Ying Dai

INTRODUCTION

System Model

OVERVIEW
Core-only
Structure
CLUSTER-CORI
Structure

SIMULATIONS

CONCLUSIONS

HITCHHIKING IN COGNITIVE RADIO NETWORKS: SPECTRUM SENSING ASSISTED BY CORES AND CLUSTERS

Ying Dai and Jie Wu

Department of Computer and Information Sciences, Temple University

Ying Dai

INTRODUCTION

System Model

- OVERVIEW CORE-ONLY
- Structure Cluster-core
- Structure
- SIMULATIONS
- Conclusions

MOTIVATION

- Spectrum sensing in Cognitive Radio Networks (CRNs): protect primary users
- Accuracy requirement + extra time cost
- Question: Can we reduce the sensing cost by having nodes help each other?

Total channel set: {m1, m2, m3}

Ying Dai

INTRODUCTION

System Model

- OVERVIEW CORE-ONLY STRUCTURE
- CLUSTER-CORE
- STRUCTURE
- SIMULATIONS
- Conclusions

MOTIVATION

- Hitchhiker: A node can make use of other nodes' most recent sensing results to benefit its current sensing.
 Two dimensions: location, time.
- Potential extra time cost during the information exchange among nodes may be harmful.
- Our solution: Cores and Clusters!

Ying Dai

INTRODUCTION

System Model

- OVERVIEW
- Core-only Structure Cluster-core Structure
- SIMULATIONS
- CONCLUSIONS

OVERVIEW

- The phase before spectrum sensing happens: How to select channels for sensing in CRNs.
- Our goal: Reduce the total number of channels that a node needs to sense before finding an available one.
- Core structure: Each node designates a neighbor or itself as its core, and can gain help for the spectrum sensing phase.
- Extension: A 2-layer structure of both clusters and cores, and the corresponding spectrum sensing scheme.

Ying Dai

INTRODUCTION

System Model

- OVERVIEW
- Core-only Structure
- Cluster-core Structure
- SIMULATIONS
- CONCLUSIONS

CORE CONSTRUCTION

- Information exchange with neighbors.
 Available channel set.
- Weight Calculation.

 \circ For a node v, the weight of it is: $W_v = \sum_u |M_u \cap M_v|,$ $\forall u \in N_v.$

• Core designation.

Ying Dai

INTRODUCTION

System Model

OVERVIEW

Core-only Structure

Cluster-core Structure

SIMULATIONS

CONCLUSIONS

An example:

u	v	w	x	у	Z	s
{1,2}	{1,2,3}	{2,3}	{1}	{1,2}	{3}	{1,2}
4	7	1	1	2	1	2

$$d_u = \{w, x\}, \ d_v = \{u, y, s, z, v\}.$$

Ying Dai

INTRODUCTION

System Model

OVERVIEW

Core-only Structure

Cluster-core Structure

SIMULATIONS

CONCLUSIONS

Spectrum Sensing With Cores

The help gained from the core is the channel list, which sorts the channel according to their available probability.

- On the node side: Pull, Sense, Transmit, Push.
- On the core side: Return, Update.

Ying Dai

INTRODUCTION

System Model

- OVERVIEW
- Core-only Structure
- Cluster-core Structure
- SIMULATIONS
- CONCLUSIONS

CORE EVOLUTION

- What if a node designates a wrong core?
 - \circ The node and its core do not share the similar channel availabilities.
- The core evolution is necessary to fix this situation.
- But... How?

 \circ We need to find a way to evaluate the assistance provided by the core.

Ying Dai

INTRODUCTION

System Model

- OVERVIEW
- Core-only Structure

Cluster-core Structure

SIMULATIONS

CONCLUSIONS

CORE EVOLUTION

- The basis for core updates:
- For a node u and its core v ($v = c_u$), u needs to update c_u if and only if $A_{uv} > A_u$.

 $\circ \; A_{uv}$ is the estimated average number of channels to sense if u receives assistance from v.

 $\circ A_u$ is the estimated average number of channels to sense if u senses itself u and gains no assistance from others.

Ying Dai

INTRODUCTION

System Model

OVERVIEW

Core-only Structure

Cluster-core Structure

SIMULATIONS

CONCLUSIONS

CORE EVOLUTION

- The evaluation is performed on the core side.
 - $\,\circ\,$ A node is unable to evaluate since it always senses based on the core's information.
- Compare the performance with and without core's information.

• The core considers the virtual situation that if the node sends a request now, rather than pushing back its current channel information.

