

FCell: Towards the Tradeoffs in Designing Data Center Network (DCN) Architectures

DAWEI LI AND **JIE WU** CIS, TEMPLE UNIVERSITY ICCCN 2015

Unified Performance Model

FCell: A Novel DCN Architecture

Comparisons of DCN Architecture

Simulation

Conclusions

My Research on Network Connections

Interconnection Networks (1988-1998)

- Direct networks (no switch)
- Multistage networks (with 2X2 switches)

MANETs (1999-2005)

- Topology control (to control density of neighbors)
- Maintaining "long-distance" links based on small world

DTNs (2005-now)

Mobility control (for contact distribution and location)

DCNs (2010-now)

Unifying connection models using servers/switches

Three types of connections:

- Server-switch connection (a)
- Switch-switch connection (b)
- Server-server connection (c)

Two classes of DCNs :

- Switch-centric
 - Only server-switch and switch-switch connections (a and b), no server-server.
 - E.g., Fat-Tree , Flattened Butterfly
- Server-centric
 - Mostly only server-switch and server-server connections (a and c), no switch-switch.
 - E.g.: BCube, FiConn, DCell

Switch-centric vs. Server-centric

- Server-centric architectures
 - Enjoy the high programmability of servers, but servers usually have larger processing delays than do switches.
- Switch-centric architectures
 - Enjoy the fast switching capability of switches, but switches are less programmable than servers.
- Can we combine the advantages of both categories?

Performance vs. Power Consumption

- To provide low end-to-end delays and high bisection bandwidth
 - Large numbers of networking devices are usually used in DCNs.
 - E.g., Fat-Tree: three levels of switches; BCube: three or more levels & extra Network Interface Card (NIC) ports.
- To achieve a low DCN power consumption
 - Other architectures use significantly fewer networking devices.
 - E.g., FiConn, Dpillar, etc.
- Can we achieve high performances and low power consumption at the same time?

Scalability vs. Flexibility

- Scalability : networking devices, typically the switches, rely on a small amount of info., which does not increase significantly over the network size, to make efficient routing decisions.
- Flexibility: expanding the network in a fine-grained fashion should not destroy the current architecture
- Can we design both scalable and flexible DCN architectures?

Contributions

Unified performance model

- Path length (and hence, diameter)
- Power consumption

• A range of DCN architectures

Based on different trade-offs

• A new DCN architecture: Fcell

• Situated in the middle of the trade-off spectrum: dual-centric

Unified Performance Model

• Unified Path Length Definition:

$$d_P = n_{P,w} d_w + (n_{P,v} + 1) d_v,$$

 $n_{P,w}$: # of switches in a path $n_{P,v}$: # of servers in a path (excluding *s* and *d*) d_w : processing delay on a switch d_v : processing delay on a server

• Unified Diameter in a DCN:

 $d = \max_{P \in \{\mathcal{P}\}} d_P,$

Unified Performance Model

• DCN power consumption per server:

$$p_V = p_{dcn}/N_v = p_w N_w/N_v + n_{nic} p_{nic} + \alpha p_{fwd}.$$

 p_w : power consumption of a switch

- N_w : # of switches in a DCN
- N_v : # of servers in a DCN
- n_{nic} : average # of NIC ports each server uses
- p_{nic} : power consumption of a NIC port
 - α $\ :$ whether the server is involved in packet relaying

 p_{fwd} : power consumption of a server's packet forwarding

Intra-cluster

- The switches and servers form a simple instance of the folded Clos topology
- Inter-cluster
 - Each of the servers in a cluster is directly connected to another server in each of the other clusters
- 2 NIC ports and switches with n ports
 - n/2 level-2 switches and n l-1 switches
 - (n/2)n servers in each cluster
 - Total (n/2)n+1 clusters

• FCell basic properties:

Property 1. In an FCell(n), the number of switches is $N_w = 3n(n^2+2)/4$, and the number of servers is $N_v = n^2(n^2+2)/4$. *Proof.* There are $n^2/2 + 1$ clusters, each with 3n/2 switches and $n^2/2$ servers.

