Design and Implementation of a Strong
Representation System for Network
Policies

Fangping Lan, Sanchari Biswas, Bin Gui, Jie Wu and Anduo Wang
Temple University

ICCCN 2022 July 25 - July 28, 2022

Motivation

 Managing networking policies remains hard:
* One has to fully understand the policy

e Understanding SDN is difficult for someone not involved in the
coding process

Motivation

 Managing networking policies remains hard:
* One has to fully understand the policy

e Understanding SDN is difficult for someone not involved in the
coding process

 Managing relational database is easier:
» Self-explaining and has a common understanding

* Little expertise required for non-programmers

Motivation

 Managing networking policies remains hard:
* One has to fully understand the policy

e Understanding SDN is difficult for someone not involved in the
coding process

 Managing relational database is easier:
» Self-explaining and has a common understanding

* Little expertise required for non-programmers

Can we provide a network policy management
experience comparable to that on a database?

Network Policy Representation

Two prefixes 1.2.3.4 and

5.6.7.8 over two alternative
paths [ABC] and [ADC]

Network Policy Representation

Two prefixes 1.2.3.4 and

5.6.7.8 over two alternative
paths [ABC] and [ADC]

Pr | dest [path condition

1.2.3.4| x x=[ABC]vx=[ADC]
5.6.7.8| y y=[ABC]vy=[ADC]

The destination

of the path

Network Policy Representation

DN\ 1234 Two prefixes 1.2.3.4 and
0 @ 2.6.7.8 over two alternative

5.6.7.8
8 paths [ABC] and [ADC]

Pr| dest [path condition

1.2.3.4| x |x=[ABC]vx=[ADC]
5.6.7.8| y |y=[ABC]vy=[ADC]

The path to its

destination

Network Policy Representation

DN\ 1234 Two prefixes 1.2.3.4 and
0 @ 2.6.7.8 over two alternative

5.6.7.8
8 paths [ABC] and [ADC]

Pr| dest path condition

1.2.3.4 x | x=[ABC]vx=[ADC]
5.6.7.8 vy |y=[ABC]vy=[ADC]

The constraints

over variables

Network Policy Representation

Two prefixes 1.2.3.4 and

5.6.7.8 over two alternative
paths [ABC] and [ADC]

Pr| dest path condition
1.2.3.4 x x=[ABC]vx=[ADC]
5.6.7.8 y y=[ABC]vy=[ADC]

I dest path
1.2.3.4 [ABC]
1.2.3.4 [ADC

Represent 5.6.7.8 [ABC
5.6.7.8 [ADC]

Network Policy Representation

DN\ 1234 Two prefixes 1.2.3.4 and
0 @ 2.6.7.8 over two alternative

5.6.7.8
8 paths [ABC] and [ADC]

Pr| dest path condition

1.2.3.4 x x=[ABC]vx=[ADC]
5.6.7.8 y y=[ABC]vy=[ADC]

Conditional Table

Network Policy Representation

e Traffic balance policy

Balance traffic to

1.2.3.4 and 5.6.7.8

dest path flag

1.2.34 [ABC] u u="
5.6.7.8 [ABC] u u=#"
1.2.3.4 [ADC] v v=1
5.6.7.8 [ADC] v vz

e Traffic balance policy

Balance traffic to

1.2.3.4 and 5.6.7.8

Network Policy Representation

dest path | flag
1.2.3.4 [ABC]| u |u=
5.6.7.8 [ABC]| u |u=#"
1.2.3.4 [ADC]| v |v=1
5.6.7.8 [ADC]| v [v=#"~

()™ \a 1234
\ 9 5.6.7.8

Network Policy Representation

e Traffic balance policy

Cannot assign
path [ABC] to

1.2.3.4 and 5.6.7.8
simultaneously.

