
Leveraging Tenant Flexibility in Resource Allocation
for Virtual Networks

Sheng Zhang†, Zhuzhong Qian†, Jie Wu§, and Sanglu Lu†
†State Key Lab. for Novel Software Technology, Nanjing University, China
§Department of Computer and Information Sciences, Temple University, USA

†zhangsheng@dislab.nju.edu.cn, qzz@nju.edu.cn, sanglu@nju.edu.cn, §jiewu@temple.edu

Abstract—Virtual networks that allow tenants to explicitly
specify their computing as well as networking resources are
recently proposed to be better interfaces between cloud providers
and tenants. Many virtual networks have time-varying resource
demands, as evidenced in prior studies [1–3]. New opportunities
emerge when such variation is exploited. In this paper, we design
a novel resource demand model for tenants to flexibly trade
off between application performance and cost, and propose a
work-conserving allocation algorithm, WCA, for deploying virtual
networks with time-varying resource demands. WCA places
virtual nodes in a first-fit fashion, and places virtual links through
path-splitting. In each physical node or link, by opportunistically
sharing physical resources among multiple variable parts of
resource demands, physical utilization can be improved, and more
virtual networks can be deployed concurrently. Our evaluation
results show that WCA achieves a 4% higher physical resource
utilization and rejects 18% less virtual network requests than a
state-of-the-art algorithm [4].

I. Introduction

As cloud computing becomes pervasive, data centers have
evolved as key infrastructures for computation-intensive appli-
cations and business service backends [5]. The more recent
emergence of virtual desktop [6], which exclusively relies on
remote data centers for access, has further elevated the impor-
tance of the latter. Today’s public data centers (e.g., Amazon
EC2, Microsoft Azure, and Google AppEngine) concentrate on
a computation-oriented resource reservation model, which only
allows tenants to specify computing and memory demands,
but ignores networking completely. In other words, almost all
current data centers just offer best-effort networking service,
which is largely influenced by a multiplicity of various factors
including virtual machines (VMs) placement, data center load
and architecture.

Considering the scarcity and, not surprisingly, the common
oversubscription [7] of data center bandwidth resources, this
model results in high unpredictability of tenants’ performance,
which leads to, among others, two major negative conse-
quences [8]. First, tenants’ expenses are increased, since data
center providers charge tenants based on the duration of a
request, which depends on networking as well as computing
resources; second, providers’ revenues get lowered, since un-
predictability impacts cloud applicability, and further limits the
adoption of data centers.

To provide networking guarantee, prior works [1, 8, 9] have
proposed several novel virtual network (VNet) abstractions that
allow tenants to explicitly specify networking as well as com-
puting demands. However, these researches have fallen into

two broad types: (i) only tree topologies are considered [1, 8],
contradicting the various dependencies among virtual machines
that are observed in practice; (ii) fixed resources are reserved
throughout the duration of a request [10–12], ignoring the
time-varying resource demands. Although these works make a
good start, they restricted the solution space at the expense of
limiting the practical applicability.

We observed that many virtual networks have time-varying
resource demands, as evidenced in prior studies [1–3]. To
exploit such variations, we propose a novel resource demand
model that allows a tenant to split the resource demand of
a virtual node or link into three parts: one basic part and
two variable parts. As shown in Section III, the probabilistic
combination of these parts makes it easy for a tenant to
control the trade-off between application performance and cost.
A tenant can adjust its resource demands according to its
expected application performance and budget.

Based on the proposed model, we study the problem of de-
ploying virtual networks with time-varying resource demands
to achieve high physical resource utilization, and propose a
work-conserving allocation algorithm, WCA. It includes two
stages: the global stage places virtual nodes in a first-fit
fashion, and places virtual links through path-splitting; the
local stage optimizes resource utilization in each physical node
or link, through opportunistically sharing physical resources
among multiple variable parts of resource demands. In doing
so, physical utilization can be improved, and more virtual
networks can be deployed concurrently. Our evaluation results
show that WCA achieves a 4% higher physical resource
utilization and rejects 18% less virtual network requests than a
state-of-the-art algorithm [4]. This paper makes the following
contributions:

(1) We propose a novel resource demand model for tenants
to flexibly control the trade-off between application per-
formance and cost.

(2) We design a work-conserving allocation algorithm for
virtual networks. WCA leverages tenant flexibility in
sharing multiple variable parts of resource demands.

(3) We demonstrate the efficiency and effectiveness of the
proposed algorithm through simulations.

The remainder of this paper is organized as follows. We
go over related work in Section II. Section III introduces the
proposed resource demand model and the generation strategy.
Problem formulation is presented in Section IV. We present
WCA in Section V. Before we conclude this paper in Sec-
tion VII, we perform evaluations in Section VI.

II. RelatedWork

Our work is related to resource allocation in clouds. The
capability of providing efficient resource allocation is central
to data centers. Virtualization multiplexes and shares physical
resources among tenants’ applications, which reduces energy
consumption, and finally translates into increased data center
revenues and decreased tenant expenses. Prior works [2, 13]
sought to minimize the number of running physical machines
through VM consolidation [14], which is often regarded as a
variant of the bin packing problem [15]. However, networking
guarantee was rarely considered. Virtual networks were then
proposed to allow tenants to specify their networking and
computing demands explicitly [1, 8, 9]. To provide scalable
network structure, recent studies [7, 16–18] developed several
high-performance and scalable data center architectures, e.g.,
VL2, Fat-tree, BCube, and DCell. Different from these works,
we study resource allocation with a focus on leveraging tenant
flexibility and achieving work-conserving allocations.

