
Hitchhiking in Cognitive Radio Networks : Spectrum
Sensing Assisted By Cores and Clusters

Ying Dai and Jie Wu
Department of Computer and Information Sciences

Temple University, Philadelphia, PA 19122
Email: {ying.dai, jiewu}@temple.edu

Abstract—Spectrum sensing is a key part of cognitive radio
networks (CRNs). There have been many works done on im-
proving the accuracy of spectrum sensing results. In this paper,
we focus on the phase before spectrum sensing is performed,
that is, how to select a channel for sensing. We make use
of the fact that nodes located in close geographical locations
share similar channel information or sensing results at a given
time. Our model enables each node to hitchhike in its spectrum
sensing phase, by using other nearby nodes’ recent sensing results.
Then the total number of channels that a node needs to sense
before finding an available one can be reduced. We propose
two frameworks for assisting nodes in selecting channels for
spectrum sensing. One is the core-only structure, and another
is the mixed cluster-core structure. We present the construction
of two structures and the distributed spectrum sensing schemes,
respectively. Considering the unpredictable primary user (PU)
activities and channel dynamics, we also propose an evolution
scheme for each node to adjust their selections of cores, in order
to gain the most help. We conduct extensive simulations to study
the performance of our frameworks.

Keywords—Spectrum sensing, cognitive radio networks, cores,
clusters, assistance-based.

I. INTRODUCTION

Cognitive radio networks (CRNs) [1] are a promising
solution to the channel (spectrum) congestion problem, which
creates more spectrum opportunities for nodes in CRNs. The
nodes, also called secondary users (SUs), are able to make
use of channels when primary users (PUs) on those chan-
nels are inactive. The PUs are privileged users, whose data
transmissions cannot be interfered by SUs. To ensure that
the PUs’ transmission is not interfered with, one important
phase is the spectrum sensing. Before a node transmits data, it
needs to perform spectrum sensing and make sure the channel
(spectrum) it selects is not occupied by PUs. In addition,
when previously inactive PUs become active during nodes’
data transmissions, the affected nodes need to quit that channel
and perform spectrum sensing again.

Due to the key importance of spectrum sensing in imple-
menting CRNs, there has been much work done in this field
[2]. Many of the work focuses on how to increase the accuracy
of spectrum sensing results, how to reduce the spectrum
sensing time cost to save more time for data transmission,
and so on. Most of the work considers the spectrum sensing
phase as well as the data transmission phase after it. However,
in CRNs with multiple channels, one aspect that may be
neglected is the phase before spectrum sensing happens. That
is, choosing which channel to sense first can reduce the total

number of channels to sense before finding a channel that is
not occupied by PUs. Therefore, it is potentially very beneficial
if the node can know which channels have higher probabilities
available before sensing them.

One intuitive idea is that each node remembers its own
spectrum sensing results from the last time. Next time, when
the node has data to transmit, it selects the channels that it
will sense first, shown as free from PUs in its previous sensing
results. This can be true and useful if the time gap between
the two sensing phases is not too large. Otherwise, the channel
dynamics in CRNs could cause the previous sensing results to
be inaccurate, and could be less helpful for the next spectrum
sensing, because of the PUs’ unpredictable activities.

Although a node’s own previous sensing results may not
be helpful for its current spectrum sensing, it can act as a
hitchhiker and make use of other nodes’ most recent results
to benefit its current sensing. Now the problem is how to
choose nodes for hitchhiking. Consider the fact that when PUs
become active, nodes in their transmission area are all affected.
This means that, nodes in the close geographical locations are
very likely to face the similar channel availabilities. Therefore,
combining both the time and location dimensions, a node can
hitchhike in its spectrum sensing phase by using other nearby
nodes’ most recent sensing results. However, another problem
exists here: if every node needs to update the channel sensing
order based on every other neighbor node, the overhead during
the information exchange could be harmful to the network
performance, e.g., an increment in the delay. An efficient
information collection and distribution scheme regarding the
spectrum sensing results is necessary.

In our paper, we focus on the phase before spectrum
sensing happens, which is how to select channels for sensing
in CRNs. We aim at reducing the total number of channels
that a node needs to sense before finding an available one. We
propose two frameworks to assist each node in hitchhiking in
its spectrum sensing. The first one is the core-only structure
assisted, in which each node designates a neighbor or itself as
its core, and can gain help from its core during the spectrum
sensing phase. Given the dynamic channel situations, we also
propose an evolution model for each node to adjust its core
selections, and seek the core that can provide the most help.
In addition, we consider that, in a sparse network, the number
of nodes designating a same core is very small. This results in
a core-only structure unable to provide enough assistance for
spectrum sensing. Therefore, we provide a 2-layer structure of
both clusters and cores, and a 2-layer spectrum sensing scheme
to fit the mixed cluster-core structure.

The main contributions of our paper are:

• We improve the spectrum sensing performance by
considering the phase before sensing, and propose
two frameworks: core-only structure based, and mixed
cluster-core structure based. To our best knowledge,
this is the first work to apply the core structures in
CRNs for assisting distributed spectrum sensing.

