Design and Implementation of a Strong Representation System for Network Policies

Fangping Lan, Sanchari Biswas, Bin Gui, Jie Wu and Anduo Wang Temple University

ICCCN 2022 July 25 - July 28, 2022

Motivation

- Managing networking policies remains hard:
 - One has to fully understand the policy
 - Understanding SDN is difficult for someone not involved in the coding process

Motivation

- Managing networking policies remains hard:
 - One has to fully understand the policy
 - Understanding SDN is difficult for someone not involved in the coding process
- Managing relational database is easier:
 - Self-explaining and has a common understanding
 - Little expertise required for non-programmers

Motivation

- Managing networking policies remains hard:
 - One has to fully understand the policy
 - Understanding SDN is difficult for someone not involved in the coding process
- Managing relational database is easier:
 - Self-explaining and has a common understanding
 - Little expertise required for non-programmers

Can we provide a network policy management experience comparable to that on a database?

P_R	dest	path	condition			
	1.2.3.4	l x	x=[ABC]∨x=[ADC			
	5.6.7.8	3 y	y=[ABC]∨y=[ADC]]		
	Ι	dest	path			
		1.2.3.4	4 [ABC]			
		1.2.3.4	4 [ADC]			
Represent		5.6.7.8	8 [ABC]			
		5.6.7.8	8 [ADC]			

P_R	dest	path	condition
	1.2.3.4	Х	x=[ABC]∨x=[ADC]
	5.6.7.8	У	y=[ABC]∨y=[ADC]
С	onditior	ble	

• Traffic balance policy

• Traffic balance policy

Balance traffic to					
1.2.0.4 and 0.0.7.0	<i>P</i> ₃	dest	path	flag	
		1.2.3.4	[ABC]	u	u = 1
		5.6.7.8	[ABC]	u	u ≠ 1
		1.2.3.4	[ADC]	V	v = 1
		5.6.7.8	[ADC]	V	v ≠ 1

• Static route and filter policy

P_1	dest	path	
	1.2.3.4	Х	x=[ABC]
	у	Z	y≠1.2.3.5

• Static route and filter policy

Assign a static route [ABC] to destination 1.2.3.4

P_1	dest	path	
	1.2.3.4	Х	x=[ABC]
	у	Z	y≠1.2.3.5

• Static route and filter policy

Assign a static route [ABC] to destination 1.2.3.4

Manipulating Network Policies

- Manipulate relational database table:
 - relational algebra : selection, projection, union, join, ...
 - implement SQL query on regular table

Manipulating Network Policies

- Manipulate relational database table:
 - relational algebra : selection, projection, union, join, ...
 - implement SQL query on regular table
- Our contribution:

Manipulating network policies by simply implementing SQL query on conditional table

- Static route and filter policy
- Traffic balance policy

P_1	dest	path		<i>P</i> ₃	dest	path	flag	
	1.2.3.4	Х	x=[ABC]		1.2.3.4	[ABC]	u	u = 1
	у	Z	y≠1.2.3.5∧y≠1.2.3.4		5.6.7.8	[ABC]	U	u ≠ 1
					1.2.3.4	[ADC]	V	v = 1
					5.6.7.8	[ADC]	V	v ≠ 1

- Static route and filter policy
- Traffic balance policy

P_1	dest	path			P_3	dest	path	flag	
	1.2.3.4	Х	x=[ABC]			1.2.3.4	[ABC]	u	u = 1
	У	Ζ	y≠1.2.3.5∧y≠1	.2.3.4		5.6.7.8	[ABC]	u	u ≠ 1
Can we generate a new policy that						1.2.3.4	[ADC]	V	v = 1
satis	sfies P_1 and	$d P_3 si$	multaneously?	P_1 join	P_3	5.6.7.8	[ADC]	V	v ≠ 1

- Static route and filter policy
 Traffic balance policy

P_1	dest	path			P_3	dest	path	flag	
	1.2.3.4	Х	x=[ABC]			1.2.3.4	[ABC]	U	u = 1
	у	Ζ	y≠1.2.3.5∧y≠1.2	2.3.4		5.6.7.8	[ABC]	U	u ≠ 1
Can we generate a new policy that						1.2.3.4	[ADC]	V	v = 1
satis	sfies P_1 and	d P_3 si	multaneously?	P_1 join	P_3	5.6.7.8	[ADC]	V	∨ ≠ 1

