5.6.7.8

⋯

⋯

4

Network Policy Representation 



• Traffic balance policy

dest path flag
1.2.3.4 [ABC] u u = 1
5.6.7.8 [ABC] u u ≠ 1
1.2.3.4 [ADC] v v = 1
5.6.7.8 [ADC] v v ≠ 1

P3

Balance traffic to 
1.2.3.4 and 5.6.7.8

A

B

C

D 1.2.3.4

5.6.7.8

⋯

⋯

4

Network Policy Representation 



• Traffic balance policy

dest path flag
1.2.3.4 [ABC] u u = 1
5.6.7.8 [ABC] u u ≠ 1
1.2.3.4 [ADC] v v = 1
5.6.7.8 [ADC] v v ≠ 1

P3

Balance traffi


Cannot assign 
path [ABC] to 

1.2.3.4 and 5.6.7.8 
simultaneously.

A

B

C

D 1.2.3.4

5.6.7.8

⋯

⋯

4

Network Policy Representation 



• Traffic balance policy

dest path flag
1.2.3.4 [ABC] u u = 1
5.6.7.8 [ABC] u u ≠ 1
1.2.3.4 [ADC] v v = 1
5.6.7.8 [ADC] v v ≠ 1

P3

Balance traffi


Cannot assign 
path [ABC] to 

1.2.3.4 and 5.6.7.8 
simultaneously.

Cannot assign 
path [ADC] to 

1.2.3.4 and 5.6.7.8 
simultaneously.

A

B

C

D 1.2.3.4

5.6.7.8

⋯

⋯

4

Network Policy Representation 



dest path
1.2.3.4 x x=[ABC]

y z y≠1.2.3.5

P1

• Static route and filter policy

5

Network Policy Representation 



dest path
1.2.3.4 x x=[ABC]

y z y≠1.2.3.5

P1

• Static route and filter policy Assign a static 
route [ABC] to 

destination 1.2.3.4

5

Network Policy Representation 



dest path
1.2.3.4 x x=[ABC]

y z y≠1.2.3.5

P1

• Static route and filter policy Assign a static 
route [ABC] to 

destination 1.2.3.4

Do not allow 
traffic to 

destination 
1.2.3.5

5

Network Policy Representation 



• Manipulate relational database table:


• relational algebra : selection, projection, union, join, …


• implement SQL query on regular table

Manipulating Network Policies

6



• Manipulate relational database table:


• relational algebra : selection, projection, union, join, …


• implement SQL query on regular table


• Our contribution: 


•

Manipulating Network Policies

6

Manipulating network policies by simply implementing SQL query on 
conditional table



Combine Policies using Join Operation

dest path
1.2.3.4 x x=[ABC]

y z y≠1.2.3.5∧y≠1.2.3.4

P1 dest path flag
1.2.3.4 [ABC] u u = 1
5.6.7.8 [ABC] u u ≠ 1
1.2.3.4 [ADC] v v = 1
5.6.7.8 [ADC] v v ≠ 1

P3

• Static route and filter policy • Traffic balance policy

7



dest path
1.2.3.4 x x=[ABC]

y z y≠1.2.3.5∧y≠1.2.3.4

P1 dest path flag
1.2.3.4 [ABC] u u = 1
5.6.7.8 [ABC] u u ≠ 1
1.2.3.4 [ADC] v v = 1
5.6.7.8 [ADC] v v ≠ 1

P3

• Static route and filter policy • Traffic balance policy

Can we generate a new policy that 
satisfies and  simultaneously?P1 P3

 join P1 P3

7

Combine Policies using Join Operation



dest path flag
1.2.3.4 x u x=[ABC] ⋀ u=1

y z u y=5.6.7.8⋀z=[ABC]⋀u≠1
y z v y=5.6.7.8⋀z=[ADC]⋀v≠1

P1 ⋈ P3

• Static route and fi

dest path
1.2.3.4 x x=[ABC]

y z y≠1.2.3.5∧y≠1.2.3.4

P1 dest path flag
1.2.3.4 [ABC] u u = 1
5.6.7.8 [ABC] u u ≠ 1
1.2.3.4 [ADC] v v = 1
5.6.7.8 [ADC] v v ≠ 1