• We propose an evolution scheme for each node to find
the core that can provide the most help during the
spectrum sensing phase. With the evolution scheme,
our model can adapt to the dynamic channel avail-
abilities and unpredictable PU activities in CRNs.

• We present the corresponding spectrum sensing
scheme with the assistance of the two structures. Each
node can gain help from others, and can also provide
help to others through the cores and cluster heads. Our
schemes only require limited information exchanges
among nodes, cores and cluster heads.

The organization of our paper is as follows. In Section II,
we discuss the related works; the system model is introduced in
Section III; we introduce the framework of core-only structure
in Section IV; the core evolution is presented in Section V;
we discuss the mixed cluster-core structure in Section VI; we
present the performance evaluation in Section VII; finally, we
conclude our paper in Section VIII.

II. RELATED WORKS

Our related works can be organized into two categories:
current cluster applications in CRNs and the cooperative
spectrum sensing.

1) Cluster Applications in CRNs: Many recent works have
been done on the cluster structures in CRNs [3]–[5]. In [3], the
cluster structure is used on the allocation of control channels in
CRNs. Different channels for control are allocated at various
clusters in the network, and the problem is solved by the
bipartite graph. Authors in [4] construct clusters according to
the event that happened in cognitive radio sensor networks.
The detection of an event forces the eligible nodes in the
network to form into clusters, and better deliver the message.
Our work in [5] proposes a virtual backbone construction,
based on the cluster head selections, in CRNs without a
common control channel. It relies on the geographical location
information, and does not need other global information. The
above models apply cluster structures in CRNs, and solves
the control channel or data transmission related problems. Our
work here applies both core and cluster structures to assist the
spectrum sensing in CRNs.

2) Cooperative Spectrum Sensing: Authors in [6] consider,
in mobile CRNs, how to solve the problem of uncorrelated
users to improve the cooperative spectrum sensing perfor-
mance. [7] considers a soft combination of the observed ener-
gies based on the Neyman-Pearson criterion. An optimization
scheme is proposed in [8], which uses a coordinator to make
decisions. The above works focus on the spectrum sensing
phase, which is based on the collaboration among different
secondary users. Their key point lies in the fusion of different
sensing results and the throughput optimization. However, our
model is about how to select channels for sensing before the

spectrum sensing phase, in order to reduce the costs of energy
and delay. Our work in [9] considers the pre-phase of spectrum
sensing. However, it requires the communication among all
users in the same area, which sometimes can cause a large
overhead. The two frameworks of core-only and mixed cluster-
core structures can efficiently reduce the overhead.

III. SYSTEM MODEL

A. Network Environment

We consider a CRN with multiple PUs, which are randomly
distributed. The total channel set in the network is M . There
are V nodes (SUs), which opportunistically make use of the
channels without interfering with PUs. The network model for
PUs and SUs are as follows:

1) PU network: The PUs are randomly distributed in the
network. Their locations and active patterns are assumed to be
unpredictable. Each PU has its own privileged channel in M .
When a PU becomes active, it would occupy its channel.

2) SU network: First, we assume that there is a common
control channel (CCC) for nodes in CRNs to exchange infor-
mation. This assumption is for simplicity; our model can also
apply to CRNs without a CCC, using the approach in [5], [10].

Every time slot is divided into two parts, the spectrum
sensing and data transmission. For a node v (v ∈ V), before
transmitting data on a channel mv (mv ∈ M), it needs to
perform spectrum sensing on mv, to make sure PUs of mv

are not interfered with. We say that mv is available on node
v, if v’s transmission on mv does not interfere with any PU on
mv . For channels that are free of PUs but occupied by other
nodes, v can compete for access equally with other nodes. A
channel that is free of both PUs and other nodes is the most
ideal, since no or less competition is needed. The goal of the
spectrum sensing by v is to find an available channel. It is
better if the channel is also free of other nodes, but this is not
required. If all the channels are occupied by PUs, v cannot
transmit data until one channel becomes available.

Unlike some spectrum sensing models, our model does
not have a centralized decision fusion center. This is because,
the PUs are randomly distributed in our model with different
transmission ranges. It means that the channel availabilities are
not the same in the whole network. Therefore, a centralized
decision fusion center is unnecessary.

B. Problem Formulation

We assume that the average cost for sensing one single
channel is a constant γ. Then, the spectrum sensing perfor-
mance is measured by the number of channels that a node v
needs to sense, denoted as Xv, until one available channel is
found. The objective of our model is to minimize the spectrum
sensing cost, which can be formulated as:

Min(Xvγ), ∀v ∈ V. (1)

For a channel to be successfully used for data transmission,
it should be free of PUs. Moreover, the node does not want to
use a channel that is also chosen by many other nodes, since
there would be too much cost spent in the competition for
channel access. Therefore, the goal of each node sensing the

uv

w

x

s

y {1,2}

u

{1,2,3}

v

{2,3}

w

{1}

x

{1,2}

y

{3}

z

{1,2}

s

4 7 1 1 2 1 2

du : {w,x}

dv : {u,y,s,z,v}

z

Fig. 1. An Example of Constructing Core Structure.

channels is to find one that must be free from PUs, and better
to be free of other nodes may cause interferences to it.