This paper is also related to previous works on network
virtualization [19]. A key challenge in this field is the virtual
network embedding problem, which deals with embedding
multiple virtual networks with resource constraints in substrate
networks, so as to efficiently utilize substrate resources. To
cope with its NP-completeness [20], meta-heuristic-based al-
gorithms are designed in [21]. The study of embedding with
unlimited substrate resources is conducted in [4], in which load
balancing and reconfiguration are also considered. Substrate
supports for path splitting and computation parallelization are
envisioned in [10] and [22], respectively. A subgraph iso-
morphism detection-based embedding algorithm is proposed
in [11]. Linear programming and deterministic/randomized
rounding-based algorithms are developed in [12] to deal with
virtual networks with location constraints. Comparatively, in
this paper, we design a novel model that captures the dynamic
resource demands and provides the flexibility of controlling
the trade-off between performance and cost to tenants.

III. The Proposed Resource DemandModel

A. Probabilistic Combination as Resource Demand

Tenants request resources in the form of VNets from data
center providers to install their applications/services. A VNet
is usually considered as a undirected graph, where nodes
represent computing resource demands and links represents
networking resource demands. The nodes and links in a VNet
are often called virtual nodes (VNs) and virtual links (VLs),
respectively. When receiving a VNet request, a data center
provider tries to map a VN and VL to a physical machine (PM)
and a physical path, respectively, while respecting capacity
constraints.

Tenants usually target potential end-users all over the
world, so it is extremely difficult to predict the trend of
workload changing. As the resource demand of a VNet at
a particular time is generally proportional to the amount of
workload at that time, it is also hard to forecast resource
demands in the future. In the other hand, the variability of a
virtual machine workload widely exists in modern data centers,
as shown in prior works [14]. And in a previous profiling
experiment [1], which measured networking traffic between
pairs of VMs in a data center, it was found that inter-VM

traffic also fluctuates over time. Therefore, we only explain the
computing resource demand model in the rest of this section;
the model can be applied to the networking resource demand
without any major changes.

We assume that the data center is based on logical parti-
tioning [23], i.e., the underlying physical resources are time-
multiplexed between different VMs, and time is partitioned
into slots of equal length. We denote the computing resource
demand of a VN v at time t by R(v, t), and assume it is the prob-
abilistic combination of three parts: a basic part R0(v, t), which
exists throughout the lifetime of the VN, and two variable
parts R1(v, t) and R2(v, t), which occur with probabilities of pv

1
and pv

2, respectively, i.e., R1(v, t) and R2(v, t) follow Bernoulli
distribution. More formally, R(v, t) = R0(v, t)+R1(v, t)+R2(v, t),
where R0(v, t) = rv

0, R1(v, t) v B(rv
1, p

v
1), and R2(v, t) v

B(rv
2, p

v
2). Thus, R(v, t) can be characterized by a tuple <

rv
0, r

v
1, p

v
1, r

v
2, p

v
2 >. Fig. 1 shows the probability distribution of

R(v, t).

R(v, t) rv
0 rv

0 + rv
1 rv

0 + rv
2 rv

0 + rv
1 + rv

2
P (1 − pv

1)(1 − pv
2) pv

1(1 − pv
2) (1 − pv

1)pv
2 pv

1 pv
2

Fig. 1. Probability distribution of R(v, t).

B. Model Generation Strategy

This subsection introduces how a tenant generates the tuple
< rv

0, r
v
1, p

v
1, r

v
2, p

v
2 > for each VN and VL in its VNet. There

are two challenges that we have to solve.

First, how to get the computing and networking usage
traces and guarantee them to be consistent with the realistic
deployment in data centers. We envision that the data cen-
ter providers offer profiling runs for tenants to obtain their
resource usage traces. Specifically, a tenant can tentatively
deploy its VNet request in a data center for a relatively short
time period; the data center provider collects the computing
and networking usages over time, and feeds them back to the
tenant.

Second, given the usage traces, how to generate an appro-
priate tuple for a VN or VL. We provide here a strategy for
a tenant to flexibly control the trade-off between application
performance and cost through tuning p1 and p2. It is better
to illustrate the strategy using an example. In Fig. 2, the solid
black curve shows the computing resource demand of a VN
over time, while the dashed red curve represents our model.
Given p1 and p2, we just have to find appropriate t1, ..., and
t12, such that:

(t10 − t9) + (t4 − t3)
t13 − t0

= p1 p2

(t3 − t2) + (t5 − t4) + (t9 − t8) + (t11 − t10)
t13 − t0)

= (1 − p1)p2

(t2 − t1) + (t6 − t5) + (t8 − t7) + (t12 − t11)
t13 − t0)

= p1(1 − p2)

After we have the values of t1, ..., and t12, we can easily
determine r0, r1, and r2. Denote by rdp(t) the resource demand
at time t. We have r1 = maxt(rdp(t)) − rdp(t3) and r2 = r1 +
rdp(t3) − rdp(t2).

time
Resource demand r0r1r2-r1Resource demand profile(r0,r1,p1,r2,p2) model

t1t0 t2t3 t4 t5 t6 t7 t8 t13
r1

t9 t10 t11 t12
Fig. 2. An example of the model generation strategy. The parameters can be
easily generated once p1 and p2 are specified.