P3

• Traffi

Can we generate a new policy that 
satisfi  P1 P3

 join P1 P3

7

Combine Policies using Join Operation



dest path flag
1.2.3.4 x u x=[ABC] ⋀ u=1

y z u y=5.6.7.8⋀z=[ABC]⋀u≠1
y z v y=5.6.7.8⋀z=[ADC]⋀v≠1

P1 ⋈ P3

dest path
1.2.3.4 [ABC]
5.6.7.8 [ADC]

I

Valid forwarding 
state

• Static route and fi

dest path
1.2.3.4 x x=[ABC]

y z y≠1.2.3.5∧y≠1.2.3.4

P1 dest path flag
1.2.3.4 [ABC] u u = 1
5.6.7.8 [ABC] u u ≠ 1
1.2.3.4 [ADC] v v = 1
5.6.7.8 [ADC] v v ≠ 1

P3

• Traffi

Can we generate a new policy that 
satisfi  P1 P3

 join P1 P3

7

Combine Policies using Join Operation



dest path flag
1.2.3.4 x u x=[ABC] ⋀ u=1

y z u y=5.6.7.8⋀z=[ABC]⋀u≠1
y z v y=5.6.7.8⋀z=[ADC]⋀v≠1

P1 ⋈ P3

Valid forwarding 
state

• Static route and fi

dest path
1.2.3.4 x x=[ABC]

y z y≠1.2.3.5∧y≠1.2.3.4

P1 dest path flag
1.2.3.4 [ABC] u u = 1
5.6.7.8 [ABC] u u ≠ 1
1.2.3.4 [ADC] v v = 1
5.6.7.8 [ADC] v v ≠ 1

P3

• Traffi

dest path
5.6.7.8 [ABC]

I

Can we generate a new policy that 
satisfi  P1 P3

 join P1 P3

7

Combine Policies using Join Operation



A Strong Representation System

conditional 
tables

P

9

Network 
policies



A Strong Representation System

conditional 
tables

P S

regular
tables

All network states 
(possible worlds)

9

Network 
policies

Represent



A Strong Representation System

conditional 
tables

P S

regular
tables

P’

Represent

New legitimate 
Network policies

Manipulate

9

Network 
policies

All network states 
(possible worlds)



A Strong Representation System

conditional 
tables

P S

regular
tables

P’ S’

Represent

Some legitimate 
network states

New legitimate 
Network policies

Manipulate

9

Network 
policies

All network states 
(possible worlds)

Represent



A Strong Representation System

conditional 
tables

P S

regular
tables

P’ S’

Represent

Represent

New legitimate 
Network policies

Manipulate Manipulate

9

Network 
policies

All network states 
(possible worlds)

Some legitimate 
network states



A Strong Representation System

conditional 
tables

P

Relational 
policies

S

regular
tables

P’ S’

Represent

Represent

Query Query

9

Network states 
(possible worlds)



• The conventional conditional table is still restricted for the rich 
semantics of network policies

Support more complex policies

10

Using user-defined functions and aggregates



• The conventional conditional table is still restricted for the rich 
semantics of network policies

Support more complex policies

10

Using user-defined functions and aggregates

dest path s(path)
x y z l(y) ≤ z

P2



• The conventional conditional table is still restricted for the rich 
semantics of network policies

Support more complex policies

10

Using user-defined functions and aggregates

dest path s(path)
x y z l(y) ≤ z

P2

Function s: return the 
lowest hop counts among 

all alternative paths



• The conventional conditional table is still restricted for the rich 
semantics of network policies

Support more complex policies

10

Using user-defined functions and aggregates

dest path s(path)
x y z l(y) ≤ z

P2

Function l: return 
hops of the path

Function s: return the 
lowest hop counts among 

all alternative paths



• Network addressing is a basic but critical feature to network area


• Allow sets in conditional table


• i.e. accommodate variables and conditions

Support Network Addressing

11



• Network addressing is a basic but critical feature to network area


• Allow sets in conditional table


• i.e. accommodate variables and conditions


• Two methods:


• Naive support for sets


• Leverage SMT(Satisfiability Modulo Theories) solver for sets

Support Network Addressing

11



• We show the possibility of coordinating knowledge-driven 
policies from a single central point


• What about in realistic network scenarios like inter-domain 
routing?