P3 | dest path flag

1.2.34 [ABC] u u="
5.6.7.8 [ABC] u u=#"
1.2.3.4 [ADC] v v=1
5.6.7.8 [ADC] v v=#-
/\ 1.2.3.4

\/ 5.6.7.8

e Traffic balance policy

Balance traffic to
1.2.3.4 and 5.6.7.8

Cannot assign
path [ADC] to
1.2.3.4 and 5.6.7.8
simultaneously.

dest path flag
1.2.34 [ABC] u u=
5.6.7.8 [ABC] u u=#"
1234 [ADC] v v="-
5.6.7.8 [ADC] v vz~

Network Policy Representation

Cannot assign
path [ABC] to

1.2.3.4 and 5.6.7.8
simultaneously.

Network Policy Representation

e Static route and filter policy

P, | dest path

1.2.34 X x=[ABC]
y Z y#1.2.3.5

Network Policy Representation

e Static route and filter policy Assign a static

route [ABC] to
destination 1.2.3.4

Py | dest path

1.2.34 X x=[ABC]
Yy Z y#1.2.3.5

Network Policy Representation

e Static route and filter policy

Py | dest path

1.2.34 X x=[ABC]
y Z y#1.2.3.5

Do not allow
traffic to

destination
1.2.3.5

Manipulating Network Policies

 Manipulate relational database table:
* relational algebra : selection, projection, union, join, ...

* implement SQL query on regular table

Manipulating Network Policies

 Manipulate relational database table:
* relational algebra : selection, projection, union, join, ...
* implement SQL query on regular table

 Qur contribution:

Manipulating network policies by simply implementing SQL query on

conditional table

Combine Policies using Join Operation

e Static route and filter policy » Traffic balance policy
Py | dest path P; | dest path flag
1.2.34 X x=[ABC] 1234 [ABC] u u="-
y z yz1.2.3.5Ay21.2.3.4 5.6.7.8 [ABC] VEN

u
1.2.3.4 [ADC] v v=1
5.6.7.8 [ADC] v

Combine Policies using Join Operation

e Static route and filter policy Traffic balance policy
Py | dest path P; | dest path flag
1.2.34 X x=[ABC] 1234 [ABC] u u="-
y z y#1.2.3.5Ay21.2.3.4 5.6.7.8 [ABC] VEN

u
Can we generate a new policy that B} 1234 [ADC] v v=1
satisfies Pand P simultaneously? SLUNER |5678 [ADC] v v

Combine Policies using Join Operation

e Static route and filter policy Traffic balance policy
Py | dest path P3| dest path flag
1.2.34 X x=[ABC] 1.234 [ABC] u u=1
y z y+1.2.3.5Ay21.2.3.4 5.6.7.8 [ABC] u u=T
1.2.3.4 [ADC] v v=1
56.7.8 [ADC] v v=#1

Py M P3| dest path flag

1.2.34 X u x=[ABC] A u=1
y Z u y=5.6.7.8Az=[ABC]Au=1
Yy Z v y=5.6.7.8Az=[ADC]Avz1

Combine Policies using Join Operation

e Static route and filter policy Traffic balance policy
Py | dest path P3 | dest path flag
1.2.34 x x=[ABC] 1.234 [ABC] u u="-
y z y#1.2.3.5Ay21.2.3.4 5.6.7.8 [ABC VEN

u
Can we generate a new policy that - 1.2.34 [ADC] v v=1
satisfies P;and P; simultaneously? 5 el 2 56.7.8 [ADC] v v=z]

Py X P3| dest path flag

1.2.34 X u x=[ABC] A u=1
y Z u y=5.6.7.8Az=[ABC]Au=1
Yy Z v y=5.6.7.8Az=[ADC]Avz1

I'| dest path

—
Valid forwarding 1.2.3.4 |ABC]

state 5.6.7.8 [ADC] _

Combine Policies using Join Operation

e Static route and filter policy Traffic balance policy
Py | dest path P3 | dest path flag
1.2.34 x x=[ABC] 1.234 [ABC] u u="-
y z y#1.2.3.5Ay21.2.3.4 5.6.7.8 [ABC VEN

u
Can we generate a new policy that - 1.2.34 [ADC] v v=1
satisfies P;and P; simultaneously? 5 el 2 56.7.8 [ADC] v v=z]

Py X P3| dest path flag

1.2.34 X u x=[ABC] A u=1
y Z u y=5.6.7.8Az=[ABC]Au=1
Yy Z v y=5.6.7.8Az=[ADC]Av=1

| dest path

Valid forwarding 5.6.7.8 [ABC]
state .

