FCell: Towards the Tradeoffs in Designing Data Center Network (DCN) Architectures

DAWEI LI AND JIE WU
CIS, TEMPLE UNIVERSITY
ICCCN 2015
Agenda

Introduction
Unified Performance Model
FCell: A Novel DCN Architecture
Comparisons of DCN Architecture
Simulation
Conclusions
My Research on Network Connections

Interconnection Networks (1988-1998)
- Direct networks (no switch)
- Multistage networks (with 2X2 switches)

MANETs (1999-2005)
- Topology control (to control density of neighbors)
- Maintaining “long-distance” links based on small world

DTNs (2005-now)
- Mobility control (for contact distribution and location)

DCNs (2010-now)
- Unifying connection models using servers/switches
Introduction

Three types of connections:
- Server-switch connection (a)
- Switch-switch connection (b)
- Server-server connection (c)

Two classes of DCNs:
- **Switch-centric**
 - Only server-switch and switch-switch connections (a and b), no server-server.
 - E.g., Fat-Tree, Flattened Butterfly
- **Server-centric**
 - Mostly only server-switch and server-server connections (a and c), no switch-switch.
 - E.g.: BCube, FiConn, DCell
Introduction

Switch-centric vs. Server-centric

- **Server-centric architectures**
 - Enjoy the *high programmability of servers*, but servers usually have larger processing delays than do switches.

- **Switch-centric architectures**
 - Enjoy the *fast switching capability of switches*, but switches are less programmable than servers.

- Can we combine the advantages of both categories?
Introduction

Performance vs. Power Consumption

- To provide **low end-to-end delays and high bisection bandwidth**
 - Large numbers of networking devices are usually used in DCNs.
 - E.g., Fat-Tree: three levels of switches; BCube: three or more levels & extra Network Interface Card (NIC) ports.

- To achieve a **low DCN power consumption**
 - Other architectures use significantly fewer networking devices.
 - E.g., FiConn, Dpillar, etc.

- Can we achieve high performances and low power consumption at the same time?
Introduction

Scalability vs. Flexibility

- **Scalability**: networking devices, typically the switches, rely on a small amount of info., which does not increase significantly over the network size, to make efficient routing decisions.

- **Flexibility**: expanding the network in a fine-grained fashion should not destroy the current architecture

- Can we design both scalable and flexible DCN architectures?
Introduction

Contributions

- **Unified performance model**
 - Path length (and hence, diameter)
 - Power consumption

- **A range of DCN architectures**
 - Based on different trade-offs

- **A new DCN architecture: Fcell**
 - Situated in the middle of the trade-off spectrum: dual-centric
Unified Performance Model

- Unified Path Length Definition:

\[d_P = n_{P,w}d_w + (n_{P,v} + 1)d_v, \]

- Unified Diameter in a DCN:

\[d = \max_{P \in \{\mathcal{P}\}} d_P, \]

- \(n_{P,w} \): # of switches in a path
- \(n_{P,v} \): # of servers in a path (excluding \(s \) and \(d \))
- \(d_w \): processing delay on a switch
- \(d_v \): processing delay on a server
Unified Performance Model

- DCN power consumption per server:

\[p_v = p_{dcn}/N_v = p_w N_w/N_v + n_{nic} p_{nic} + \alpha p_{fwd}. \]

- \(p_w \): power consumption of a switch
- \(N_w \): # of switches in a DCN
- \(N_v \): # of servers in a DCN
- \(n_{nic} \): average # of NIC ports each server uses
- \(p_{nic} \): power consumption of a NIC port
- \(\alpha \): whether the server is involved in packet relaying
- \(p_{fwd} \): power consumption of a server’s packet forwarding
FCell: A Novel DCN Architecture

- **Intra-cluster**
 - The switches and servers form a simple instance of the folded Clos topology

- **Inter-cluster**
 - Each of the servers in a cluster is directly connected to another server in each of the other clusters

- 2 NIC ports and switches with n ports
 - n/2 level-2 switches and n l-1 switches
 - (n/2)n servers in each cluster
 - Total (n/2)n+1 clusters
FCell: A Novel DCN Architecture

- FCell basic properties:

Property 1. In an $FCell(n)$, the number of switches is $N_w = 3n(n^2+2)/4$, and the number of servers is $N_v = n^2(n^2+2)/4$.

Proof. There are $n^2/2 + 1$ clusters, each with $3n/2$ switches and $n^2/2$ servers. □

Property 2. The diameter of an $FCell(n)$ is $d = 6d_w + 3d_v$.

Property 3. The bisection bandwidth of an $FCell(n)$ is $B \approx N_v/4$.

Property 4. The DCN power consumption per server of an $FCell(n)$ is $p_V = 3p_w/n + 2p_{nic} + p_{fwd}$.
FCell: A Novel DCN Architecture

- FCell routing schemes
 - **Shortest Path Routing:**
 - Determines the relay servers
 - Source to relay1 in the source cluster
 - Relay 1 to relay 2
 - Relay 2 to destination in the destination cluster
FCell: A Novel DCN Architecture

Detour Routing:

- Randomly select a relay cluster
- Conduct shortest path routing from the source cluster to the relay cluster
- Then, from a relay cluster to the destination cluster
FCell: A Novel DCN Architecture

- **FCell Scalability and Flexibility**
 - FCell has *good scalability* due to its high degree of regularity.
 - Switches in FCell only need *local information* for packet forwarding.
 - Servers only need basic configuration parameters of FCell for packet forwarding.
FCell: A Novel DCN Architecture

- FCell supports flexibility well, i.e., it allows fine-grained and incremental growth of its network size.