Application in inter-domain routing

We show an application - 
Policy Exchange



A Brief Picture of BGP
X

A

B

C

E

D

1.2.3.4

5.6.7.8

Autonomous Systems 
(ASs) are networks 

managed by a single 
enterprise or service 

provider



A Brief Picture of BGP
X

A

B

C

E

D

1.2.3.4

5.6.7.8

Autonomous Systems 
(ASs) are networks 

managed by a single 
enterprise or service 

provider

BGP is a shortest path 
routing protocol



A Brief Picture of BGP
X

A

B

C

E

D

1.2.3.4

5.6.7.8

Autonomous Systems 
(ASs) are networks 

managed by a single 
enterprise or service 

provider

BGP is a shortest path 
routing protocol

BGP makes routing 
decision favoring 

autonomy



Why policy exchange?

X

A

B

C

E

D

1.2.3.4

5.6.7.8

• BGP favors autonomy; Policies 
are made based on local 
preferences



X

A

B

C

E

D

1.2.3.4

5.6.7.8

• BGP favors autonomy; Policies 
are made based on local 
preferences

• It may cause unwanted 
interaction between policies

Why policy exchange?



X

A

B

C

E

D

1.2.3.4

5.6.7.8

PA

PX

X: requires routes no more 
than 3 hops to 1.2.3.4

A: balances traffic for its 
neighbors C and D 

• BGP favors autonomy; Policies 
are made based on local 
preferences

• It may cause unwanted 
interaction between policies

Policy exchange - counter example



X

A

B

C

E

D

1.2.3.4

5.6.7.8

PA

PX

A: balances traffi


• BGP favors autonomy; Policies 
are made based on local 
preferences

• It may cause unwanted 
interaction between policies

Valid path [XACE] 
that satisfies the 

policies of A and X

X: requires routes no more 
than 3 hops to 1.2.3.4

A chooses [ACE] 
for 1.2.3.4

Policy exchange - counter example



X

A

B

C

E

D

1.2.3.4

5.6.7.8

PA

PX

A: balances traffi


• BGP favors autonomy; Policies 
are made based on local 
preferences

• It may cause unwanted 
interaction between policies

Invalid path [XADBE] 
that unsatisfies 

policy of X

X: requires routes no more 
than 3 hops to 1.2.3.4

A chooses [ADBE] 
for 1.2.3.4

Policy exchange - counter example



X

A

B

C

E

D

1.2.3.4

5.6.7.8

PA

PX

A: balances traffi


• BGP favors autonomy; Policies 
are made based on local 
preferences

• It may cause unwanted 
interaction between policies

X: requires routes no more 
than 3 hops to 1.2.3.4

Require a 
proper decision

Approach: policy exchange

Policy exchange - counter example



How to do policy exchange?

X

A

B

C

E

D

1.2.3.4

5.6.7.8

PA

PXdest path
1.2.3.4 x l(x) ≤ 3

PX

A: balances traffic for its 
neighbors C and D 

dest nh flag
1.2.3.4 C u u = 1
1.2.3.4 D v v = 1
5.6.7.8 C u u ≠ 1
5.6.7.8 D v v ≠ 1

PA

X: requires routes no more 
than 3 hops to 1.2.3.4



X

A

B

C

E

D

1.2.3.4

5.6.7.8

PA

PXdest path
1.2.3.4 x l(x) ≤ 3

PX

A: balances traffic for its 
neighbors C and D 

dest nh flag
1.2.3.4 C u u = 1
1.2.3.4 D v v = 1
5.6.7.8 C u u ≠ 1
5.6.7.8 D v v ≠ 1

PA
Propagation

X: requires routes no more 
than 3 hops to 1.2.3.4

How to do policy exchange?