$P_1 \bowtie P_3$	dest	path	flag	
	1.2.3.4	Х	u	x=[ABC] ∧ u=1
	У	Z	u	y=5.6.7.8∧z=[ABC]∧u≠1
	У	Z	V	y=5.6.7.8∧z=[ADC]∧v≠1

- Static route and filter policy
 Traffic balance policy

P_1	dest	path			P_3	dest	path	flag	
	1.2.3.4	Х	x=[ABC]			1.2.3.4	[ABC]	U	u = 1
	у	Ζ	y≠1.2.3.5∧y≠1.	2.3.4		5.6.7.8	[ABC]	U	u ≠ 1
Can	we genera	ate a n	ew policy that			1.2.3.4	[ADC]	V	v = 1
satis	sfies P_1 and	$P_3 si$	multaneously?	P_1 join	P_3	5.6.7.8	[ADC]	V	V ≠ 1

$P_1 \bowtie P_3$	dest	path	flag	
	1.2.3.4	Х	U	x=[ABC] ∧ u=1
	У	Ζ	U	y=5.6.7.8∧z=[ABC]∧u≠1
	У	Ζ	V	y=5.6.7.8∧z=[ADC]∧v≠1
		Ι	dest	path
Valie			1.2.3.4	I [ABC]
state		ig	5.6.7.8	3 [ADC] 7

- Static route and filter policy
 Traffic balance policy

P_1	dest	path			P_3	dest	path	flag	
	1.2.3.4	Х	x=[ABC]			1.2.3.4	[ABC]	U	u = 1
	у	Ζ	y≠1.2.3.5∧y≠1.	2.3.4		5.6.7.8	[ABC]	U	u ≠ 1
Can	we genera	ate a n	ew policy that			1.2.3.4	[ADC]	V	v = 1
satis	sfies P_1 and	P_3 si	multaneously?	P_1 join	P_3	5.6.7.8	[ADC]	V	V ≠ 1

$P_1 \bowtie P_3$	dest	path	flag		
	1.2.3.4	Х	u	x=[ABC] \land u=1	
	У	Z	u	y=5.6.7.8∧z=[ABC]∧u≠1	
	У	Ζ	V	y=5.6.7.8∧z=[ADC]∧v≠1	
		Ι	dest	t path	
Valid forwarding			5.6.7.8 [ABC]		
state				7	

 The conventional conditional table is still restricted for the rich semantics of network policies

 The conventional conditional table is still restricted for the rich semantics of network policies

$$\begin{array}{c|c|c|c|c|c|c|c|c|} P_2 & dest & path \ s(path) \\ \hline & x & y & z & l(y) \le z \end{array}$$

 The conventional conditional table is still restricted for the rich semantics of network policies

 The conventional conditional table is still restricted for the rich semantics of network policies

Support Network Addressing

- Network addressing is a basic but critical feature to network area
- Allow sets in conditional table
 - i.e. accommodate variables and conditions

Support Network Addressing

- Network addressing is a basic but critical feature to network area
- Allow sets in conditional table
 - i.e. accommodate variables and conditions
- Two methods:
 - Naive support for sets
 - Leverage SMT(Satisfiability Modulo Theories) solver for sets
Application in inter-domain routing

- We show the possibility of coordinating knowledge-driven policies from a single central point
- What about in realistic network scenarios like inter-domain routing?

We show an application - **Policy Exchange**

A Brief Picture of BGP

A Brief Picture of BGP

A Brief Picture of BGP

Why policy exchange?

 BGP favors autonomy; Policies are made based on local preferences

Why policy exchange?

- BGP favors autonomy; Policies are made based on local preferences
- It may cause unwanted interaction between policies

We currently use in-memory implementation, in terms of Python lists

- We currently use in-memory implementation, in terms of Python lists
- Applications:
 - Policy Exchange
 - BGP simulation

- We currently use in-memory implementation, in terms of Python lists
- Applications:
 - Policy Exchange
 - BGP simulation

Mimicking the behavior of the BGP speaker as it receives announcement from their neighbors

- We currently use in-memory implementation, in terms of Python lists
- Applications:
 - Policy Exchange
 - BGP simulation

Benchmark

 Using MRT format RouteView BGP data - RIBs and UPDATEs from <u>route-view2.oregon-ix.net</u> to generate synthetic policies and realistic topologies