Ying Dai

CORE EVOLUTION

INTRODUCTION

System Model

OVERVIEW

Core-only Structure

Cluster-core Structure

SIMULATIONS

Conclusions

Core reselection:

- After a node identifies its core needs to be reselected, it reselects a new core.
- Simply reselect from its remaining neighbors aside from the wrong core.
- Advantage of core structure: Easy to propagate!

Ying Dai

INTRODUCTION

System Model

- Overview Core-only Structure Cluster-cor Structure
- SIMULATIONS
- CONCLUSIONS

CLUSTER-CORE MOTIVATION

- Motivation: In a sparse network, the average help provided by each core is limited.
- To increase the performance, what about having more nodes in a longer distance share information?
- Cluster-core structure: Build clusters on top of the cores.

Ying Dai

INTRODUCTION

System Model

- OVERVIEW CORE-ONLY
- Structure
- Cluster-core Structure
- SIMULATIONS
- CONCLUSIONS

CLUSTER-CORE CONSTRUCTION

- Select cluster heads from current cores, using similar weight definition as for core selections.
 - $\circ WC_v = \sum_u |M_u \cap M_v|, \, \forall u \in NC_v.$
 - \circ NC_v: the set of v's neighbor cores.
- An example of the mixed cluster-core structure is:

Ying Dai

INTRODUCTION

System Model

Overview Core-only Structure Cluster-core Structure

SIMULATIONS

CONCLUSIONS

CLUSTER-CORE CONSTRUCTION

We applies the classical cluster head selection algorithm here:

- 1 All cores are initially uncovered;
- An uncovered core becomes a cluster head, if it has the highest weight;
- The selected cluster heads and their connected 1-hop neighbor cores are marked as covered;
- ④ Repeat Steps 2 and 3 on all uncovered cores.

Ying Dai

INTRODUCTION

System Model

- Overview Core-only Structure
- Cluster-core Structure
- SIMULATIONS
- Conclusions

Spectrum Sensing With Cluster-core

- Cluster head collects information from the cores and shares the information among multiple cores.
- The overview of the process:

 $\,\circ\,$ Cluster heads: periodically collect from and send to the cores in the same cluster.

 $\,\circ\,$ Cores: updates their corresponding channel information, and return the updated information to other nodes.

Ying Dai

INTRODUCTION

System Model

OVERVIEW

Core-only Structure

CLUSTER-CORE

STRUCTURE

SIMULATIONS

CONCLUSIONS

Spectrum Sensing With Cluster-core

An example of spectrum sensing with cluster-core structure:

Cluster head: v, collects and shares the information. Cores: u, v, u', update their channel list for other nodes.

Ying Dai

INTRODUCTION

System Model

- OVERVIEW
- Core-only Structure
- CLUSTER-CORE
- SIMULATIONS
- CONCLUSIONS

Spectrum Sensing With Cluster-core

Some illustrations:

- Under the cluster-core structure, the work on the node side with its core remains unchanged.
- The cluster heads push to their cores, instead of having the cores pull from the cluster heads.
 - \circ A cluster head usually has more members than a core.
- It is not true to claim that one of the core-only and cluster-core structures is always better than the other.

Ying Dai

INTRODUCTION

System Model

OVERVIEW

Core-only Structure

Cluster-core Structure

SIMULATIONS

CONCLUSIONS

SIMULATION SETTINGS

Main parameters:

Number of PUs	10
Number of nodes	[50, 600]
Number of channels	[5, 20]
Single data task duration	3
Size constraints for cores	[1, 14]
Information exchange frequency for cores	[1, 3]
Information exchange frequency for clusters	[3, 9]

Parameters to vary: size constraints of the core-only structures, information exchange frequencies between a node and its core.

Performance to compare: the average number of channels to sense

Ying Dai

INTRODUCTION

System Model

Overview Core-only Structure Cluster-core Structure

SIMULATIONS

CONCLUSIONS

SIMULATION RESULTS

Different size constraints for core-only structures VS Random sensing

Ying Dai

INTRODUCTION

System Model

OVERVIEW

Core-only Structure

Cluster-core Structure

SIMULATIONS

CONCLUSIONS

SIMULATION RESULTS

Cluster-core structure VS core-only structure VS Random sensing

Ying Dai

INTRODUCTION

System Model

- Overview Core-only Structure Cluster-core Structure
- SIMULATIONS

CONCLUSIONS

CONCLUSIONS

- Our focus: how to select channel for spectrum sensing.
- Two structures: core-only and cluster-core structures.
- The evolution process for the core-only structure.
- Two corresponding sensing schemes.

Ying Dai

INTRODUCTION

System Model

OVERVIEW

Core-only Structure

Cluster-core

STRUCTURE

SIMULATIONS

CONCLUSIONS

Thank you!

If you have any question, please contact Ying Dai (tuc74224@temple.edu).