A Strong Representation System

Network
policies

/m

conditional
tables

A Strong Representation System

All network states

Network
policies

(possible worlds)

Represent
P ' S

conditional regular
tables tables

A Strong Representation System

All network states
(possible worlds)

Network
policies
Represent
P ' S

conditional Manipulate regular
tables tables

\—

New legitimate

Network policies

A Strong Representation System

Network
policies

Represent

P m—p

conditional Manipulate
tables

Represent

' —

New legitimate

Network policies

All network states
(possible worlds)

regular
tables

<

Some legitimate

network states

A Strong Representation System

Network
policies

Represent

P m—p

conditional Manipulate
tables

Represent

' —l

New legitimate

Network policies

All network states
(possible worlds)

S

Manipulate regular
tables

<

Some legitimate

network states

A Strong Representation System

Network states

Relational
policies

(possible worlds)

Represent
o ' S

conditional Query Query regular
tables tables

Represent
D’ ﬁ -

Support more complex policies

e The conventional conditional table is still restricted for the rich
semantics of network policies

Using user-defined functions and aggregates

10

Support more complex policies

e The conventional conditional table is still restricted for the rich
semantics of network policies

Using user-defined functions and aggregates

P,| dest path s(path)
X y Z ly) <z

10

Support more complex policies

e The conventional conditional table is still restricted for the rich
semantics of network policies

Using user-defined functions and aggregates

P,| dest path

Function s: return the

lowest hop counts among
all alternative paths

10

Support more complex policies

e The conventional conditional table is still restricted for the rich
semantics of network policies

Using user-defined functions and aggregates

P,| dest path Q@!B)
z Y=z

Function I: return

Function s: return the

lowest hop counts among

: hops of the path
all alternative paths

10

Support Network Addressing

* Network addressing is a basic but critical feature to network area
* Allow sets in conditional table

e |.e. accommodate variables and conditions

11

Support Network Addressing

* Network addressing is a basic but critical feature to network area

 Allow sets in conditional table

e |.e. accommodate variables and conditions

* Two methods:
* Naive support for sets

* Leverage SMT(Satisfiability Modulo Theories) solver for sets

11

Application in inter-domain routing

* We show the possibility of coordinating knowledge-driven
policies from a single central point

e What about in realistic network scenarios like inter-domain
routing?

We show an application -
Policy Exchange

A Brief Picture of BGP

Autonomous Systems
(ASs) are networks
managed by a single
enterprise or service
provider

5.6.7.8

1.2.3.4

A Brief Picture of BGP

Autonomous Systems
(ASs) are networks
managed by a single
enterprise or service
provider

BGP is a shortest path
routing protocol

5.6.7.8

1.2.3.4

A Brief Picture of BGP

Autonomous Systems
(ASs) are networks
managed by a single
enterprise or service
provider

BGP is a shortest path
routing protocol

5.6.7.8

BGP makes routing
1.2.3.4 decision favoring
autonomy

Why policy exchange?

 BGP favors autonomy; Policies
are made based on local
preferences

>

5.6.7.8

1.2.3.4

Why policy exchange?