Our focus here is to reduce the number of channels that
need to sense for each node to find a channel for data
transmission, instead of the sensing technique itself. Therefore,
we assume that the sensing is precise enough for each node
to detect PUs, and to decide if one channel is occupied by
PUs or other nodes. In the following sections, we will discuss
our model to reduce Xv in Eq. 1, since γ is a constant here.
There is no optimal solution because of the fact that the PUs’
activities are dynamic and cannot be pre-known. We give our
heuristic solutions, while bringing limited extra cost.

IV. CORE-ONLY STRUCTURE

In this section, we will first describe the formation of the
core structure. Then, how the cores assist the spectrum sensing
scheme is proposed.

A. Core Construction

Our distributed core construction approach is designation-
based and only requires one-hop information. The process
overview is described below:

1) Each node v exchanges its current available channel set
Mv with nodes in its neighbor set Nv;

2) Based on the gathered information in Step 1), node v
calculates its weight, which is related to the size of both
its available channel set Mv and neighbor set Nv;

3) Node v exchange its weight information with nodes in its
neighbor set Nv , and designate the one neighbor with the
highest weight (can be v itself), to be its core.

To present the above process in detail, first, we give the
definition of weight for each node, which acts as a basis for
later core selection.

Definition 1: For a node v, the weight of it is defined as
Wv =

∑
u |Mu ∩Mv|, ∀u ∈ Nv .

Mu ∩Mv is the intersection of nodes u and v’s available
channel sets. Based on the above definition, the nodes with
more neighbors, and more common available channels with
their neighbors, have a larger weight.

Having the weight defined, the core definition is:

Definition 2: cv is the core of node v, if and only if cv ∈
Nv and Wcv ≥ Wu, ∀u ∈ Nv ∪ {v}.

After each node exchanges its weight with all its neighbors,
then every node can designate the core node from its own
perspective. Of course, for a node v, it can have its own core,
and can also be selected by some of its neighbors as their core.
The set of those nodes that select v as their core are denoted

Algorithm 1 Find cv and Dv for node v.
Input: Nv , {Wu, ∀u ∈ Nv ∪ {v}};
Output: cv, core of v; Dv, set of nodes selecting v as core;
1. Markedv = false, Dv = null, cv = null;
2. Find max(Wu), ∀u ∈ Nv ∪ {v};
3. cv = the node has max(Wu);
4. v sends its selecting decision to cv;
5. Markedv = true;
6. for every u ∈ Nv ∪ {v} do
7. if Markedu = false then
8. Wait until Markedu = true;
9. if cu = v then

10. Dv = Dv ∪ {u};
11. return cv , Dv;

as Dv . In other words, if u ∈ Dv, then cu = v. We say that
Dv contains members of core v.

The algorithm for a node v to get cv and Dv, is given in
Algorithm 1. The exchanged information, including the core
selecting decision, is sent through the CCC. There is no order
constraint, which means nodes can run Algorithm 1 in parallel.
For node u, cu is the core of u, which has the maximum weight
among all nodes in Nv . It also scans its neighbors, and put
the nodes that select v as their core in Dv. Node v ends the
algorithm until all the nodes in Nv have selected their cores. If
node v does not have any neighbor, it would designate itself,
which means Dv = {v} and cv = v. Every node is covered
by a core structure after running Algorithm 1.

An example of the above core construction is shown in Fig.
1. There are 7 nodes and neighbor nodes are connected. The
total channel set M is {1, 2, 3}. The table in Fig. 1 lists the
available channel set of each node on the second row and its
corresponding weight on the third row, calculated according
to Definition 1. There are two cores here, which are v and u,
marked in black. The node set that designates v and u as the
cores are shown as du and dv in Fig. 1.

B. Core Size Constraint

From the above core construction, it may result in too
many cores in the network, and each core only has a very
small number of members. This could reduce the efficiency
of our core structure when assisting the spectrum sensing, as
introduced in the next part. Moreover, the number of members
for each core cannot be too large. Otherwise, the overhead of
the communication among each core and its members would be
too much. Therefore, for a core v, we add the size constraints
Smin and Smax, where Smin and Smax are minimum and
maximum size of Dv. For node v, if the core cv chosen by
Algorithm 1 does not fit the size constraint, the selected cv
would be removed from the original neighbor set Nv ∪{v}. A
new core would be selected from the rest of the nodes in Nu,

which satisfies the size constraints. If no nodes in Nv are left,
or v itself is chosen as its own core.

