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Can we provide a network policy management 
experience comparable to that on a database?
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Manipulating network policies by simply implementing SQL query on 
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Using user-defined functions and aggregates

dest path s(path)
x y z l(y) ≤ z

P2

Function l: return 
hops of the path

Function s: return the 
lowest hop counts among 

all alternative paths
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• Network addressing is a basic but critical feature to network area


• Allow sets in conditional table


• i.e. accommodate variables and conditions


• Two methods:


• Naive support for sets


• Leverage SMT(Satisfiability Modulo Theories) solver for sets

Support Network Addressing
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• We show the possibility of coordinating knowledge-driven 
policies from a single central point


• What about in realistic network scenarios like inter-domain 
routing?

Application in inter-domain routing

We show an application - 
Policy Exchange
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• We currently use in-memory implementation, in terms of Python 
lists

Preliminary Prototype

• Applications:


• Policy Exchange


• BGP simulation

Benchmark
• Using MRT format RouteView BGP data - RIBs and UPDATEs - 

from route-view2.oregon-ix.net to generate synthetic policies and 
realistic topologies

http://route-view2.oregon-ix.net
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• Running time: P3 < P1 < P4

Performance - More Policy Examples

Processing time breakdown of poss(s, p)

P3 P1 P4 AllSMT

• SMT dominates the source of 
delay

• Primitive that validates a relational policy (p) on a given network state (s)

: static route policy

: traffic balance policy

: filter policy


All: total time

SMT: reasoning time


P1
P3
P4
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• Inter-domain Routing Protocols and Architectures


• D-BGP and Trotsky: partial deployments of protocols, requires 
their co-existence on the global internet


• Declarative Networking:


• We share database usage in networking


• We introduce and implement a novel use of conditional tables

Related Work



Thank you
http://ravel-net.org/
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• Support full set of relational operators 

Other Relational Operations 

Selection: σ e.g. Select which path=[ABC] from PR

Difference: −
e.g. Difference between two policies

Union: ⋃ e.g. Assign a new path [AEC] to 1.2.3.4

Projection: π

e.g. Select attribute dest from PR
Rename: ρ

e.g. Rename column dest to prefix

8



dest path
1.2.3.4 x x=[ABC]

y z y≠1.2.3.5∧y≠1.2.3.4

P1 dest path flag
1.2.3.4 [ABC] u u = 1
5.6.7.8 [ABC] u u ≠ 1
1.2.3.4 [ADC] v v = 1
5.6.7.8 [ADC] v v ≠ 1

P3

• Static route and fi • Traffi

dest path flag
1.2.3.4 x u x=[ABC] ⋀ u=1
1.2.3.4 x v x=[ABC] ⋀ x=[ADC] ⋀ v=1

y z u y≠1.2.3.5⋀y≠1.2.3.4⋀y=1.2.3.4⋀z=[ABC]⋀u=1
y z u y≠1.2.3.5⋀y≠1.2.3.4⋀y=5.6.7.8⋀z=[ABC]⋀u≠1
y z v y≠1.2.3.5⋀y≠1.2.3.4⋀y=1.2.3.4⋀z=[ADC]⋀v=1
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