C. Tenant Flexibility

This model provides great flexibility for tenants to control
trade-off between performance and cost through tuning p1 and
p2 for each VN and VL. If a tenant has plenty of funds and
only cares about performance, the tenant can set p1 = p2 = 0
for all VNs and VLs; otherwise, the tenant can adjust p1 and p2
to best suit its performance/cost objective. Overall, if a tenant
wants to maximize its VNet performance, p1 and p2 should be
small; if a tenant wants to minimize the placement cost that a
cloud provider may charge him/her, p1 and p2 should be large.

Besides tenant flexibility, the proposed model exhibits
some other desirable properties. First, traditional models can
be seen as special cases of our model, i.e., when p1 = p2 = 0
and r0 equals the peak demand. It ensures that our system
is backwards-compatible with the other forms of resource
demands, e.g., virtual data center [9], and virtual cluster [8].
Second, our model is also a tradeoff between modeling com-
plexity and precision. When the number of parts in our model
(currently 3) increases, the model precision increases, and
hence, can express the realistic resource demands more accu-
rately. However, the complexity in generating the model, not
surprisingly, increases as well, which also greatly complicates
the interactions between data center providers and tenants.

One limitation of our model is that, modeling generation
incurs some profiling overhead and seems to be impractical
in today’s data center business architectures; however, this
overhead can be drastically reduced if tenants have to reserve
resources for the same type of VNets repeatedly and lastingly.
For example, about 40% of applications are recurring in Bing’s
production data center [24]. For the same type of VNets, the
data center provider only needs to offer one profiling run, and
the same results could be fed back to tenants who want to
deploy that type of VNet. In doing so, the profiling overhead
for data center providers is greatly reduced.

IV. Problem Statement

VNet. A VNet is denoted by a weighted undirected graph,
VNet = (V, E). V is the set of virtual nodes (VNs); E
is the set of virtual links (VLs). Each VN v is associated
with a computing resource demand R(v, t), and each VL e
is associated with a networking resource demand R(e, t). The
lifetime or duration of a VNet is denoted by lt. The left of
Fig. 3 shows two examples of VNets.

Physical network. The cloud physical network is modeled
as a weighted undirected graph, G = (V p, Ep), where V p

a

c b

Physical network G

A

H

C

F E

20

20

B

15

15

20

302030

DJ

30

30

20

15
20

25

20

15
15

20

gfe

VNet1
VNet2

a b

c

e f

g

Fig. 3. Examples of VNets and physical network. The dashed red lines
indicate a possible placement of the two VNets. For example, VN b is placed
in PM B; VL (e, f) is placed in PL (B,C).

denotes the set of PMs, and Ep denotes the set of physical links
(PLs). The computing resources in a PM n ∈ V is denoted by
C(n). A PL ei j connects two PMs ni and n j, i.e., ei j = (ni, n j).
The networking resources in a PL ei j = (ni, n j) ∈ E is denoted
by B(e). We use P(ni, n j) to represent the set of loop-free phys-
ical paths between ni and n j. We also denote by P the set of all
loop-free paths in the physical network. For example, in Fig. 3,
there are 4 loop-free paths between B and J in the physical net-
work, i.e., P(B, J) = {BAJ, BJ, BCDFHJ, BCDEFHJ}. Fig. 4
summarizes the main notations in this paper for reference.

Resource allocation. Following existing work [9, 10, 12],
we assume that one VN maps to one PM. When a tenant
prefers to deploy multiple VNs in one PM, we treat all these
VNs as one large VN by summing up their resource demands.
The placement of a VNet can be decomposed into two phases,
namely, VN mapping and VL mapping. The VN mapping phase
MV : V → V p maps a VN to a PM; the VL mapping
ME : E → P maps a VL to a set of loop-free physical paths.
Fig. 3 shows a placement of the two VNets. For example, the
VN mapping for VNet1 is {a → A, b → B, c → J}, and the
VL mapping is {(a, b) → {(A, B)}, (b, c) → {(B, J)}, (c, a) →
{(J, A)}}.

Collision threshold. Since different VNets are operated by
different tenants and offer different services, it is reasonable to
assume that the resource demands of VNs from different VNets
are mutually independent. To maximize the resource utiliza-
tion, we propose to share physical resources opportunistically
among multiple variable parts of resource demands. However,
capacity violations accompany sharing: when more than one
variable part occurs simultaneously, a violation happens. To
provide probabilistic performance guarantee, a cloud provider
should at least bound the maximum collision probability. We
denote this threshold by pth. For example, in Fig. 3, VN
b from VNet1 and VN e from VNet2 are placed on the
same PM. Suppose that R(b, t) =< 8, 1, 0.1, 2, 0.1 > and
R(e, t) =< 6, 1, 0.2, 2, 0.2 >. If resource sharing is not exploited
as in prior studies, these two VNs would occupy a total of 20
units of resources on PM B. However, when resource sharing
is allowed, and we assume that the cloud provider guarantees
that pth = 0.1; since pb

1 · pe
1 = pb

2 · pe
2 = 0.1 × 0.2 = 0.02 < pth,

we only have to allocate 3 units of resources to the variable
parts of resource demands. We find that, in this way, they only
occupy a total of 8 + 6 + 3 = 17 units of resources on B.

Notation Meaning
VNet = (V, E) a virtual network

R(v, t) the resource demand of a VN v
lt the lifetime of a VNet

G = (V p, Ep) the physical network
C(n) capacity of PM n in terms of computing resources
B(e) capacity of PL e in terms of networking resources

AC(n) the available computing resources in PM n
AB(e) the available networking resources in PL e

P(ni, n j) the set of loop-free paths between PMs ni and n j
pth collision threshold

Fig. 4. Summary of main notations in this paper.