C. Spectrum Sensing With Cores

After the core structure of the network is constructed, every
node will gain help from its core for spectrum sensing. This
basic idea is that, when a node has data to transmit, it will ask
its core about which channel to sense so that the total spectrum
sensing cost is reduced. The core node needs to maintain such
information to give assistance when help requests are received.
We will discuss our scheme from the node side and the core
side.

On the node side: When a node has data to transmit, the
works that it needs to do are divided into four categories, which
contain the four actions:

1) Pull: pull the latest channel list from the core, which sorts
channels according to their recent updated information;

2) Sense: sense the channels using the given order in the list,
until one available channel is found;

3) Transmit: perform data transmission on the selected chan-
nel, and repeat sense again if the current channel becomes
unavailable because of PUs;

4) Push: After data transmission is completed, push the
updated channel situations to the core, along with the
updated time. The information contains all the channels
the node sensed during the above phases.

If there are multiple nodes sending requests to their common
core at the same time, the interfering nodes would back off, and
send again until receiving the list from the core. When a node
has a certain amount of data to transmit, the pull and push only
happens at the beginning and the end of the data transmission.
The frequency of exchanging information between a node and
its core is changeable. The influences of different settings are
studied by the simulations in Section VII.

It is possible that a node can also be a core. For a node v,
if cv = v, which means v is its own core, then v can simply
sense based on the channel list maintained by itself. If v is a
core to other nodes, but cv ̸= v, then v provides the channel
list for nodes that pick v as the core, but v itself still needs
to interact with its own core. For example, in Fig. 1, cw = u
and cu = v. The node w interacts with u to get and update the
channel list, while u interacts with v. The two channel lists
are independent.

On the core side: When the core receives a help request
from its members, it needs to retrieve the current channel
list and return it to the request sender. Also, when the core
receives channel updates from its members, it needs to update
the channel list for use next time.

Suppose cu = v, the interaction between them is shown
in Fig. 2. Having clarified the process between a node and
its core, the remaining problem is this: How is the channel
list maintained and updated by a core? To begin, we need to
find a way to calculate the priority of each channel for the
core to decide the channel order in the list. First, we associate
each channel m, where m ∈ M , with 3-tuple attributes, <
TA(m), TN(m), TP (m) >:

Sense

Pull

Transmit

u

Update

Sense

Transmit

Push

Retrieve

Send request
v

Return channel list

Assist with other

nodes or work for

data transmission

itself

Push back channel

information updates

time time

Fig. 2. The interaction example between u and v (cu = v).

• TA(m): The last time when the core receives an
update which reports m as free from PUs and other
nodes;

• TN(m): The last time when the core receives an
update which reports m as occupied by other nodes;

• TP (m): The last time when the core receives an
update which reports m as occupied by a PU.

Based on the 3-tuple attribute of each channel, for a core v,
it can sort the channels in M , which is shown in Algorithm 2.
Every time v receives a help request from any node in Dv,
it will run Algorithm 2 and return the sorted channel list,
denoted as Lv(M). The sorted results are three categories in
Lv(M). The first category contains the channels that are most
recently updated as free from both PUs and other nodes. The
second category contains the channels that are most recently
updated as occupied by other nodes. Although these channels
can also be used, the competition cost for channel access
with other nodes could potentially be very large. The third
category contains the channels that are most recently updated
as occupied by PUs. Among channels in the same category,
they are sorted according to their recent update times. The one
that is most recently updated takes the more prior position in
Lv(M), since it is more reliable.

For example, in Fig. 1, if u sends a help request to v, v
will run Algorithm 2 to sort the channels. Suppose the 3-tuples
associated with the three channels are: channel 1, < 13, 8, 9 >;
channel 2, < 11, 10, 7 >; channel 3, < 5, 6, 12 >. Channels
1 and 2 are in the first category, and channel 3 is in the third
category. Therefore, the sorted results of the three channels
will be Lv(M) = {1, 2, 3}. Node v will return the Lv(M) to
u. After u gets the Lv(M), it first senses channel 1 at time
16, and finds that it is occupied by a PU. Then u records this
information and senses channel 2. If channel 2 is available, u
will use channel 2 for data transmission. Suppose u finishes
its data transmission at time 20, and the channel 2 is free of
PUs during the the data transmission, which means u only
needs to keep sensing channel 2 in each Sense phase. Then u
quits channel 2, and channel 2 is available at time 20. During
the push phase, u will push the newly updated channel 1 and
2’s information to v, along with the update times, 16 and 20.
Node v then updates channel 1’s 3-tuple as < 13, 8, 16 >,
and channel 2’s 3-tuple as < 20, 10, 7 >. Next time, when v
receives another help request, the returned Lv(M) is {2, 3, 1}.