Performance - Relational Operators

 $\bowtie: P_1 \bowtie P_3$

 P_1 : static-route & filter policy P_3 : traffic balance policy

Performance - Relational Operators

 $\bowtie: P_1 \bowtie P_3$

 P_1 : static-route & filter policy P_3 : traffic balance policy

Performance - Relational Operators

 $\bowtie: P_1 \bowtie P_3$

 P_1 : static-route & filter policy P_3 : traffic balance policy

Performance - Scalability

- SMT(Z3) takes 96% of the running time
- Our implementation can handle 10,000 policies in \leq 70 minutes

Performance - Scalability

- SMT(Z3) takes 96% of the running time
- Our implementation can handle 10,000 policies in \leq 70 minutes

Performance - More Policy Examples

 P_1 : static route policy P_3 : traffic balance policy P_4 : filter policy All: total time SMT: reasoning time

Processing time breakdown of poss(s, p)

• Primitive that validates a relational policy (p) on a given network state (s)

Performance - More Policy Examples

 P_1 : static route policy P_3 : traffic balance policy P_4 : filter policy All: total time SMT: reasoning time

- Primitive that validates a relational policy (p) on a given network state (s)
- Running time: P3 < P1 < P4

Performance - More Policy Examples

• Running time: P3 < P1 < P4

 SMT dominates the source of delay

Related Work

- Inter-domain Routing Protocols and Architectures
 - D-BGP and Trotsky: partial deployments of protocols, requires their co-existence on the global internet

Related Work

- Inter-domain Routing Protocols and Architectures
 - D-BGP and Trotsky: partial deployments of protocols, requires their co-existence on the global internet
- Declarative Networking:
 - We share database usage in networking
 - We introduce and implement a novel use of conditional tables

Thank you

http://ravel-net.org/

• Support full set of relational operators

Union: υ Selection: *σ* Difference: –

Projection: π

Rename: ρ

Other Relational Operations

Support full set of relational operators

- Static route and filter policy
 Traffic balance policy

P_1	dest	path			P_3	dest	path	flag	
	1.2.3.4	Х	x=[ABC]		1.2.3.4	[ABC]	U	u = 1	
	У	Ζ	y≠1.2.3.5∧y≠1	.2.3.4		5.6.7.8	[ABC]	U	u ≠ 1
Can	we genera	ate a n	ew policy that		1.2.3.4	[ADC]	V	v = 1	
satis	fies P_1 and	d P_3 si	multaneously?	P_3	5.6.7.8	[ADC]	V	V ≠ 1	

$P_1 \bowtie P_3$	dest	path	flag	
	1.2.3.4	Х	u	x=[ABC] ∧ u=1
	1.2.3.4	Х	V	$x=[ABC] \land x=[ADC] \land v=1$
	У	Z	u	$y \neq 1.2.3.5 \land y \neq 1.2.3.4 \land y = 1.2.3.4 \land z = [ABC] \land u = 1$
	У	Z	u	y≠1.2.3.5∧y≠1.2.3.4∧y=5.6.7.8∧z=[ABC]∧u≠1
	У	Z	V	$y \neq 1.2.3.5 \land y \neq 1.2.3.4 \land y = 1.2.3.4 \land z = [ADC] \land v = 1$
	У	Z	V	$y \neq 1.2.3.5 \land y \neq 1.2.3.4 \land y = 5.6.7.8 \land z = [ADC] \land v \neq 1$
	1.2.3.4 y y y y y	X Z Z Z Z	v u u v v	$x=[ABC] \land x=[ADC] \land v=1$ y=1.2.3.5 \y=1.2.3.4 \y=1.2.3.4 \z=[ABC] \u y=1.2.3.5 \y=1.2.3.4 \y=5.6.7.8 \z=[ABC] \u y=1.2.3.5 \y=1.2.3.4 \y=1.2.3.4 \z=[ADC] \u y=1.2.3.5 \y=1.2.3.4 \y=5.6.7.8 \z=[ADC] \v

- Static route and filter policy
- Traffic balance policy

P_1	dest	path			<i>P</i> ₃		dest	path	flag	
	1.2.3.4	Х	x=[ABC]				1.2.3.4	[ABC]	U	u = 1
	У	Ζ	y≠1.2.3.5∧y≠1			5.6.7.8	[ABC]	U	u ≠ 1	
Can we generate a new policy that							1.2.3.4	[ADC]	V	v = 1
satis	sfies P_1 and	d P_3 si	multaneously?	P_3		5.6.7.8	[ADC]	V	V ≠ 1	