 BGP favors autonomy; Policies
are made based on local
preferences

)
* |t may cause unwanted
iInteraction between policies

5.6.7.8

1.2.3.4

Policy exchange - counter example

 BGP favors autonomy; Policies
are made based on local
preferences

X: requires routes no more
than 3 hops to 1.2.3.4

* |t may cause unwanted
iInteraction between policies

A: balances traffic for its
neighbors C and D

5.6.7.8

1.2.3.4

Policy exchange - counter example

X: requires routes no more
than 3 hops to 1.2.3.4

Valid path [XACE]
that satisfies the
policies of A and X

 BGP favors autonomy; Policies
are made based on local
preferences

* |t may cause unwanted
iInteraction between policies

A: balances traffic for its
neighbors C and D

A chooses [ACE]
for 1.2.3.4

Policy exchange - counter example

 BGP favors autonomy; Policies
are made based on local
preferences

X: requires routes no more
than 3 hops to 1.2.3.4

* |t may cause unwanted
iInteraction between policies

Invalid path [XADBE]
that unsatisfies
policy of X

A: balances traffic for its
neighbors C and D

A chooses [ADBE]
for 1.2.3.4

Policy exchange - counter example

X: requires routes no more
than 3 hops to 1.2.3.4

Require a
proper decision

Approach: policy exchange

 BGP favors autonomy; Policies
are made based on local
preferences

* |t may cause unwanted
iInteraction between policies

A: balances traffic for its
neighbors C and D

How to do policy exchange?

X: requires routes no more

than 3 hops to 1.2.3.4
dest

path

1.2.3.4

X

I(X) < 3

5.6.7.8

1.2.3.4

A: balances traffic for its

neighbors C and D

dest nh flag

1.2.3.4 C
1.2.34 D

5.6.7.8 C
5.6.7.8 D

u

\Y
u
\Y

How to do policy exchange?

X: requires routes no more

than 3 hops to 1.2.3.4
dest

path

1.2.3.4

X

I(X) < 3

5.6.7.8

1.2.3.4

A: balances traffic for its

neighbors C and D

dest nh flag

1.2.3.4 C
1.2.34 D

5.6.7.8 C
5.6.7.8 D

u

\Y
u
\Y

How to do policy exchange?

X: requires routes no more

than 3 hops to 1.2.3.4
Py| dest path Px

1234 x Ix) <3

\

Px| dest nh flag path

1.2.34 - - X Ix)<?2

5.6.7.8

uolebedo.d

1.2.3.4

A: balances traffic for its

neighbors C and D

Py | dest nh flag
1.234 C u u=
1234 D v v=
56.7.8 C u u=#1
56.7.8 D v vz

How to do policy exchange?

X: requires routes no more

than 3 hops to 1.2.3.4
Py| dest path Px

1234 x Ix) <3

\

Px| dest nh flag path

A
N

1234 - - x X<

5.6.7.8

uolebedo.d

1.2.3.4

A: balances traffic for its

neighbors C and D

dest nh flag
1.234 C u u=
1234 D v v=
56.7.8 C u u=#1
56.7.8 D v vz

How to do policy exchange?

X: requires routes no more

than 3 hops to 1.2.3.4 P,| dest nh flag path

1.2.34 C u X u=1Alx) <2
P X
~x{ dest path o Q 1234 D v x v=1AlX)<?2
1234 x =3 5678 C u - U
' 5678 D v - vz 1

\

uolebedo.d

A: balances traffic for its

Px| dest nh flag path

neighbors C and D

A
N

1.2.34 - - X I(x) <
dest nh flag

1.234 C u u="1
1234 D v v=]1
56.7.8 C u u=#1
1.2.3.4 56.7.8 D v vz

5.6.7.8

How to do policy exchange?

X: requires routes no more

than 3 hops to 1.2.3.4 P,| dest nh flag path

1.2.34 C u X u=1Alx) <2
P X
~x{ dest path o Q 1234 D v X v=1Alx) <2
1234 x =3 5678 C u - U
' 5678 D v - V£

\

uolebedo.d

A: balances traffic for its

Px| dest nh flag path

neighbors C and D

A
N

1.2.34 - - X I(x) <
dest nh flag

1.234 C u u="1
1234 D v v=]1
56.7.8 C u u=#1
1.2.3.4 56.7.8 D v vz

5.6.7.8

Preliminary Prototype

* We currently use in-memory implementation, in terms of Python
lists

Preliminary Prototype

* We currently use in-memory implementation, in terms of Python
lists

* Applications:
* Policy Exchange

e BGP simulation

Preliminary Prototype

* We currently use in-memory implementation, in terms of Python
lists

* Applications:
* Policy Exchange

e BGP simulation

Mimicking the behavior of the BGP

speaker as it receives
announcement from their neighbors

Preliminary Prototype

* We currently use in-memory implementation, in terms of Python
lists

* Applications:
* Policy Exchange

e BGP simulation

Benchmark

* Using MRT format RouteView BGP data - RIBs and UPDATEs -
from route-view2.oregon-ix.net to generate synthetic policies and
realistic topologies