Algorithm 2 Calculate Lv(M) by core v.
Input: < TA(m), TN(m), TP (m) >, ∀m ∈ M ;
Output: Lv(M), the sorted channel list by their 3-tuple

attributes.
1. pc = 0; // Point to the current index.
2. pt = 0; // Point the tail indexes of previous part.
3. for every m ∈ M do
4. ∆m = Max {TA(m), TN(m), TP (m)}; // Get the

last updated time.
5. for i = 1 : 3 do
6. for every m ∈ M do
7. if (i = 1 & ∆m = TA(m)) ∥ (i = 2 & ∆m =

TN(m)) ∥ (i = 3 & ∆m = TP (m)) then
8. Insert m to the position pc of Lv(M);
9. pc = pc + 1;

10. Sort Lv(M) between positions [pt, pc] based on ∆m

descendingly; // The more recently updated channel
is in a more prior position.

11. pt = pc;
12. return Lv(M);

V. CORE EVOLUTION

It is not always the case that one node shares similari-
ties with other nodes which initially select the same core.
For example, in Fig. 1, nodes {u, y, s, z, v} designate v as
their core. When u sends a help request to v, v needs to
return the Lv(M) to u. Assume that nodes {y, s, z, v} have
sensed channels before u. Then, based on Algorithm 2, the
Lv(M) is updated according to the sensing results provided by
{y, s, z, v}. However, it is possible that the channel available
situation around u, and nodes in {y, s, z, v}, are not very
similar, due to the factors on interference range boundaries
of PUs and the different geographical terrains. Therefore, it is
inappropriate and inefficient for u to designate v as its core,
which means it is necessary for u to find a new core that can
help more on its spectrum sensing.

A. Basis for Core Update

How does a node know if it designates a wrong core, itself?
The answer is to evaluate the help that the core can provide.
If the channel list provided by the core does not increase the
spectrum sensing performance, the node should designate a
new core. We use the estimated number of channels that a
node needs to sense until finding a channel free of PUs and
other nodes, to represent the spectrum sensing performance.
Therefore, we define the basis for core update as:

Definition 3: For a node u and its core v (v = cu), u
needs to update cu if and only if Auv > Au, where Auv

is the estimated average number of channels to sense if u
receives assistance from v; Au is the estimated average number
of channels to sense if u senses itself u and gains no assistance
from others.

However, for a node, it does not know its sensing perfor-
mance without its core, or Au, since it always senses based
on the channel list provided by the core. Another question
arises here: how can a node know if its sensing performance
is increased or decreased by the core? Obviously, it is difficult
for a node to evaluate the assistance by its core. But, from

the opposite direction, a core can evaluate its assistance to
its member. Our basic idea is: when a node pushes back the
updated channel information, the core evaluates the assistance
it could give to the node, under the virtual situation that if the
node sends a request now, rather than pushing back its current
channel information. The detailed process is:

1) When a node u pushes its newly updated channel infor-
mation to its core, v (v = cu), v calculates the L0

v(M)
without using the new information from u;

2) Based on the new channel information from u, v calcu-
lates the new L1

v(M), finds the channel in L1
v(M) that is

recently updated as available, and also has the minimum
index in L0

v(M), which equals to the estimation of Auv;
3) Then, v calculates Au, that takes to u to sense randomly

until finding a channel free from PUs and other nodes.
The current channel availabilities are assumed to be
consistent with the channel information in L1

v(M);
4) Core v compares Auv and Au. If Auv > Au, then we

claim that the assistance from v does not increase the
sensing performance of u.

In Step (1), L0
v(M) is actually the channel list that v

would send to u without using any u’s new information, if
u sends a help request to v now. In Step (2), the new L1

v(M)
denotes the real channel availability currently on node u. In
Step (3), based on the information in L1

v(M), v can know the
channel situation on u. Then, Au is the expected number of
sensing if u randomly picks a channel to sense, which can be
simply calculated using basic probability theory. In Step (4), v
compares Auv and Au to see if u’s sensing performance can
be improved by v’s assistance, compared to its random-sensing
performance.

For example, in Fig. 1, suppose the current 3-tuples on
node v associated with the three channels are: channel 1, <
13, 8, 9 >; channel 2, < 11, 10, 7 >; channel 3, < 5, 6, 12 >.
Now u sends its updated channel information to v, and the
new channel 3-tuples are : channel 1, < 13, 8, 16 >; channel
2, < 20, 10, 7 >; channel 3, < 5, 6, 12 >. Then, v calculates
L0
v(M) = {1, 2, 3}, and L1

v(M) = {2, 3, 1}. The channel that
is recently updated as available in L1

v(M) is channel 2, since
20 = Max {20, 10, 7}. The index of channel 2 in L0

v(M) is 2.
Therefore, Auv = 2.

Since in L1
v(M), only channel 2 is available, the expected

number to find an available channel if u randomly picks a
channel to sense is: Au = 1× 1

3+2× 2
3×

1
2+3× 2

3×
1
2×1 = 7

6 .
In this example, Auv > Au, which means u can have a better
performance if it randomly picks a channel for sensing without
v’s channel list. Therefore, based on Definition 3, u has the
need to designate a new core.

B. Core Reselection with Limited Propagation Cost

When a core node finds that one of its members needs to
designate a new core, it would send the update notification to
that node after the phase Push. Then, the notified node needs
to find a new core.