$P_1 \bowtie P_3$	dest	path	flag	
Г	1.2.3.4	Х	u	x=[ABC] ∧ u=1
	1.2.3.4	Х	V	$x=[ABC] \land x=[ADC] \land v=1$
	У	Z	u	y≠1.2.3.5∧y≠1.2.3.4∧y=1.2.3.4∧z=[ABC]∧u=1
	У	Z	u	y≠1.2.3.5∧y≠1.2.3.4∧y=5.6.7.8∧z=[ABC]∧u≠1
	У	Z	V	y≠1.2.3.5∧y≠1.2.3.4∧y=1.2.3.4∧z=[ADC]∧v=1
	у	Z	V	$y \neq 1.2.3.5 \land y \neq 1.2.3.4 \land y = 5.6.7.8 \land z = [ADC] \land v \neq 1$

- Static route and filter policy
 Traffic balance policy

P_1	dest	path			P_3		dest	path	flag	
	1.2.3.4	Х	x=[ABC]				1.2.3.4	[ABC]	U	u = 1
	У	Ζ	y≠1.2.3.5∧y≠1	.2.3.4			5.6.7.8	[ABC]	U	u ≠ 1
Can	we genera			1.2.3.4	[ADC]	V	v = 1			
satisfies P_1 and P_3 simultaneously?							5.6.7.8	[ADC]	V	v ≠ 1

$P_1 \bowtie P_3$	dest	path	flag	
	1.2.3.4	Х	u	x=[ABC] ∧ u=1
	1.2.3.4	Х	V	$x=[ABC] \land x=[ADC] \land v=1$
Г	У	Z	u	$y \neq 1.2.3.5 \land y \neq 1.2.3.4 \land y = 1.2.3.4 \land z = [ABC] \land u = 1$
	У	Z	u	y≠1.2.3.5∧y≠1.2.3.4∧y=5.6.7.8∧z=[ABC]∧u≠1
	У	Z	V	$y \neq 1.2.3.5 \land y \neq 1.2.3.4 \land y = 1.2.3.4 \land z = [ADC] \land v = 1$
L	у	Z	V	y≠1.2.3.5∧y≠1.2.3.4∧y=5.6.7.8∧z=[ADC]∧v≠1

- Static route and filter policy
 Traffic balance policy

¹ dest path ¹ dest path fla											
1.2.3.4 x x=[ABC] 1.2.3.4 [ABC] u	u = 1										
y z y≠1.2.3.5∧y≠1.2.3.4 [ABC] u	u ≠ 1										
Can we generate a new policy that [1.2.3.4 [ADC] v	v = 1										
satisfies P_1 and P_3 simultaneously? P_1 join P_3 [5.6.7.8 [ADC] v v \neq 1											
$P_1 \bowtie P_2$ dest nath flag											
$1.2.3.4$ X U X=[ABC] \land U=1											
1.2.3.4 x v $x = [ABC] \land x = [ADC] \land v = 1$											
y z u y≠1.2.3.5∧y≠1.2.3.4∧y=1.2.3.4∧z=[A	BC]∧u=1										
y z u y≠1.2.3.5∧y≠1.2.3.4∧y=5.6.7.8∧z=[A	BC]∧u≠1										
y z v y≠1.2.3.5∧y≠1.2.3.4∧y=1.2.3.4∧z=[A	DC]∧v=1										
y z v $y \neq 1.2.3.5 \land y \neq 1.2.3.4 \land y = 5.6.7.8 \land z = [A]$	DC]∧v≠1										