X

A

B

C

E

D

1.2.3.4

5.6.7.8

PA

PXdest path
1.2.3.4 x l(x) ≤ 3

PX

A: balances traffic for its 
neighbors C and D 

dest nh flag
1.2.3.4 C u u = 1
1.2.3.4 D v v = 1
5.6.7.8 C u u ≠ 1
5.6.7.8 D v v ≠ 1

PA
Propagation

dest nh flag path
1.2.3.4 - - x l(x) ≤ 2

PX
′￼

X: requires routes no more 
than 3 hops to 1.2.3.4

How to do policy exchange?



X

A

B

C

E

D

1.2.3.4

5.6.7.8

PA

PXdest path
1.2.3.4 x l(x) ≤ 3

PX

A: balances traffic for its 
neighbors C and D 

dest nh flag
1.2.3.4 C u u = 1
1.2.3.4 D v v = 1
5.6.7.8 C u u ≠ 1
5.6.7.8 D v v ≠ 1

PA
Propagation

dest nh flag path
1.2.3.4 - - x l(x) ≤ 2

PX
′￼

Merging

X: requires routes no more 
than 3 hops to 1.2.3.4

How to do policy exchange?



X

A

B

C

E

D

1.2.3.4

5.6.7.8

PA

PXdest path
1.2.3.4 x l(x) ≤ 3

PX

A: balances traffic for its 
neighbors C and D 

dest nh flag
1.2.3.4 C u u = 1
1.2.3.4 D v v = 1
5.6.7.8 C u u ≠ 1
5.6.7.8 D v v ≠ 1

PA
Propagation

dest nh flag path
1.2.3.4 - - x l(x) ≤ 2

PX
′￼

Merging

dest nh flag path
1.2.3.4 C u x u = 1⋀l(x) ≤ 2  
1.2.3.4 D v x v = 1∧l(x) ≤ 2
5.6.7.8 C u - u ≠ 1
5.6.7.8 D v - v ≠ 1

PA
′￼

X: requires routes no more 
than 3 hops to 1.2.3.4

How to do policy exchange?



X

A

B

C

E

D

1.2.3.4

5.6.7.8

PA

PXdest path
1.2.3.4 x l(x) ≤ 3

PX

A: balances traffic for its 
neighbors C and D 

dest nh flag
1.2.3.4 C u u = 1
1.2.3.4 D v v = 1
5.6.7.8 C u u ≠ 1
5.6.7.8 D v v ≠ 1

PA
Propagation

dest nh flag path
1.2.3.4 - - x l(x) ≤ 2

PX
′￼

Merging

dest nh flag path
1.2.3.4 C u x u = 1⋀l(x) ≤ 2  
1.2.3.4 D v x v = 1∧l(x) ≤ 2
5.6.7.8 C u - u ≠ 1
5.6.7.8 D v - v ≠ 1

PA
′￼

X: requires routes no more 
than 3 hops to 1.2.3.4

How to do policy exchange?



• We currently use in-memory implementation, in terms of Python 
lists

Preliminary Prototype



• We currently use in-memory implementation, in terms of Python 
lists

Preliminary Prototype

• Applications:


• Policy Exchange


• BGP simulation



• We currently use in-memory implementation, in terms of Python 
lists

Preliminary Prototype

• Applications:


• Policy Exchange


• BGP simulation
Mimicking the behavior of the BGP 
speaker as it receives 
announcement from their neighbors 



• We currently use in-memory implementation, in terms of Python 
lists

Preliminary Prototype

• Applications:


• Policy Exchange


• BGP simulation

Benchmark
• Using MRT format RouteView BGP data - RIBs and UPDATEs - 

from route-view2.oregon-ix.net to generate synthetic policies and 
realistic topologies

http://route-view2.oregon-ix.net


Performance - Relational Operators

SelectionProjection ⋈

Realistic destination

: 
⋈ P1 ⋈ P3

: static-route & filter policy

: traffic balance policy

P1
P3



Performance - Relational Operators

SelectionProjection ⋈

Realistic destination

: 
⋈ P1 ⋈ P3

: static-route & filter policy

: traffic balance policy

P1
P3



Performance - Relational Operators

SelectionProjection ⋈

Realistic destination

: 
⋈ P1 ⋈ P3

: static-route & filter policy

: traffic balance policy

P1
P3



• SMT(Z3) takes 96% of the running time


• Our implementation can handle 10,000 policies in ≤ 70 minutes

Performance - Scalability

Scalability property of ⋈

Apply  on three 
policy sizes

⋈



• SMT(Z3) takes 96% of the running time


• Our implementation can handle 10,000 policies in ≤ 70 minutes

Performance - Scalability

Scalability property of ⋈

Apply  on three 
policy sizes

⋈



Performance - More Policy Examples

Processing time breakdown of poss(s, p)

P3 P1 P4 AllSMT

• Primitive that validates a relational policy (p) on a given network state (s)

: static route policy

: traffic balance policy

: filter policy


All: total time

SMT: reasoning time


P1
P3
P4



• Running time: P3 < P1 < P4

Performance - More Policy Examples

Processing time breakdown of poss(s, p)

P3 P1 P4 AllSMT

• Primitive that validates a relational policy (p) on a given network state (s)

: static route policy

: traffic balance policy

: filter policy


All: total time

SMT: reasoning time


P1
P3
P4



• Running time: P3 < P1 < P4

Performance - More Policy Examples

Processing time breakdown of poss(s, p)

P3 P1 P4 AllSMT

• SMT dominates the source of 
delay

• Primitive that validates a relational policy (p) on a given network state (s)

: static route policy

: traffic balance policy

: filter policy


All: total time

SMT: reasoning time


P1
P3
P4



• Inter-domain Routing Protocols and Architectures


• D-BGP and Trotsky: partial deployments of protocols, requires 
their co-existence on the global internet

Related Work



• Inter-domain Routing Protocols and Architectures


• D-BGP and Trotsky: partial deployments of protocols, requires 
their co-existence on the global internet


• Declarative Networking:


• We share database usage in networking


• We introduce and implement a novel use of conditional tables

Related Work



Thank you
http://ravel-net.org/



• Support full set of relational operators 

Other Relational Operations 

Selection: σ

8

Difference: −

Union: ⋃

Projection: π

Rename: ρ



• Support full set of relational operators 

Other Relational Operations 

Selection: σ

Difference: −

Union: ⋃ e.g. Assign a new path [AEC] to 1.2.3.4

Projection: π

Rename: ρ

8



• Support full set of relational operators 

Other Relational Operations 

Selection: σ e.g. Select which path=[ABC] from PR

Difference: −

Union: ⋃ e.g. Assign a new path [AEC] to 1.2.3.4

Projection: π

Rename: ρ

8



• Support full set of relational operators 

Other Relational Operations 

Selection: σ e.g. Select which path=[ABC] from PR

Difference: −
e.g. Difference between two policies

Union: ⋃ e.g. Assign a new path [AEC] to 1.2.3.4

Projection: π

Rename: ρ

8



• Support full set of relational operators 

Other Relational Operations 

Selection: σ e.g. Select which path=[ABC] from PR

Difference: −
e.g. Difference between two policies

Union: ⋃ e.g. Assign a new path [AEC] to 1.2.3.4

Projection: π

e.g. Select attribute dest from PR
Rename: ρ

8



• Support full set of relational operators 

Other Relational Operations 

Selection: σ e.g. Select which path=[ABC] from PR

Difference: −
e.g. Difference between two policies

Union: ⋃ e.g. Assign a new path [AEC] to 1.2.3.4

Projection: π

e.g. Select attribute dest from PR
Rename: ρ

e.g. Rename column dest to prefix

8



dest path
1.2.3.4 x x=[ABC]

y z y≠1.2.3.5∧y≠1.2.3.4

P1 dest path flag
1.2.3.4 [ABC] u u = 1
5.6.7.8 [ABC] u u ≠ 1
1.2.3.4 [ADC] v v = 1
5.6.7.8 [ADC] v v ≠ 1