http://route-view2.oregon-ix.net

Performance - Relational Operators

Projection X Pl X P3
1 - o ?(‘ e N ‘ B N~ 1
i 7 O +
= 0.6 S = P;: static-route & filter policy
e ' = P-: traffic bal l
183 0.4-_ 3 raitic balance policy
=02}
O L I L L | |
10 1000 100000

time (Mms)
Realistic destination

Performance - Relational Operators

Selection : P, X Ps
1r X e g A I
i i O +
:_(—% 0.6+ - X A il: static-route & filter policy
' | : traffi I i
g 0.4 3. traffic balance policy
~0.2¢t
O 1 1 1 1 | |
10 1000 100000

time (Mms)
Realistic destination

Performance - Relational Operators

a >: P, X Py
1r X SRR I S N A I
L ' O +
308 B T X
:_(—% 0.6 - X A il: statl.c-route &fl|tel.’ policy
@ 0.4 | 3. traffic balance policy
~0.2¢t
O 1 1 1 1 § | |
10 1000 100000

time (Mms)
Realistic destination

Performance - Scalability

12500 e
N overall ===

g 2500 23 =3 [

§ o0) e ———

v Apply X on three
s 1 7 %% """"" 2l policy sizes

100 1000 10000

size of policy table

Scalability property of X
e SMT(Z3) takes 96% of the running time

* Our implementation can handle 10,000 policies in < 70 minutes

Performance - Scalability

12500 e
N overall ===

g 2500 23 =3 [

§ o0) e ———

v Apply X on three
s 1 7 %% """"" 2l policy sizes

100 1000 10000

size of policy table

Scalability property of X
e SMT(Z3) takes 96% of the running time

* Our implementation can handle 10,000 policies in < 70 minutes

Performance - More Policy Examples

time (seconds)

= B b SMT Al
2 0.8 P1 | +
% 0.6 P3 X
E i s
-§ 0.4 ’ N
s 02 B 73 P
0 % S| l l
0.2 0.4 0.6 0.8

Processing time breakdown of poss(s, p)

Py: static route policy
Ps: traffic balance policy
P,: filter policy

All: total time

SMT: reasoning time

* Primitive that validates a relational policy (p) on a given network state (s)

Performance - More Policy Examples

1 | SI\/II All
: Py: static route policy
Py 0.8 i PL P traffic balance policy
s 0.6 P3 x P,: filter policy
el gl P4 o All: total time
o V- _ L
= - All a SMT: reasoning time
0.2 _ 735 ¢
O | |
0. 0.6 0.8

Processing timg breakdown of poss(s, p)

* Primitive that validates a relational policy (p) on a given network state (s)

 Running time: P3 < P1 < P4

Performance - More Policy Examples

1 | SI\/I'I; All
: f * P,: static route policy
Py 0.8 _ by P;: traffic balance policy
s 0.6 BEIL P,: filter policy
el gl P4 o All: total time
g_ b Al SMT: reasoning time
0.2 _ 735 ¢
O |
0. 0.6 0.8

Processing timg breakdown of poss(s, p)

* Primitive that validates a relational policy (p)Yon a given network state (s)

* Running time: P3 < P1 < P4 « SMT dominates the source of
delay

Related Work

* Inter-domain Routing Protocols and Architectures

 D-BGP and Trotsky: partial deployments of protocols, requires
their co-existence on the global internet

Related Work

* Inter-domain Routing Protocols and Architectures

 D-BGP and Trotsky: partial deployments of protocols, requires
their co-existence on the global internet