- Static route and filter policy
 Traffic balance policy

P_1	dest	path			<i>P</i> ₃	dest	path	flag					
	1.2.3.4	Х	X=	[ABC]		1.2.3.4	[ABC]	U	u = 1				
	У	Z Y=	≠1.2.3.	5∧y≠1.2.3.4	ŀ	5.6.7.8	[ABC]	U	u ≠ 1				
Can	we genera	te a new	policy		1.2.3.4	[ADC]	V	v = 1					
satis	satisfies P_1 and P_3 simultaneously? P_1 join P_3 [5.6.7.8 [ADC] v v \neq 1												
$P_1 \bowtie$	$P_{\rm o}$ doct	nath	flog			Contra	dictory						
		patri	nay										
	1.2.3.4	k x	u	x=[ABC] \land	u=1								
	1.2.3.4	<u> х</u>		x=IABC1 ^		$1 \sqrt{-1}$							
				The same and the second s									
	y y	Z	u	y≠1.2.3.5∧	y≠1.2.3	3.4∧y≢1.	2.3.4∧z	=[ABC	}]∧u=1				
	y y	Z Z	u u	y≠1.2.3.5∧ y≠1.2.3.5∧	y≠1.2.3 y≠1.2.3	3.4∧y=1. 3.4∧y=5.	<mark>2.3.4∧z</mark> 6.7.8∧z	=[ABC z=[ABC	}]∧u=1)]∧u≠1				
	y y	Z Z 7	u u	$y \neq 1.2.3.5$ ∧ $y \neq 1.2.3.5$ ∧	y≠1.2.3 y≠1.2.3 y≠1.2.3	$3.4 \land y = 1.$ $3.4 \land y = 5.$ $4 \land y = 5.$	2.3.4∧z 6.7.8∧z 2.3.4∧z	=[ABC z=[ABC) ∧u=1)]∧u≠1				
	y y y	Z Z Z	u u V	y≠1.2.3.5∧ y≠1.2.3.5∧ y≠1.2.3.5∧	y≠1.2.3 y≠1.2.3 y≠1.2.3	3.4∧y=1. 3.4∧y=5. 3.4∧y=1.	2.3.4∧z 6.7.8∧z 2.3.4∧z	=[ABC z=[ABC =[ABC	}]∧u=1)]∧u≠1 }]∧v=1				
	y y y y y	Z Z Z Z	u u V V	y≠1.2.3.5∧ y≠1.2.3.5∧ y≠1.2.3.5∧ y≠1.2.3.5∧	y≠1.2.3 y≠1.2.3 y≠1.2.3 y≠1.2.3	3.4∧y=1. 3.4∧y=5. 3.4∧y=1. 3.4∧y=1.	2.3.4∧z 6.7.8∧z 2.3.4∧z 6.7.8∧z	=[ABC z=[ABC <u>=[ADC</u> z=[ADC)∧u=1)]∧u≠1)]∧v=1)]∧v≠1				

- Static route and filter policy
 Traffic balance policy

P_1	dest	path			P_3	dest	path	flag	
	1.2.3.4	Х	x=[ABC]			1.2.3.4	[ABC]	U	u = 1
	у	Ζ	y≠1.2.3.5∧y≠1.2	2.3.4		5.6.7.8	[ABC]	U	u ≠ 1
Can we generate a new policy that						1.2.3.4	[ADC]	V	v = 1
satis	sfies P_1 and	P_3 si	multaneously?	P_3	5.6.7.8	[ADC]	V	V ≠ 1	

$\underline{P_1 \bowtie P_3}$	dest	path	flag	
	1.2.3.4	Х	u	x=[ABC] ∧ u=1
	У	Ζ	u	y≠1.2.3.5∧y≠1.2.3.4∧y=5.6.7.8∧z=[ABC]∧u≠1
	У	Z	V	y≠1.2.3.5∧y≠1.2.3.4∧y=5.6.7.8∧z=[ADC]∧v≠1

- Static route and filter policy
 Traffic balance policy

P_1	dest	path			<i>P</i>	3	dest	path	flag	
	1.2.3.4	Х	Х	=[ABC]			1.2.3.4	[ABC]	U	u = 1
	У	Ζ	y≠1.2.3	8.5∧y≠1.2.3	3.4		5.6.7.8	[ABC]	U	u ≠ 1
Can	we gener	rate a n	ew policy		1.2.3.4	[ADC]	V	v = 1		
satis	fies P_1 an	d P_3 sir	multaneo		5.6.7.8	[ADC]	V	V ≠ 1		
Рм			la flaa				Redur	idancy		
1 1 M	a desi	pat	in flag							
	1.2.3.	.4 x	u	x=[ABC]	\land u=1					
	У	Z	u	y≠1.2.3.5	5∧y≠1./	2.3	.4∧y=5.	6 .7.8 ∧z	=[ABC	C]∧u≠1
	у	Z	V	y≠1.2.3.5	5∧y≠1.	2.3	.4∧y=5.	6. 7.8 ∧z	=[ADC	C]∧v≠1