Objective. This paper focuses on designing an allocation
algorithm for placing VNets that arrive and depart one by
one over time. Upon the arrival of a VNet request, the
allocation algorithm must decide whether or not accept it.
Batch processing is not the focus of the paper.

Our goal is to maximize the cloud provider’s revenue
through efficiently utilizing physical resources. Following prior
research [3, 10, 12], the revenue of embedding a VNet should
be proportional to both the amount of allocated resources and
its lifetime lt. Therefore, it can be defined as follows:

R(VNet) = [α
∑
n∈V

(rn
0 + pn

1rn
1 + pn

2rn
2)+β

∑
e∈E

(re
0 + pe

1re
1 + pe

2re
2)] · lt

(1)
where α and β are the weights for cloud providers to control
the trade-off between utilizing computing and networking
resources. Therefore, the total revenue of a cloud provider can
be denoted by

∑
VNet R(VNet). To maximize it, the physical

resources must be efficiently utilized, and VNets must be
properly placed. We formally define our problem below.

Problem 1: (VNet Placement Problem) Given a physical
network G = (V p, Ep) and a VNet = (V, E), find a placement
for the VNet to maximize the cloud provider’s revenue while
respecting capacity constraints.

V. The Solution

A. Overview

We provide an overview of our work-conserving allocation
algorithm, namely, WCA, which leverages tenant flexibility
to improve physical resource utilization through opportunistic
sharing. In general, WCA consists of two stages: the global
and local stages. The global stage produces the mapping from
VNs and VLs to PMs and physical paths, respectively; the
local stage deals with resource sharing in each PM and PL.

Concretely, in the global stage, we sort VNs in the de-
scending order of their respective expected resource demands.
Then, we place each VN in that order in the unused PM
with the most residual resource. This kind of “maximum-first”
placement fashion has several advantages, e.g., it is beneficial
to future VNets that may request some kind of bottleneck
resource. After all VNs have their destinations, we proceed to
map VLs to physical paths. For each VL, we try to map it to
the shortest path with sufficient networking resource between
the PMs that the two endpoint VNs of the VL are placed in.
If we cannot find such a path, we then divide the networking
demand of the VL into two equal portions, and map them

Algorithm 1 WCA
Require: G = (V p, Ep), VNet = (V, E)

1: Q← sorted V with decreasing (rv
0 + rv

1 pv
1 + rv

2 pv
2)

2: Qp ← sorted V with increasing AC(n)
3: for i = 1 to Q.length do
4: for increasing j, map Q[i] to the first Qp[j] if Shar-

ingFeasibility(Qp[j],Q[i]) returns true
5: end for
6: Qe ← sorted E with decreasing (re

0 + re
1 pe

1 + re
2 pe

2)
7: for h = 1 to Qe.length do
8: for splitRaio = 1 to K do
9: G′ ← GetReducedGraph(G, R(Qe[h],t)

splitRatio)
10: if Qe[h]’s end-hosts are connected in G′ then
11: map Qe[h] to the shortest path(s) between
12: the two end-hosts, and break
13: end if
14: end for
15: if splitRatio > K return false
16: end for
17: return true

separately. If such paths cannot be found again, we continue to
split the demand into three equal portions; however, we restrict
the number of portions to be no more than K for efficiency
concerns.

In the local stage, we seek to minimize the amount of
physical resource used for placing multiple variable parts of
resource demands. Through sharing physical resource between
multiple variable parts of demands, the resource allocation
becomes work-conserving. Given multiple variable parts of
resource demands and collision threshold pth, we must decide
how to divide the variable parts of demands into groups, such
that the capacity violation probability in each group is no more
than the threshold. We formulate this problem as a variant
bin-packing problem [15], except that the bin size is now the
collision threshold.

B. The Global Stage

We denote by AC(n) and AB(e) the available resource
of PM n and PL e, respectively. The global stage of WCA
includes two phases, i.e., VN and VL mapping, as shown
in Alg. 1. In the VN mapping phase (lines 1–5), we sort
VNs in the descending order of their respective expected
computing resource demands, i.e., (rv

0 + rv
1 pv

1 + rv
2 pv

2), and
sort PMs in the ascending order of their respective available
resources. VN Q[i] is mapped to the first Qp[j] if the local
stage algorithm SharingFeasibility(Qp[j],Q[i]) returns true.
SharingFeasibility handles local resource sharing in each PM
and PL. For simplicity of presentation, we omit the failure
detection in the pseudocode shown in Alg. 1: if there are not
enough computing resources, the VNet would be rejected. The
reason for sorting PMs and VNs is implicit, if somewhat subtle:
VNs with larger resource demands are more difficult to map.
In the case that we cannot find an appropriate PM for a VN,
we can fail faster and switch to the next VNet. Sorting also
helps us to minimize the number of running PMs and cut down
data center energy consumption via turning off idle PMs.