* Declarative Networking:
 We share database usage in networking

 We introduce and implement a novel use of conditional tables

Thank you

http://ravel-net.org/

Other Relational Operations

» Support full set of relational operators

Union: U
Selection: o
Difference: —
Projection:

Rename: p

Other Relational Operations

» Support full set of relational operators

e.g. Assign a new path [AEC] to 1.2.3.4

Union: U

Selection: o

Difference: —

Projection: «

Rename: p

Other Relational Operations

» Support full set of relational operators

e.g. Assign a new path [AEC] to 1.2.3.4

Union: U

e.g. Select which path=[ABC] from Pj

Selection: o

Difference: —

Projection: «

Rename: p

Other Relational Operations

» Support full set of relational operators

e.g. Assign a new path [AEC] to 1.2.3.4

Union: U

Selection: & e.g. Select which path=[ABC] from Pj
Difference: — :
e.g. Difference between two policies

Projection: «

Rename: p

Other Relational Operations

» Support full set of relational operators

Union: U e.g. Assign a new path [AEC] to 1.2.3.4

e.g. Select which path=[ABC] from Pj

Selection: o

Difference: — : o
e.g. Difference between two policies

Projection: &

e.g. Select attribute dest from Py
Rename: p

Other Relational Operations

» Support full set of relational operators

e.g. Assign a new path [AEC] to 1.2.3.4

Union: U

Selection: o e.g. Select which path=[ABC] from Pj

Difference: — : o
e.g. Difference between two policies

Projection: «

e.g. Select attribute dest from Py
Rename: p

e.g. Rename column dest to prefix

Combine Policies using Join Operation

e Static route and filter policy

» Traffic balance policy

Py | dest path P3| dest path flag
1.2.34 X x=[ABC] 1.2.34 [ABC] u u=
y z y+1.2.3.5Ay21.2.3.4 5.6.7.8 [ABC] u u=T
Can we generate a new policy that - 1.23.4 [ADC] v v=-
satisfies Pjand P; simultaneously? 5.6.7.8 [ADC] v V #
Py M P3| dest path flag
1.2.34 X u x=[ABC] A u=1
1.2.3.4 X v x=[ABC] A x=[ADC] A v=1
Yy Z u vyz1.2.3.5Ay#1.2.3.4Ay=1.2.3.4Az=[ABC]Au=
y Z u y£1.2.3.5Ay21.2.3.4Ay=5.6.7.8 Az=[ABC]Au=
y Z v yz1.2.3.5Ay21.2.3.4Ay=1.2.3.4Az=[ADC]Av=
Yy Z v y#1.2.3.5Ay£1.2.3.4Ay=5.6.7.8Az=[ADC]Av#
7

Combine Policies using Join Operation

e Static route and filter policy

Py | dest path

 Traffic balance policy

P3| dest path flag

11234 x x=[ABC] | {1234 [ABC] u u=
y z y+1.2.3.5Ay#1.2.3.4 5.6.7.8 [ABC] u u=zT
Can we generate a new policy that 1.2.3.4 [ADC] v V="
satisfies Pjand P; simultaneously? m 5.6.7.8 [ADC] v V #
Py M P3| dest path flag
1.2.34 X u x=[ABC] A u=1
1.2.3.4 X v x=[ABC] A x=[ADC] A v=1
Yy Z u vyz1.2.3.5Ay#1.2.3.4Ay=1.2.3.4Az=[ABC]Au=
y Z u y£1.2.3.5Ay21.2.3.4Ay=5.6.7.8 Az=[ABC]Au=
y Z v yz1.2.3.5Ay21.2.3.4Ay=1.2.3.4Az=[ADC]Av=
Yy Z v y£1.2.3.5Ay#1.2.3.4Ay=5.6.7.8 Az=[ADC] AV
7