One important benefit with the core structure is that it is
easier to propagate, compared to traditional cluster structures.
Suppose node u has the necessity to find a new cu; the process
is very efficient, as described here:

u v

w

x

s

y z

u’

w’

x’

Fig. 3. Cluster head selection from cores.

1) u replaces the input Nu of Algorithm 1 with Nu − {v};
2) u reruns Algorithm 1, and the output is the new cu;
3) u sends a notification to inform the new cu.

The above process shows that only the node u and the new cu
are affected, and no other nodes are involved. Therefore, the
core evolution here takes a very limited cost.

VI. MIXED CLUSTER-CORE STRUCTURE

Although the core structure is very convenient to construct
and update, it is possible that in a sparse network, the core
structure cannot assist too much during the spectrum sensing.
For example, many nodes are their own cores, whose members
are also themselves only. Under these circumstances, we
consider having nodes within more than one-hop distances help
each other for spectrum sensing. In this section, we propose a
mixed structure of clusters and cores, to involve nodes within
multiple-hop distances.

A. Cluster-core Construction

To increase the assistance that a core can provide, we select
cluster heads from the cores, and build a cluster structure on
top of the core structure.

First, for a core u, we use NCu to denote the set of its
neighbor cores. If v ∈ NCu, then v ∈ Nu and v is a core with
Dv > 0. Then, we can define the weight WCu of a core u,
which is later used for cluster head selection:

Definition 4: For a core v, the weight of it is defined as
WCu =

∑
v |Mu ∩Mv|, ∀v ∈ NCu.

The definition for core weight is similar to Definition 1. The
difference is that the weight is calculated based on the core
neighbor set, NCu, instead of the original neighbor set, Nu.

The cluster head selection is based on the weight of each
core, and applies the classical cluster construction scheme [11]:

1) All cores are initially uncovered;
2) An uncovered core u becomes a cluster head, denoted as

hu, if it has the highest weight (based on Definition 4)
among NCu;

3) The selected cluster heads and their connected 1-hop
neighbor cores are marked as covered;

4) Repeat Steps 2 and 3 on all uncovered cores (if any).

The coverage of the cluster algorithm has been proved in
[11]. One example is in Fig. 3: we added nodes u′, w′, and
x′ compared to the example in Fig. 1. The newly added three
nodes have the same channel information with nodes u, w,
and x. Therefore, cu′ = v, cw′ = u′, and cx′ = u′. Now there
are three cores, u, v, and u′. Based on the cluster selection
scheme, core v is the cluster head for u, and u′, which means
hu = v, hu′ = v and hv is v itself.

TABLE I. SIMULATION SETTINGS

Number of PUs 10
Number of nodes [50, 600]

Number of channels [5, 20]
PU’s transmission range 60

Node’s transmission range [40, 50]
Single data task duration 3
Size constraints for cores [1, 14]

Minimum PU active duration [5, 15]
Information exchange frequency for cores [1, 3]

Information exchange frequency for clusters [3, 9]

B. Spectrum Sensing With Cluster-core

Since the cluster-core structure is 2-layered, the spectrum
sensing scheme based on it should contain not only the interac-
tion between cores and their members, but also the interaction
between cores and their clusters. Here, under the cluster-core
structure, the work on the node side remains unchanged as in
Section IV-C. The work on the core side needs to change to
enable the communication with cluster heads.

One option is similar to the scheme in Section IV-C, which
is that every time the core receives a request, it pulls the latest
channel list for the cluster head, and pushes the updates of
channel information back to the cluster head. However, since
a cluster head usually has more members than a core, using the
same scheme as in Section IV-C could potentially cause very
large overhead when the request to the cluster head becomes
more frequent.

Here, we choose another option, which is to have the
cluster head periodically push the updated channel information
to the cores. This is a tradeoff between reducing the communi-
cation overhead and getting the most recently updated channel
list, on cluster heads. For a core v and its cluster head hv, the
process works as follows:

1) The cluster head hv periodically collects information
from the cores in the same cluster, labels each chan-
nel m, m ∈ M , with its associated 3-tuple attributes,
< TA(m), TN(m), TP (m) >, and then broadcasts the
channel set M with corresponding 3-tuple attributes to all
the cores in its cluster;

2) After v gets the information from hv, v updates its
channel information. Next time, when v receives a help
request from nodes in Dv, it calculates the channel list
Lv(M) based on the newest channel information.

For example, in Fig. 3, node v periodically collects infor-
mation from u and u′, and shares the channel information with
them. When node w sends a help request to u, u will return the
channel list to w. When node w completes data transmission
and pushes the updated channel information to u, this update
from w would be picked up by v, during the next time v
collects information from u. Also, this update will be shared
to u′, and assist nodes in Du′ , which contains v′ and w′, for
their spectrum sensing.