In the VL mapping phase (lines 6–16), we sort VLs in
the descending order of their respective expected networking

r0v1=30 r1v1=20r1v2=15 r0v2=20 AC(PM)=20r2v1=10r2v2=10
(a) An example of a PM stater0v1 r0v2 S1 S2 AC(PM)Si

(b) The general case of a PM state

Fig. 5. An example and the general case of the resource allocation state of
a PM, where the collision threshold pth is 0.1.

demands for the same reason as above, and map a VL Qe[h] to
the shortest physical path with sufficient networking resource
between the PMs that the two endpoint VNs of the VL are
placed in. If such a physical path does not exist, i.e., Qe[h]’s
end-hosts are disconnected in the reduced graph G′, which is
obtained by removing physical links that cannot accommodate
Qe[h] from G. We then split the resource demand of Qe[h] into
two equal portions and try to map them to the shortest paths
in a new reduced graph. We repeat this kind of split-and-map
process at most K times for computational efficiency concerns.

C. The Local Stage

It is better to illustrate how physical resources are shared
using an example. Fig. 5(a) shows the current resource al-
location state of a PM, which has 100 units of computing
resources in total, and hosts two computing resource demands:
< 30, 20, 0.4, 10, 0.3 > from v1 and < 20, 15, 0.2, 10, 0.1 >
from v2. The collision threshold pth is 0.1. Since 0.4 × 0.2 =
0.08 < 0.1, we let the first variable parts of v1 and v2 share
max(rv1

1 , r
v2
1) = 20 units of computing resources; similarly, the

second variable parts of v1 and v2 share another 10 units of
computing resources, as shown in the figure.

Now we want to check whether a third demand <
20, 15, 0.3, 5, 0.1 > from v3 can be placed in this PM. We
see that the amount of available resource AC(PM) is enough
to host the basic part, which is 20 units. However, is it feasible
for the first variable part of v3 to share the 20 units of
computing resources with v1 and v2? The answer is negative,
since the collision probability is 0.212, which is larger than
0.1. Therefore, the third demand cannot be placed in the PM.
Fig. 5(b) shows the general case of a PM state, where S i
denotes the set of variable parts of resource demands that share
max(rv

k ∈ S i) units of computing resources. We denote the
general state of a PM by < rv1

0 , ..., r
vn
0 , S 1, ..., S m, AC(PM) >.

Given multiple variable parts of resource demands and col-
lision threshold pth, we must decide how to divide the variable
parts of demands into groups, such that the capacity violation
probability in each group is no more than the threshold. We
formulate this problem as a variant bin-packing problem [15],
except that the bin size is now the collision threshold. First-
fit is an approximation algorithm with a factor of 2 for bin-
packing. First-fit attempts to place an item to the first bin that
can accommodate the item; if this is not possible, the item is
places into a new bin. We applying the core idea of first-fit
to our problem. As we deal with the online case, it is enough
to show: given a PM state and a computing resource demand,
whether is it feasible for us to place the demand in the given
PM?

Algorithm 2 SharingFeasibility(PM p,VN v)
Require: PM state < rv1

0 , ..., r
vn
0 , S 1, ..., S m, AC(p) >, and a

computing resource demand < rv
0, r

v
1, p

v
1, r

v
2, p

v
2 >

1: if AC(p) < rv
0 return false

2: AC(p)← AC(p) − rv
0

3: j← 1
4: for i = 1 to m do
5: if Pr(S i ∪ {rv

j}) ≤ pth
6: di f f ← rv

j − max(rv
k ∈ S i)

7: if di f f > 0
8: AC(p)← AC(p) − di f f
9: S i ← S i ∪ {rv

j}
10: j← j + 1
11: if j > 2 return true
12: end for
13: if j == 1 & AC(p) > rv

1 + rv
2

14: AC(p)← AC(p) − rv
1 − rv

2
15: return true
16: if j == 2 & AC(p) > rv

2
17: AC(p)← AC(p) − rv

2
18: return true
19: return false

Alg. 2 shows the sharing feasibility checking algorithm.
The inputs include a PM state and a computing resource
demand. In lines 1–2, we checks whether there is enough re-
sources for the basic part rv

0; in lines 3–12, SharingFeasibility
tries to map rv

1 and rv
2 to existing resource blocks. Here, a first-

fit-based strategy to search an existing resource block that can
accommodate rv

1 in terms of capacity violation probability (line
5). Denote by Pr(S i) the capacity violation probability of a set
S i of variable parts of resource demands, which is defined as

Pr(S i) = 1 −
∏

r
v j
h ∈S i

(1 − pv j

h) −
∑

r
v j
h ∈S i

(pv j

h

∏
rvk

h ∈S i,k,i

(1 − pvk
h))

(2)

where h = 1 or 2. When such a block is found, we may need
to resize the block (lines 6–8) and continue to find another
existing block for rv

2. Here, we emphasize that rv
1 and rv

2 are
dependent, and hence they cannot be mapped to the same
existing block. In lines 13–18, SharingFeasibility then tries
to allocate new resources from AC(p) to the one (or even two)
variable parts.

SharingFeasibility linearly scans resource blocks in a P-
M, and it costs O(Cm) time, where Cm = maxn∈V p (C(n)).
The time complexities of sorting VNs, PMs, and VLs are
O(|V |log|V |), O(|V p|log|V p|), and O(|Ep|log|Ep|), respectively.
The VN mapping phase takes O(|V ||V p|Cm) time. The func-
tion GetReducedGraph takes O(|Ep|Cm) time; breadth-first-
search for checking connectivity costs O(|V p| + |Ep|) time;
Dijkstra shortest path algorithm [25] takes O(|Ep|)log(|V p|))
time; hence, the VL mapping phases take O(K|E|(|Ep|Cm +
|V p|+ |Ep|+ |Ep|log(|V p|))) = O(K|V |2||V p|2(Cm+ log|Vp|)) time.
Here we have simplified the summations by using |E| = O(|V |2)
for any simple graph. And the overall time complexity of WCA
is O(K|V |2|V p|2(Cm + log|V p|)).