Combine Policies using Join Operation

e Static route and filter policy

 Traffic balance policy

Py | dest path P3| dest path flag
1.2.3.4 X x=[ABC] 1.2.34 [ABC] u u=
L[v z y#1.2.3.5ny=1.2.3.4] 56.7.8 [ABC] u u#"
Can we generate a new policy that - 1.23.4 [ADC] v v=-
satisfies P;and P; simultaneously? 5.6.7.8 [ADC] v v=1
Py M P3| dest path flag
1.2.34 X u x=[ABC] A u=1
1.2.3.4 X v x=[ABC] A x=[ADC] A v=1
Yy Z u vyz1.2.3.5Ay#1.2.3.4Ay=1.2.3.4Az=[ABC]Au=
y Z u y£1.2.3.5Ay21.2.3.4Ay=5.6.7.8 Az=[ABC]Au=
y Z v yz1.2.3.5Ay21.2.3.4Ay=1.2.3.4Az=[ADC]Av=
y Z v y#1.2.3.5Ay%1.2.3.4Ay=5.6.7.8Az=[ADC]Av#
4

Combine Policies using Join Operation

e Static route and filter policy

» Traffic balance policy

Py | dest path P3| dest path flag
1.2.3.4 X x=[ABC] 1.2.34 [ABC] u u=
y z y+1.2.3.5Ay21.2.3.4 5.6.7.8 [ABC] u u=T
1.2.3.4 [ADC] v v=1
56.7.8 [ADC] v vz#]
Contradictory
Py M P3| dest path flag 44
1234 x u x=[ABC] /\L/ (l
1.2.34 X v <X=[ABC] A x=[A v=1
y z u y#1.2.3.5x5%1.2.3.4Ay+1.2.327z=[ABC]Au=
y Z u y#1.2.3.5Ay%£1.2.3.4Ay£5.6.7.8Az=[ABC]Au#
y z v y#1.2.3.5x521.2.3.4Ay=1.2.327z=[ADC]Av=
Yy Z v y#1.2.3.5Ay£1.2.3.4Ay=5.6.7.8Az=[ADC]Av#

Combine Policies using Join Operation

e Static route and filter policy Traffic balance policy
Py | dest path P3| dest path flag
1.2.34 X x=[ABC] 1234 [ABC] u u=1
y z y+1.2.3.5Ay21.2.3.4 5.6.7.8 [ABC] u u=T
1.2.3.4 [ADC] v v=1
56.7.8 [ADC] v vz#]
Contradictory
Py M P3| dest path flag
1.2.34 X u x=[ABC] A u/:/
122 % = %Z—vl*.
y = I 4 = =
y 2 U ye1235ny% 234Ay,L5678Az [ABC]Au#1
y Z v—y 212352821234 y=12 = =
Yy Z v y#1.2.3.5Ay#1.2.3.4Ay=5.6.7.8Az=[ADC]Av=1
7

Combine Policies using Join Operation

e Static route and filter policy Traffic balance policy
Py | dest path P3| dest path flag
1.2.34 X x=[ABC] 1.234 [ABC] u u=1
y z y+1.2.3.5Ay21.2.3.4 5.6.7.8 [ABC] u u=T
1.2.3.4 [ADC] v v=1
56.7.8 [ADC] v v=#1

Py X P3| dest path flag

1.2.34 X u x=[ABC] A u="1
y Z u y21.2.3.5Ay£1.2.3.4Ay=5.6.7.8 Az=[ABC]Au=1

Yy Z v y#1.2.3.5Ay#1.2.3.4Ay=5.6.7.8Az=[ADC]Av=1

Combine Policies using Join Operation

e Static route and filter policy Traffic balance policy

Py | dest path P3| dest path flag
1.2.34 X x=[ABC] 1.234 [ABC] u u="
y z y+1.2.3.5Ay21.2.3.4 5.6.7.8 [ABC] u u=T
1.2.3.4 [ADC] v v=1
56.7.8 [ADC] v v=z]

Redundancy
Py M P3| dest path flag f 4

1234 x u x=[ABClAu=1 |/
y Z u y#ET1.2.3.5Ay#1.2.3.4Ny=5B.7-8Az=[ABC] Au=1
y Z v x1.2.3.5Ay%1.2.3.4Ay=5.6.7.8Az=[ADC]Av£1