Property 2. The diameter of an FCell(n) is $d = 6d_w + 3d_v$.

Property 3. The bisection bandwidth of an FCell(n) is $B \approx N_v/4$.

Property 4. The DCN power consumption per server of an FCell(n) is $p_V=3p_w/n+2p_{nic}+p_{fwd}$.

- FCell routing schemes
 - Shortest Path Routing:
 - Determines the relay servers
 - Source to relay1 in the source cluster
 - Relay 1 to relay 2
 - Relay 2 to destination in the destination cluster

• Detour Routing:

- Randomly select a relay cluster
- Conduct shortest path routing from the source cluster to the relay cluster
- Then, from a relay cluster to the destination cluster

- FCell Scalability and Flexibility
 - FCell has good scalability due to its high degree of regularity.
 - Switches in FCell only need local information for packet forwarding.
 - Servers only need basic configuration parameters of FCell for packet forwarding.

• FCell supports flexibility well, i.e., it allows fine-grained and incremental growth of its network size.

Comparisons of DCN Architectures

(b) 2D SWCube

Comparisons of DCN Architectures

TABLE I COMPARISON OF VARIOUS DCN ARCHITECTURES						
	$N_v(n=24)$	$N_v(n=48)$	$\frac{N_w/N_v}{N_w}$	ARIOUS DCN	R	mv/
FDCL(n, 3)	3,456	27,648	5/n	$5d_w+d_v$	$\frac{D}{N_v/2}$	$\frac{p_V}{5p_w/n + p_{nic}}$
FDCL(n, 4)	41,472	663,552	7/n	$7d_w+d_v$	$\frac{N_v}{2}$	$7p_w/n + p_{nic}$
FBFLY(4,7,3)	49,125		8/24	$8d_w+d_v$	$N_v/3$	$8p_w/24 + p_{nic}$
FBFLY(8, 6, 6)	_	1,572,864	8/48	$7d_w+d_v$	$N_v/3$	$8p_w/48 + p_{nic}$
FCell(n)	83,232	1,328,256	3/n	$6d_w+3d_v$	$N_v/4$	$3p_w/n + 2p_{nic} + p_{fwd}$
BCube(n,3)	331,776	5,308,416	4/n	$4d_w+4d_v$	$N_v/2$	$4p_w/n + 4p_{nic} + p_{fwd}$
SWCube(r, 4)	28,812	685,464	2/n	$5d_w+5d_v$	$(N_v/8) \times r/(r-1)$	$2p_w/n + 2p_{nic} + p_{fwd}$
DPillar(n, 4)	82,944	1,327,104	2/n	$6d_w+6d_v$	$N_v/4$	$2p_w/n + 2p_{nic} + p_{fwd}$
DCell(n, 2)	360,600	5,534,256	1/n	$4d_w+7d_v$	$> N_v/(4\log_n N_v)$	$p_w/n + 3p_{nic} + p_{fwd}$
FiConn(n, 2)	24,648	361,200	1/n	$4d_w+7d_v$	$> N_v / 16$	$p_w/n + 7p_{nic}/4 + 3p_{fwd}/4$

Comparisons of DCN Architectures

Simulation

We conduct simulations on FCell for both random traffic and bursty traffic.

- Average Path Length (APL)
- Average Delivery Time (ADT)

Simulation

Simulations for bursty traffic:

Conclusions

A unified path length definition and a unified power consumption model for general DCNs

- Enabling fair and meaningful comparisons
- A novel DCN architecture, FCell, which serves as a good example of a tradeoff design in three aspects
 - Performance and power, switch-centric and server-centric designs, and scalability and flexibility
- A new class of DCNs, that can be regarded as dual-centric, with FCell as an example
 - Two basic routing schemes
 - Performance under different traffic conditions

Future Work

More in-depth simulation
Different flows
Different bursty modes

Simulation of some real applications

Support for overlay networks

Questions can be sent to: <u>dawei.li@temple.edu</u> jiewu@temple.edu

Backup slides

Flattened Butterfly (one-dimensional)

BCube (two-level):

DPillar:

(a) vertical view

(b) horizontal view

DCell (two-level):