D. Discussions

We summarize this section by providing a few imple-
mentation issues. As discussed in [9], we may choose to

adopt source routing as its routing strategy. Since, otherwise,
switches have to maintain bandwidth reservation states and
MAC address tables, which impacts the scalability of WCA.
To enforce bandwidth reservations, hypervisors and switches
should perform the rate limiting function.

To further improve the computational efficiency of Shar-
ingFeasibility, we can partition the resource in a PM or a PL
into multiple elementary blocks of equal size, each of which
should be taken as a whole (thus cannot be partitioned into
even smaller pieces) in the resource allocation process. How-
ever, this may reduce physical resource utilization, providing
a trade-off for system designers. The maximum number of
repetitions, i.e., K, should be kept small, both for computation-
al concerns and resource utilization. Because the overhead in
the packet header also increases when the number of portions
increases.

Recall that SharingFeasibility is invoked whenever we
want to check whether a given resource demand can be
embedded in a PM or PL. In fact, we can conservatively round
pv

1 and pv
2 to several fixed values, then enumerate all of the

possible combinations of these fixed values. In doing so, the
invoking of SharingFeasibility is reduced to looking up in a
predetermined table, making WCA more efficient and scalable.

The resource type in our algorithm is one-dimensional,
and here we outline its adaption to the scenario of multi-
dimensional resources. There are two cases: correlated and
independent resources. The former case can be easily solved
by transforming them into one-dimensional compositive re-
sources, while, in the latter case, we can run our algorithm
for each type of resource separately. For the off-line and
batch arrival scenarios, we only have to sort VNs in the
descending order of their total resource demands, and then
allocate physical resources to them sequentially.

One of our previous studies envisions substrate support for
parallelization [22], i.e., data centers support parallel com-
putation and allows a VN to be mapped to multiple PMs.
Parallelization not only enables data centers to achieve higher
resource utilizations through making efficient use of frag-
mented physical resources, but also makes data centers more
reliable, since computation tasks can quickly migrate to other
PMs in the case that a PM crashes. We leave incorporating
parallelization support into WCA as future work.

VI. Evaluation

In this section, we provide the evaluation results of the
proposed algorithm and make some remarks.

A. Simulation Setup

We use simulations to study the performance of the pro-
posed algorithm. All the experiments are performed on a
Lenovo T410RT5 PC with two 2.67Hz Intel i7 CPUs and 4G
memory. The simulation settings follow prior work [3, 10, 12].
The physical network contains 60 PMs. Each pair of them is
connected with a probability of 0.3. The capacity of every PM
is 100 units of CPU, and the capacity of every PL is 100 units
of bandwidth. By default, the threshold of capacity violation
probability pth is set to 0.2.

The number of VNs in a VNet is determined by a uniform
distribution between (Avg−4) and (Avg+4), where Avg denotes
the average VNet size. Each pair of VNs are also connected
with a probability of 0.3. We also check whether the physical
network and VNet topologies are connected; if not, we just
regenerate them until they are connected. The peak resource
demand of a VN or a VL is randomly chosen between 20
and HR, where HR denotes the high bound. Recall that our
resource demand model allows a tenant to control its trade-off
between application performance and cost through tuning p1
and p2. By default, p1 = 0.3, and p2 = 0.1. The lifetime of
each VNet is assumed to be exponentially distributed with an
average of 300 seconds. The arrivals of VNets are modeled
as a Poisson process with parameter λ. By default, Avg = 6,
HR = 30, λ = 1/12 seconds, and the maximum number of
portions that a networking resource demand can be divided
into is 3. Fig. 6 summarizes main simulation parameters and
their values by default.

Notation and its
value by default

Definitions

K = 3
the maximum number of portions that
a networking demand can be split into

λ = 1/12
the average interval between two

consecutive VNets’ arrivals
pth=0.2 collision threshold
Avg=6 the average number of VNs in a VNet
HR=30 the maximum resource demand of a VN or VL
p1=0.3 the occurring probability of the 1st variable part
p2=0.1 the occurring probability of the 2nd variable part

Fig. 6. Simulation parameters and their values by default.

B. Simulation Results

We compare the proposed allocation algorithm with G −
S P [4], which does not share physical resources between
resource demands, and adopts a similar heuristic as ours to
deal with VN and VL mappings. The performance metrics we
use for comparison include: rejection ratio, which is the ratio
of the number of rejected VNets to all VNets; reserved CPU
ratio, which is the ratio of the amount of reserved comput-
ing resources to the total computing resources; and reserved
bandwidth ratio, which is the ratio of the amount of reserved
networking resources to the total networking resources.

Fig. 7(a) shows the comparison results of rejection ratio
between WCA and G-SP. We observe that the rejection ratio
of WCA first increases, then reaches its stable value after
15 minutes. This is because the data center is empty and
has plenty of resource at first, since we begin to generate
VNets from time 0. We note that WCA achieves a up to 4%
higher physical resource utilization and rejects up to 18% less
VNets than G-SP, implying that opportunistic resource sharing
improves physical resource utilization efficiency.

