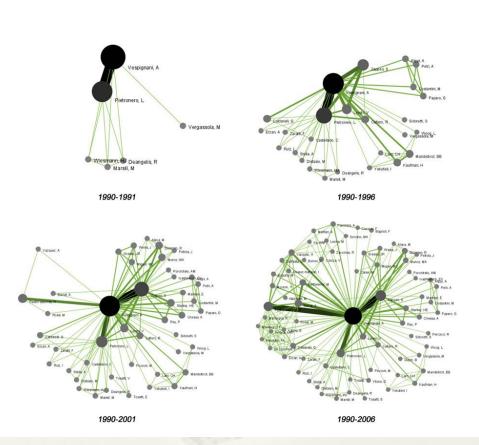
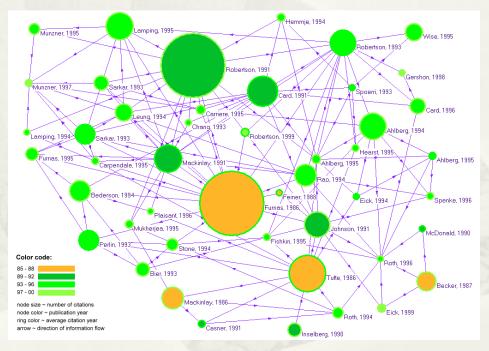
Snowballing Effects in Preferential Attachment: The Impact of The Initial Links


Huanyang Zheng and Jie Wu

Computer and Information Sciences Temple University

1. Introduction

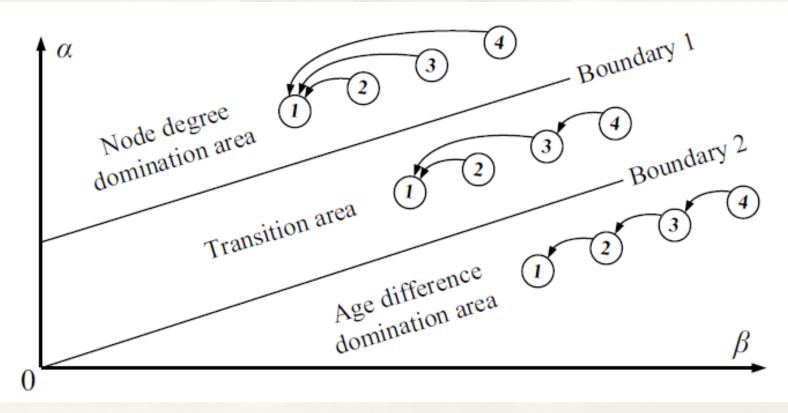
Evolving networks


- * Citation networks
- * Internet
- * Social networks
- * P2P networks
- * Road networks
- * Amazon networks
- * Node degrees
 - * Snowballing effects
 - * Rich gets richer

* The impact of initial node degree in snowballs?

2. Preferential Attachment

- * Nodes come into the network one by one
 - * For example, papers come into the citation network one by one
- Newly income node attach to previously existing nodes
- Attach probability depends on degree
 - * For example:

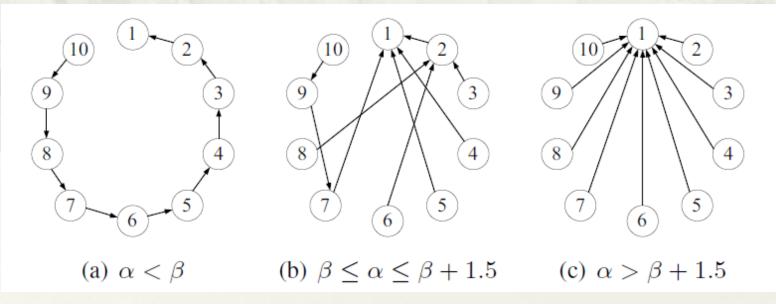

* We prefer to cite papers with more citations

3. Age-sensitive Preferential Attachment

- * Age-sensitive attachment
 - * For example, we prefer to cite new papers than old papers, if they have the same citations
- * Attachment probability
 - * Depends on both node degree and age difference
 - * Denoted by $d^{lpha} \cdot \Delta t^{-eta}$
- * Tradeoff on attachment probability
 - * Older nodes have larger degrees by time
 - * Larger age difference brings a smaller attach probability
 - * Node degree dominates? Age difference dominates?

3. Age-sensitive Preferential Attachment

Percolation phenomenon


* Dominated factor determines the network structure

3. Age-sensitive Preferential Attachment

* Degree evolving equation:

$$d(s,t+1) = d(s,t) + m \times \frac{d(s,t)^{\alpha}(t-s)^{-\beta}}{\sum_{s=1}^{t} d(s,t)^{\alpha}(t-s)^{-\beta}}$$

* Two boundaries are $a = \beta$ and $a = \beta + 1.5$

4. Node Degree Snowballing

* When $a < \beta$ or $a > \beta + 1.5$

- * Initial node degree is not important
- * Domination of node degree / age difference
- * Study the degree snowballing pattern
 - * \mathbf{r}_i denotes ratio of the additional initial degree to the normal initial degree
 - * r_g denotes ratio of increased eventual node degree brought by the additional initial degree
 - * Example: how many additional citations can be eventually brought by the initial self-citations?
 - * r_q monotonically increases with respect to r_i