(a) Adding one rack of $n/2$ servers in each cluster.
(b) Adding the first expanded cluster.
(c) Adding the second expanded cluster.
Comparisons of DCN Architectures

Some existing architectures:
Left: server-centric, Right: switch-centric

FiConn:

Fat-Tree:

SWCube:

(b) 2D SWCube
Comparisons of DCN Architectures

<table>
<thead>
<tr>
<th>Architecture</th>
<th>$N_v(n=24)$</th>
<th>$N_v(n=48)$</th>
<th>N_w/N_v</th>
<th>d</th>
<th>B</th>
<th>pV</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDCL ($n, 3$)</td>
<td>3,456</td>
<td>27,648</td>
<td>5/3</td>
<td>5d_w+d_v</td>
<td>$N_v/2$</td>
<td>$5p_w/n + p_{nic}$</td>
</tr>
<tr>
<td>FDCL ($n, 4$)</td>
<td>41,472</td>
<td>663,552</td>
<td>7/4</td>
<td>7d_w+d_v</td>
<td>$N_v/2$</td>
<td>$7p_w/n + p_{nic}$</td>
</tr>
<tr>
<td>FBFLY ($4, 7, 3$)</td>
<td>—</td>
<td>—</td>
<td>8/24</td>
<td>8d_w+d_v</td>
<td>$N_v/3$</td>
<td>$8p_w/24 + p_{nic}$</td>
</tr>
<tr>
<td>FBFLY ($8, 6, 6$)</td>
<td>—</td>
<td>1,572,864</td>
<td>8/48</td>
<td>8d_w+d_v</td>
<td>$N_v/3$</td>
<td>$8p_w/48 + p_{nic}$</td>
</tr>
<tr>
<td>FCell (n)</td>
<td>83,232</td>
<td>1,328,256</td>
<td>3/n</td>
<td>6d_w+3d_v</td>
<td>$N_v/4$</td>
<td>$3p_w/n + 2p_{nic} + p_{fwd}$</td>
</tr>
<tr>
<td>BCube ($n, 3$)</td>
<td>331,776</td>
<td>5,308,416</td>
<td>4/n</td>
<td>4d_w+4d_v</td>
<td>$N_v/2$</td>
<td>$4p_w/n + 4p_{nic} + p_{fwd}$</td>
</tr>
<tr>
<td>SWCube ($r, 4$)</td>
<td>28,812</td>
<td>685,464</td>
<td>2/r</td>
<td>(N_v/8) × r/(r-1)</td>
<td>$N_v/4$</td>
<td>$2p_w/n + 2p_{nic} + p_{fwd}$</td>
</tr>
<tr>
<td>DPillar ($n, 4$)</td>
<td>82,944</td>
<td>1,327,104</td>
<td>2/n</td>
<td>6d_w+6d_v</td>
<td>$N_v/4$</td>
<td>$2p_w/n + 2p_{nic} + p_{fwd}$</td>
</tr>
<tr>
<td>DCell ($n, 2$)</td>
<td>360,600</td>
<td>5,534,256</td>
<td>1/n</td>
<td>4d_w+7d_v</td>
<td>$N_v/(4\log_n N_v)$</td>
<td>$p_w/n + 3p_{nic} + p_{fwd}$</td>
</tr>
<tr>
<td>FiConn ($n, 2$)</td>
<td>24,648</td>
<td>361,200</td>
<td>1/n</td>
<td>4d_w+7d_v</td>
<td>$N_v/16$</td>
<td>$p_w/n + 7p_{nic}/4 + 3p_{fwd}/4$</td>
</tr>
</tbody>
</table>
Comparisons of DCN Architectures

(a) Diameters vs. d_v.

(b) p_v vs. p_{fwd}.
Simulation

We conduct simulations on FCell for both random traffic and bursty traffic.

- Average Path Length (APL)
- Average Delivery Time (ADT)

Simulations for random traffic:

Fig. 4. Aggregate throughput, APL and ADT vs. No. of flows (random traffic).
Simulation

Simulations for bursty traffic:

(a) Aggregate throughput.
(b) APL and ADT.

Fig. 5. Aggregate throughput, APL and ADT vs. No. of flows (bursty traffic).
Conclusions

- A **unified path length definition** and a **unified power consumption model** for general DCNs
 - Enabling **fair** and **meaningful** comparisons

- A novel DCN architecture, FCell, which serves as a good example of a **tradeoff design in three aspects**
 - Performance and power, switch-centric and server-centric designs, and scalability and flexibility

- A new class of DCNs, that can be regarded as **dual-centric**, with FCell as an example
 - Two basic routing schemes
 - Performance under different traffic conditions
Future Work

- More in-depth simulation
 - Different flows
 - Different bursty modes
- Simulation of some real applications
- Support for overlay networks

Questions can be sent to:

dawei.li@temple.edu
jiewu@temple.edu
Backup slides

Flattened Butterfly (one-dimensional)

BCube (two-level):
DPillar:

(a) vertical view
(b) horizontal view

DCell (two-level):