The comparison results of reserved CPU and bandwidth
ratios are shown in Figs. 7(b) and (c), respectively. Generally
speaking, WCA reserves more resources than G-SP most
of the time, indicating that WCA achieves a higher CPU
resource utilization. In both figures, we notice an interesting
observation: G-SP reserves more resources than WCA during
the first ten to fifteen minutes. To understand this, we only

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 5 10 15 20 25 30 35 40 45 50

R
e
je

c
ti
o
n
 r

a
ti
o

Time (minutes)

WCA

G-SP

(a) Percentage of rejected requests

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30 35 40 45 50

R
e
s
e
rv

e
d
 C

P
U

 r
a
ti
o

Time (minutes)

WCA

G-SP

(b) Reserved CPU resource

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 5 10 15 20 25 30 35 40 45 50

R
e

s
e
rv

e
d

 b
a
n

d
w

id
th

 r
a
ti
o

Time (minutes)

WCA

G-SP

(c) Reserved bandwidth resource

Fig. 7. Performance comparison between WCA and G-SP [4].

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 10 20 30 40 50 60 70 80 90

R
u
n

n
in

g
 t

im
e
 (

m
s
)

Number of VNs (VNet size)

 WCA

(a) Running time with varying VNet size

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 5 10 15 20 25 30 35 40 45 50

R
e
je

c
ti
o

n
 r

a
ti
o

Time (minutes)

K=1

K=3

K=5

(b) Impact of K

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 5 10 15 20 25 30 35 40 45 50

R
e
je

c
ti
o

n
 r

a
ti
o

Time (minutes)

λ=1/6

λ=1/12

λ=1/18

λ=1/24

(c) Rejection ratio with varying λ

Fig. 8. The running time of WCA, and the impact of K and λ.

have to know, given a fixed number of VNets, WCAreserves
less resources than G-SP.

Fig. 8(a) demonstrates the running time of WCA with a
varying number of VNs in a VNet, where we set the number
of PMs to be 100. For a VNet with 90 VNs, we can perform
the deployment within 1.6 seconds. The result shows that the
deployment time only grows linearly with the number of VNs,
which shows the scalability of the proposed algorithm.

We are also interested in the impact of some parameters,
including K, λ, pth, Avg, HR, p1, and p2. We run simulations
with one of the parameters in Fig. 6 varying while keeping the
other parameters to be their respective by-default values.

Fig. 8(b) shows the comparison results when K takes
three different values. Not surprisingly, as K increases, a VL
resource demand can be split into more portions, each of
which becomes easier to be placed, hence, the rejection ratio
decreases. We note that K also provides a tradeoff between
resource utilization and computational overhead, since path
splitting incurs additional packet headers. We also observe that,
when data center load is slight (e.g., the first ten minutes),
three settings perform almost the same, due to the plethora of
networking resources.

Fig. 8(c) shows how WCA performs under different loads.
The Poisson process parameter λ is used to control the deploy-
ing load. Generally speaking, when λ increases, the rejection
ratio also goes up. The main reason is that, as λ goes up,
the expected time interval between two consecutive VNets’
arrivals, which equals 1/λ, becomes shorter; thus, more VNets
will arrive in a fixed period of time.

Fig. 9(a) illustrates the impact of pth on rejection ratio.
When pth increases, the rejection ratio decreases. This is
reasonable, because a large pth allows physical resources to be

shared among more variable parts of resource demands than
small ones.

We then keep the probability of two VNs connecting un-
changed, and investigate the impact of VNet size on rejection
ratio, shown in Fig. 9(b). As a whole, when the size of a
VNet increases, its resource demand also becomes larger, and
the rejection ratio hence goes up. For example, at time 50,
the rejection ratios of Avg = 6, Avg = 12, and Avg = 18 are
0.49, 0.75, and 0.83, respectively. Fig. 9(c) shows the impact
of HR, where the rejection ratio of HR = 30 is the smallest.
When we enlarge HR, the resource demand of a single VN
or VL increases on average, hence the total resource demands
of a VNet also increase, which makes it more difficult for the
physical network to accept upcoming VNets.

Fig. 10 shows the rejection ratio of WCA against varying
p1 and p2. The proposed demand model exposes choice of
parameters to tenants. We notice that, as expected, when
p1 and p2 become larger, WCA rejects less VNets. This is
because, when p1 and p2 become larger, it is more likely that
a larger portion of resource demands would become variable
parts. However, we note that, when the occurring probabilities
of variable parts of resource demands increase, the average
number of variable parts that can share the same amount
of physical resources would decrease. The rejection ratios
of four different settings of p1 and p2 demonstrate that our
model indeed allows tenants to control the trade-off between
performance and cost, and thus choose parameters to best suit
their objectives.

In summary, WCA performs well and exhibits good scala-
bility in a variety of settings. Sharing resources opportunisti-
cally and path splitting improve resource utilization. We wish
our simulation will provide some potential guidelines for the
future design of such algorithms.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 5 10 15 20 25 30 35 40 45 50

R
e
je

c
ti
o
n
 r

a
ti
o

Time (minutes)

pth=0.1
pth=0.2
pth=0.3

(a) Rejection ratio with varying pth

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 5 10 15 20 25 30 35 40 45 50

R
e
je

c
ti
o
n
 r

a
ti
o

Time (minutes)

Avg=6
Avg=12
Avg=18

(b) Rejection ratio with varying Avg

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 5 10 15 20 25 30 35 40 45 50

R
e
je

c
ti
o
n
 r

a
ti
o

Time (minutes)

 HR=30

 HR=40

 HR=50

(c) Rejection ratio with varying HR

Fig. 9. Sensitivity analysis: the impact of pth, Avg, and HR.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 5 10 15 20 25 30 35 40 45 50

R
e

je
c
ti
o
n

 r
a
ti
o

Time (minutes)

p1=0.7,p2=0.5
p1=0.5,p2=0.3
p1=0.3,p2=0.1

p1=0,p2=0

Fig. 10. The impact of varying p1 and p2.