It is not true to claim that one of the core-only and cluster-
core structures is always better than the other. In a dense
network, each core in the core-only structure may contain
enough members, and is able to provide effective assistance
to its members. A cluster head on the cores in this situation is
unnecessary, and may cause additional communication costs.
In a sparse network, it is possible that cores in the core-only

200 300 400 500 600

2

2.5

3

3.5

4

4.5

5

5.5

number of nodes

av
er

ag
e

nu
m

be
r

of
 s

en
si

ng

Core−only: [4, 14]
Core−only: [1, 10]
Random

(a)

5 10 15 20

2

2.5

3

3.5

4

4.5

5

5.5

number of channels

av
er

ag
e

nu
m

be
r

of
 s

en
si

ng

Core−only: [4, 14]
Core−only: [1, 10]
Random

(b)

5 10 15
1

2

3

4

5

6

minimum PU active duration

av
er

ag
e

nu
m

be
r

of
 s

en
si

ng

Core−only: [4, 14]
Core−only: [1, 10]
Random

(c)
Fig. 4. Comparison of core-only scheme with different size constraints and random sensing scheme.

structure do not have enough channel information to provide
assistance. Then a cluster-core structure is a better fit. We will
show the performance differences in the simulation.

VII. PERFORMANCE EVALUATION

A. Simulation Settings

We randomly distribute nodes in a 200× 200 unit square.
The overall simulation settings are listed in Table I. The num-
ber of nodes varies for network density control. The network
is time-slot based, and each time slot is 1s. We generate
data traffic every 10 time slots on a randomly picked set of
nodes in the network for broadcasting. For later comparisons
about different information exchange frequencies with cores,
every single generated data requires 3 time slots to finish
transmission by a single node. Each PU occupies one certain
channel when it is active. Since each PU’s transmission is
usually longer than that of other nodes, we set the minimum
number of time slots for an active PU longer than the node’s
average data transmission time. At the beginning of each time
slot, the PUs are randomly selected to be active for a generated
time duration. If a selected PU is already active, then its status
and remaining active time slots would not be changed.

We study the influence of different algorithm parameters,
based on our discussions in previous sessions, which are: size
constraints of the core-only structures, information exchange
frequencies between a node and its core, and comparison
between cluster-core structures and core-only structures. Based
on the objective function, Eq. 1, the performance we compare
is the average number of channels that a node needs to sense
in each sensing phase. We also implement a random sensing
scheme for better comparison, in which each node randomly
picks a channel for sensing every time.

B. Simulation Results

1) Size constraints of core-only structures: The comparison
results of core-only structures with different size constraints
are presented in Fig. 4. We compare the two size con-
straints, [1, 10] and [4, 14] with the random sensing scheme.
In Fig. 4(a), the average number of channels to sense in the
random scheme increases when there are more nodes. In the
core-only structures, the number of sensing first decreases and
then increases. This is because, at first, when more nodes need
to use channels, the channel lists on the cores get updated more
frequently and are more accurate. However, when the number
of nodes reaches a certain amount, the channel availabilities
become much less, and each node senses more channels to

find an available one. In Fig. 4(b), the number of sensing
in all three lines decreases when there become more total
channels. In Fig. 4(c), when a PU’s minimum active duration
increases, the number of sensing increases for the random
scheme. However, both core-only structures decreases. This
is because, when a PU occupies its channel for a longer time,
the channel availabilities are more static.

In addition, compared to Fig. 4(a) and Fig. 4(b), the number
of sensing in Fig. 4(c) changes less obviously, which means the
minimum PU active durations have less influences compared
to the previous two parameters. Overall, in Fig. 4, the core-
only structure with size constraint [4, 14] achieves the best
performance, and both core-only structures have devastatingly
less number of sensing compared to the random scheme.

2) Information exchange frequencies: We vary the infor-
mation exchange frequencies between cores and their corre-
sponding members from every 1 time slot to every 3 time slots.
The settings of the three network parameters are similar as in
the above part. The core size constraints here are [1, 10]. The
results are shown in Fig 5. The trends of the three frequency
settings are similar. And the number of sensing for frequency
3 is the largest among all three, while that for frequency 1
is the least. However, setting the frequency as 1 requires the
information exchange with the core every time slot, which is
very expensive in a real-life scenario. In addition, the results
are more stable when the information exchange frequency is
1. This is because each node can know the instant channel
list on its core, which is very accurate, and less influenced by
different network parameter settings.

3) Applying cluster-core structures: As proposed in Sec-
tion VI, the mixed cluster-core structure is applied when facing
sparse networks. Therefore, in this part, we set the number of
nodes in the network from 50 to 200. The size constraints
for selecting cores are [1, 10], and the information exchange
frequency between cores and their members is 3. We first show
the results of selecting cluster heads from cores in Fig. 6(a).
The number of nodes in Fig. 6(a) is 100. We mark partial
cores, whose sizes are less than or equal to 2, which means
the core structures for those nodes are not very helpful. Then
the cluster heads are marked out using green diamonds. The
number of cluster heads is 8 in this case.