P3

• Static route and fi • Traffi

dest path flag
1.2.3.4 x u x=[ABC] ⋀ u=1
1.2.3.4 x v x=[ABC] ⋀ x=[ADC] ⋀ v=1

y z u y≠1.2.3.5⋀y≠1.2.3.4⋀y=1.2.3.4⋀z=[ABC]⋀u=1
y z u y≠1.2.3.5⋀y≠1.2.3.4⋀y=5.6.7.8⋀z=[ABC]⋀u≠1
y z v y≠1.2.3.5⋀y≠1.2.3.4⋀y=1.2.3.4⋀z=[ADC]⋀v=1
y z v y≠1.2.3.5⋀y≠1.2.3.4⋀y=5.6.7.8⋀z=[ADC]⋀v≠1

P1 ⋈ P3

Can we generate a new policy that 
satisfies and  simultaneously?P1 P3

 join P1 P3

7

Combine Policies using Join Operation



dest path
1.2.3.4 x x=[ABC]

y z y≠1.2.3.5∧y≠1.2.3.4

P1 dest path flag
1.2.3.4 [ABC] u u = 1
5.6.7.8 [ABC] u u ≠ 1
1.2.3.4 [ADC] v v = 1
5.6.7.8 [ADC] v v ≠ 1

P3

• Static route and fi • Traffi

dest path flag
1.2.3.4 x u x=[ABC] ⋀ u=1
1.2.3.4 x v x=[ABC] ⋀ x=[ADC] ⋀ v=1

y z u y≠1.2.3.5⋀y≠1.2.3.4⋀y=1.2.3.4⋀z=[ABC]⋀u=1
y z u y≠1.2.3.5⋀y≠1.2.3.4⋀y=5.6.7.8⋀z=[ABC]⋀u≠1
y z v y≠1.2.3.5⋀y≠1.2.3.4⋀y=1.2.3.4⋀z=[ADC]⋀v=1
y z v y≠1.2.3.5⋀y≠1.2.3.4⋀y=5.6.7.8⋀z=[ADC]⋀v≠1

P1 ⋈ P3

Can we generate a new policy that 
satisfies and  simultaneously?P1 P3

 join P1 P3

7

Combine Policies using Join Operation



dest path
1.2.3.4 x x=[ABC]

y z y≠1.2.3.5∧y≠1.2.3.4

P1 dest path flag
1.2.3.4 [ABC] u u = 1
5.6.7.8 [ABC] u u ≠ 1
1.2.3.4 [ADC] v v = 1
5.6.7.8 [ADC] v v ≠ 1

P3

• Static route and fi • Traffi

dest path flag
1.2.3.4 x u x=[ABC] ⋀ u=1
1.2.3.4 x v x=[ABC] ⋀ x=[ADC] ⋀ v=1

y z u y≠1.2.3.5⋀y≠1.2.3.4⋀y=1.2.3.4⋀z=[ABC]⋀u=1
y z u y≠1.2.3.5⋀y≠1.2.3.4⋀y=5.6.7.8⋀z=[ABC]⋀u≠1
y z v y≠1.2.3.5⋀y≠1.2.3.4⋀y=1.2.3.4⋀z=[ADC]⋀v=1
y z v y≠1.2.3.5⋀y≠1.2.3.4⋀y=5.6.7.8⋀z=[ADC]⋀v≠1

P1 ⋈ P3

Can we generate a new policy that 
satisfies and  simultaneously?P1 P3

 join P1 P3

7

Combine Policies using Join Operation



dest path flag
1.2.3.4 x u x=[ABC] ⋀ u=1
1.2.3.4 x v x=[ABC] ⋀ x=[ADC] ⋀ v=1

y z u y≠1.2.3.5⋀y≠1.2.3.4⋀y=1.2.3.4⋀z=[ABC]⋀u=1
y z u y≠1.2.3.5⋀y≠1.2.3.4⋀y=5.6.7.8⋀z=[ABC]⋀u≠1
y z v y≠1.2.3.5⋀y≠1.2.3.4⋀y=1.2.3.4⋀z=[ADC]⋀v=1
y z v y≠1.2.3.5⋀y≠1.2.3.4⋀y=5.6.7.8⋀z=[ADC]⋀v≠1