VII. Conclusion

In this paper, we study the problem of placing virtual
networks with time-varying resource demands, and we pro-
pose a novel resource demand model that allows a tenant to
flexibly control the trade-off between application performance
and cost. Leveraging such flexibility, the proposed algorithm
WCA achieve work-conserving resource allocation, and thus
improves physical resource utilization through resource sharing
and path splitting. Simulation results demonstrate the effective-
ness and efficiency of our model and algorithms.

In retrospect, our work leaves several issues open for
future research. While we are limited to modeling the resource
demand of a VN or VL as a probabilistic combination of
three parts, we do not know whether cyclic resource demand
patterns exist. Another open problem is to incorporate live
migration and parallelization support into WCA. We are also
going to improve the proposed solution through exploiting
the unique features of data center networks, e.g., topology
regularity, application behavior, and so on.

Acknowledgements
We thank the ICCCN reviewers for feedback on earlier drafts of the paper.

This work was supported in part by NSFC Grants (61073028, 61202113,
61321491, and 91218302), Key Project of Jiangsu Research Program Grant
(BE2013116), Jiangsu NSF Grant (BK2011510), Research and Innovation
Program for Jiangsu Graduates Grant (CXZZ12 0055), Program A for
Outstanding PhD candidate of Nanjing University (201301A08), HUAWEI
Project (YBIN2011056), US NSF grants (ECCS 1128209, CNS 1065444, CCF
1028167, CNS 0948184, and CCF 0830289), and EU FP7 IRSES MobileCloud
Project Grant (612212).

References
[1] D. Xie, N. Ding, Y. C. Hu, and R. Kompella, “The only constant is

change: incorporating time-varying network reservations in data centers,”
in ACM SIGCOMM 2012.

[2] M. Wang, X. Meng, and L. Zhang, “Consolidating virtual machines with
dynamic bandwidth demand in data centers,” in IEEE INFOCOM 2011.

[3] S. Zhang, Z. Qian, J. Wu, S. Lu, and L. Epstein, “Virtual network
embedding with opportunistic resource sharing,” IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 3, pp. 816–827, March 2014.

[4] Y. Zhu and M. Ammar, “Algorithms for assigning substrate network
resources to virtual network components,” in IEEE INFOCOM 2006.

[5] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica et al., “A view of cloud
computing,” CACM, vol. 53, no. 4, pp. 50–58, 2010.

[6] S. Kim, D. Kim, S. Kim et al., “Method and architecture for virtual
desktop service,” 2013, US Patent 20,130,007,737.

[7] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: a scalable and flexible
data center network,” in ACM SIGCOMM 2009.

[8] H. Ballani, P. Costa, T. Karagiannis, and A. I. Rowstron, “Towards
predictable datacenter networks.” in ACM SIGCOMM 2011.

[9] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and
Y. Zhang, “Secondnet: a data center network virtualization architecture
with bandwidth guarantees,” in ACM CoNEXT 2010.

[10] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: substrate support for path splitting and migration,” ACM
SIGCOMM CCR, vol. 38, no. 2, pp. 17–29.

[11] J. Lischka and H. Karl, “A virtual network mapping algorithm based on
subgraph isomorphism detection,” in ACM VISA 2009.

[12] M. Chowdhury, M. Rahman, and R. Boutaba, “ViNEYard: Virtual net-
work embedding algorithms with coordinated node and link mapping,”
IEEE/ACM TON, vol. 20, no. 1, pp. 206–219, 2012.

[13] D. Breitgand and A. Epstein, “Improving consolidation of virtual ma-
chines with risk-aware bandwidth oversubscription in compute clouds,”
in IEEE INFOCOM 2012.

[14] W. Vogels, “Beyond server consolidation,” Queue, vol. 6, no. 1, pp. 20–
26, 2008.

[15] V. V. Vazirani, Approximation Algorithms. Springer, 2003.
[16] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data

center network architecture,” in ACM SIGCOMM 2008.
[17] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and

S. Lu, “BCube: a high performance, server-centric network architecture
for modular data centers,” in ACM SIGCOMM 2009.

[18] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “Dcell: a scalable
and fault-tolerant network structure for data centers,” in ACM SIGCOMM
2008.

[19] N. Chowdhury and R. Boutaba, “A survey of network virtualization,”
Computer Networks, vol. 54, no. 5, pp. 862–876, 2010.

[20] D. G. Andersen, “Theoretical approaches to node assignment,” Dec.
2002, Computer Science Department, Carnegie Mellon University.

[21] R. Ricci, C. Alfeld, and J. Lepreau, “A solver for the network testbed
mapping problem,” ACM SIGCOMM CCR, vol. 33, no. 2, pp. 65–81,
2003.

[22] S. Zhang, J. Wu, and S. Lu, “Virtual network embedding with substrate
support for parallelization,” in IEEE Globecom 2012.

[23] T. L. Borden, J. P. Hennessy, and J. W. Rymarczyk, “Multiple operating
systems on one processor complex,” IBM Systems Journal, vol. 28, no. 1,
pp. 104–123, 1989.

[24] S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu, I. Stoica, and J. Zhou,
“Re-optimizing data-parallel computing,” in USENIX NSDI 2012.

[25] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd ed. The MIT Press.