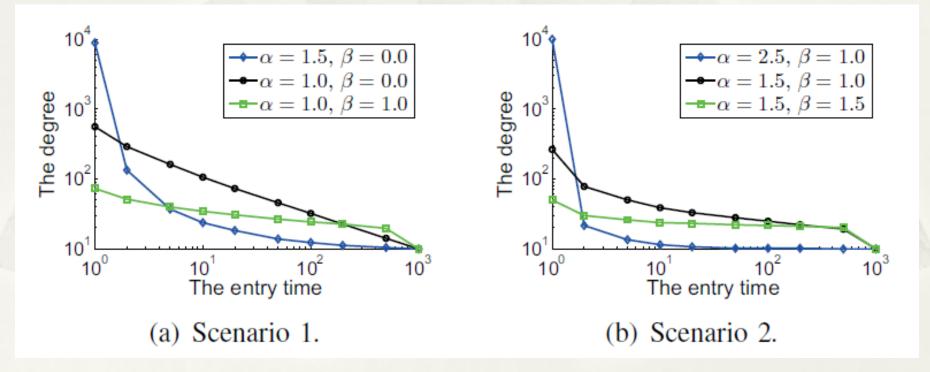
4. Node Degree Snowballing

Degree evolving equation:

$$\frac{\partial d(s,t)}{\partial t} = m \times \frac{d(s,t)^{\alpha}(t-s)^{-\beta}}{\int_{1}^{t} d(s,t)^{\alpha}(t-s)^{-\beta} \mathrm{d}s}$$

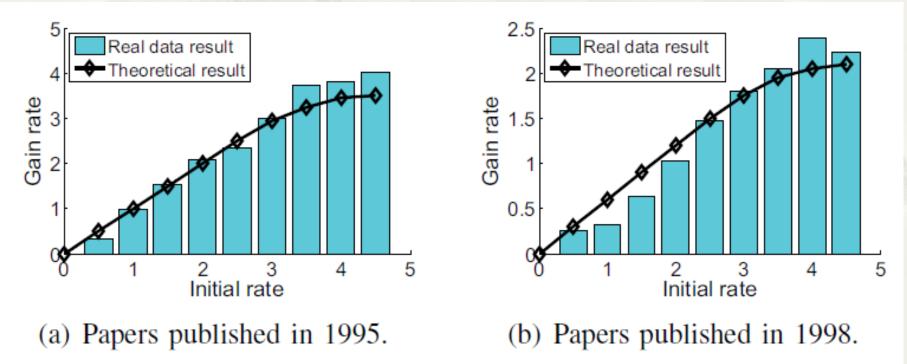
* Set $\xi = s/t$

$$\frac{d(\xi)^{1-\alpha} - d(1)^{1-\alpha}}{1-\alpha} = \frac{m \int_{1}^{\xi} \frac{-1}{\xi(1-\xi)^{\beta}} d\xi}{\int_{0}^{1} d(\xi)^{\alpha} (1-\xi)^{-\beta} d\xi}$$
$$d'(\xi) = \left[(m+m')^{1-\alpha} + \frac{m \int_{1}^{\xi} \frac{-1}{\xi(1-\xi)^{\beta}} d\xi}{\int_{0}^{1} d(\xi)^{\alpha} (1-\xi)^{-\beta} d\xi} \right]^{\frac{1}{1-\alpha}}$$
$$\approx m \times \left[(1+\frac{m'}{m})^{1-\alpha} + (1-\alpha)C(\alpha,\beta,\xi) \right]^{\frac{1}{1-\alpha}}$$

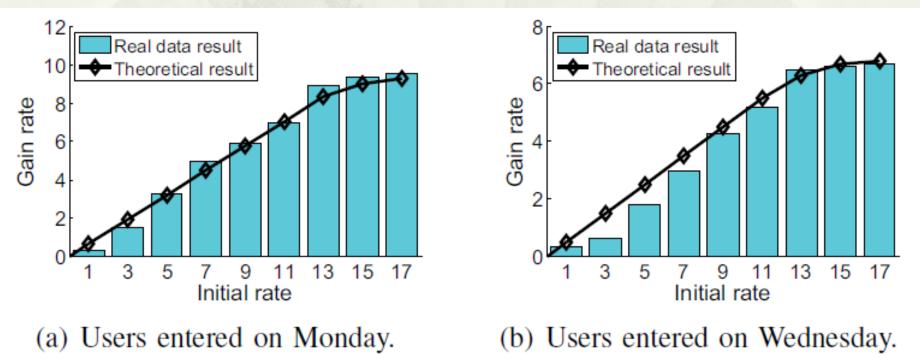

4. Node Degree Snowballing

* Result for the degree snowballing pattern:

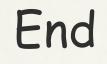
5. Experiments


* Simulations on the percolation

* Boundaries of $a = \beta$ or $a = \beta + 1.5$


5. Experiments

- Real data-driven experiments
 - * Arxiv high energy physics phenomenology citation network
 - Include papers published from January 1993 to April 2003
 - Include 34,546 papers with 421,578 citations


5. Experiments

- Real data-driven experiments
 - * Flickr photo sharing network
 - Include users from November 2006 to May 2007
 - * Include 167,527 users and 526,874 following relationships

6. Conclusion

- Node degree snowballing effects
 - * Evolving networks
- Age-sensitive preferential attachment model
 Node degree and age difference
- Impact of the initial links
 - * Linear stage and diminishing return stage

Q&A