P1 ⋈ P3

Contradictory

• Static route and fi

dest path
1.2.3.4 x x=[ABC]

y z y≠1.2.3.5∧y≠1.2.3.4

P1 dest path flag
1.2.3.4 [ABC] u u = 1
5.6.7.8 [ABC] u u ≠ 1
1.2.3.4 [ADC] v v = 1
5.6.7.8 [ADC] v v ≠ 1

P3

• Traffi

Can we generate a new policy that 
satisfi  P1 P3

 join P1 P3

7

Combine Policies using Join Operation



dest path flag
1.2.3.4 x u x=[ABC] ⋀ u=1
1.2.3.4 x v x=[ABC] ⋀ x=[ADC] ⋀ v=1

y z u y≠1.2.3.5⋀y≠1.2.3.4⋀y=1.2.3.4⋀z=[ABC]⋀u=1
y z u y≠1.2.3.5⋀y≠1.2.3.4⋀y=5.6.7.8⋀z=[ABC]⋀u≠1
y z v y≠1.2.3.5⋀y≠1.2.3.4⋀y=1.2.3.4⋀z=[ADC]⋀v=1
y z v y≠1.2.3.5⋀y≠1.2.3.4⋀y=5.6.7.8⋀z=[ADC]⋀v≠1

P1 ⋈ P3

Contradictory

• Static route and fi

dest path
1.2.3.4 x x=[ABC]

y z y≠1.2.3.5∧y≠1.2.3.4

P1 dest path flag
1.2.3.4 [ABC] u u = 1
5.6.7.8 [ABC] u u ≠ 1
1.2.3.4 [ADC] v v = 1
5.6.7.8 [ADC] v v ≠ 1

P3

• Traffi

Can we generate a new policy that 
satisfi  P1 P3

 join P1 P3

7

Combine Policies using Join Operation



dest path flag
1.2.3.4 x u x=[ABC] ⋀ u=1

y z u y≠1.2.3.5⋀y≠1.2.3.4⋀y=5.6.7.8⋀z=[ABC]⋀u≠1
y z v y≠1.2.3.5⋀y≠1.2.3.4⋀y=5.6.7.8⋀z=[ADC]⋀v≠1

P1 ⋈ P3

• Static route and fi

dest path
1.2.3.4 x x=[ABC]

y z y≠1.2.3.5∧y≠1.2.3.4

P1 dest path flag
1.2.3.4 [ABC] u u = 1
5.6.7.8 [ABC] u u ≠ 1
1.2.3.4 [ADC] v v = 1
5.6.7.8 [ADC] v v ≠ 1

P3

• Traffi

Can we generate a new policy that 
satisfi  P1 P3

 join P1 P3

7

Combine Policies using Join Operation



dest path flag
1.2.3.4 x u x=[ABC] ⋀ u=1

y z u y≠1.2.3.5⋀y≠1.2.3.4⋀y=5.6.7.8⋀z=[ABC]⋀u≠1
y z v y≠1.2.3.5⋀y≠1.2.3.4⋀y=5.6.7.8⋀z=[ADC]⋀v≠1

P1 ⋈ P3

Redundancy

• Static route and fi

dest path
1.2.3.4 x x=[ABC]

y z y≠1.2.3.5∧y≠1.2.3.4

P1 dest path flag
1.2.3.4 [ABC] u u = 1
5.6.7.8 [ABC] u u ≠ 1
1.2.3.4 [ADC] v v = 1
5.6.7.8 [ADC] v v ≠ 1

P3

• Traffi

Can we generate a new policy that 
satisfi  P1 P3

 join P1 P3

7

Combine Policies using Join Operation