In Fig 6(b), the performances of the core-only structure
and the cluster-core structure are compared. We keep the
information exchange frequencies between cluster heads and
cores as 6. Since the comparisons of the two schemes by
varying other network parameters are similar, we only show

200 300 400 500 600
0.5

1

1.5

2

2.5

3

number of nodes

av
er

ag
e

nu
m

be
r

of
 s

en
si

ng

Freq = 1
Freq = 2
Freq = 3

(a)

5 10 15 20

1

1.5

2

2.5

3

3.5

number of channels

av
er

ag
e

nu
m

be
r

of
 s

en
si

ng

Freq = 1
Freq = 2
Freq = 3

(b)

5 10 15
0.5

1

1.5

2

2.5

3

minimum PU active duration

av
er

ag
e

nu
m

be
r o

f s
en

si
ng

Freq = 1 Freq = 2 Freq = 3

(c)
Fig. 5. Comparison of core-only scheme under different information exchange frequencies.

0 50 100 150 200
0

50

100

150

200

nodes cores(size<=2) cluster heads

(a)

50 100 150 200

2

2.5

3

3.5

4

4.5

number of nodes

av
er

ag
e

nu
m

be
r

of
 s

en
si

ng

Core−only

Cluster−core

(b)

5 10 15
1.5

2

2.5

3

3.5

minimum PU active duration

av
er

ag
e

nu
m

be
r o

f s
en

si
ng

Freq = 3
Freq = 6
Freq = 9

(c)

Fig. 6. Construction and performance comparison of cluster-core scheme.

the results of changing network densities here. We vary the
number of nodes from 50 to 200. The cluster-core structure
requires less number of sensing than the core-only structures.
In addition, as the number of nodes increases, the gap between
the two schemes reduces.

In Fig 6(c), we vary the frequency of information exchange
between cluster heads and cores from every 3 time slots to
every 9 time slots. The number of nodes is set to 100, and
the minimum PU active duration changes from 5 to 15. From
the results, we can see that, the more frequently that the
cluster head collects information and sends to the cores, the
less sensing there is. Moreover, for all three bars, when the
average time that a PU takes a channel is longer, the less
number of sensing both schemes need. This is caused for a
similar reason as in core-only structures, which is when a PU
occupies a channel for a longer time, the channel availabilities
are less dynamic, and the cluster-core structure can provide
more accurate information.

VIII. CONCLUSION

In this paper, we propose two frameworks to assist nodes in
CRNs during spectrum sensing. One is the core-only structure
based, and the other is the cluster-core structure based. We
describe the construction of the core-only structure, and the
spectrum sensing scheme assisted by it. Also, we consider the
evolutions of cores by taking the channel dynamics in CRNs
into account. Our core structures take very limited propagation
costs. In the cluster-core structure, we describe the application
scenarios and how to select cluster heads from current cores.
The sensing scheme assisted by the core-cluster structure is
discussed. We perform numerous simulations to testify to the

performance of our frameworks, and study the influences of
different parameter settings.

REFERENCES

[1] I. Akyildiz, W. Lee, M. Vuran, and S. Mohanty, “Next genera-
tion/dynamic spectrum access/cognitive radio wireless networks: A
survey,” Computer Networks, 2006.

[2] T. Yucek and H. Arslan, “A survey of spectrum sensing algorithms for
cognitive radio applications,” IEEE Communications Surveys Tutorials,
2009.

[3] S. Liu, L. Lazos, and M. Krunz, “Cluster-based control channel alloca-
tion in opportunistic cognitive radio networks,” IEEE Transactions on
Mobile Computing, 2012.

[4] M. Ozger and O. Akan, “Event-driven spectrum-aware clustering in
cognitive radio sensor networks,” in Proceedings of IEEE Infocom,
2013.

[5] Y. Dai, J. Wu, and C. Xin, “Virtual backbone construction for cognitive
radio networks without common control channel,” in Proceedings of
IEEE INFOCOM, 2013.

[6] A. Cacciapuoti, I. Akyildiz, and L. Paura, “Correlation-aware user
selection for cooperative spectrum sensing in cognitive radio ad hoc
networks,” IEEE Journal on Selected Areas in Communications, 2012.

[7] J. Ma, G. Zhao, and Y. Li, “Soft combination and detection for cooper-
ative spectrum sensing in cognitive radio networks,” IEEE Transactions
on Wireless Communications, 2008.

[8] R. Fan and H. Jiang, “Optimal multi-channel cooperative sensing in
cognitive radio networks,” IEEE Transactions on Wireless Communica-
tions, 2010.

[9] Y. Dai and J. Wu, “Sense in order: Channel selection for sensing in
cognitive radio networks,” in Porceedings of CrownCom, 2013.

[10] M. Abdel-Rahman, H. Rahbari, M. Krunz, and P. Nain, “Fast and secure
rendezvous protocols for mitigating control channel dos attacks,” in
Proceedings of IEEE INFOCOM, 2013.

[11] J. Wu and F. Dai, “Virtual backbone construction in manets using
adjustable transmission ranges,” IEEE Transactions on Mobile Ccom-
puting, 2006.

