
Complex Contagions Models in Opportunistic
Mobile Social Networks

Yunsheng Wang
Dept. of Computer Science

Kettering University, Flint, MI 48504

Jie Wu
Dept. of Computer and Info. Sciences

Temple University, Philadelphia, PA 19122

Abstract—Information contagions is one of the key applica-
tions in opportunistic mobile social networks (OMSNs). Most of
the recent work only considers the simple contagions, in which
the “infected” node will infect each of its opinion-free neighbors
through simple contact. However, when the behaviors, beliefs, or
preferences spread through the social contact, the willingness to
participate may require independent affirmation or reinforcement
from multiple sources. In this paper, we first review two complex
contagions schemes proposed recently:ring lattice-based complex
contagions (RLCC) and grid-based complex contagions (GCC)
approaches. However, these two approaches do not consider the
hierarchical structure in social network. Then, we present three
novel hierarchical complex contagions models:tree-based complex
contagions (TCC), which is a binary tree model; clique-based
complex contagions (CCC), in which there is ak-clique and other
nodes connect to every node in thek-clique, and hypercube-based
complex contagions (HCC), which is a balanced hypercube model.
Extensive analysis and simulations are conducted in comparison
to these approaches. CCC has the smallest delivery delay when
there is only one message, while HCC has the best performance
when the number of messages increases.

Keywords—Bisection width, complex contagions, diameter, hy-
percubes, node degree, opportunistic mobile social networks, trees.

I. I NTRODUCTION

Most social information, collective behaviors, and diseases
spread through social contacts. In an opportunistic mobile
social network (OMSN), users walk around and communicate
with each other when they are in each other’s communication
range. Due to the uncertainty and intermittent connectivity
of OMSNs, the technologies applied in traditional Internetor
wireless networks are not suitable for OMSNs.

Information dissemination is one of the key applications
in OMSNs. However, most of the recent work [1–3] only
considers simple contagions in OMSNs, which means that
the disease infection or information propagation only requires
one “activated” source to infect the opinion-free neighbors.
However, in the real world, spreading of beliefs or behaviors
is slower, the willingness to participate may require indepen-
dent affirmation or reinforcement from multiple sources. For
example, when a new product is released, you may need to
get information from different sources (e.g., friends, neighbors,
reviewers, etc) to convince yourself to purchase it. Therefore,
a new concept,complex contagions[4], is introduced. In the
spread of complex contagions, preferences, behaviors, and
beliefs spread via social contact with multiple adopters.

Figure 1 illustrates the concept of complex contagions in
a simple OMSN. Fig. 1 shows ana-contagion network, where
a is the number of activated nodes required to trigger the
adoption. Whena = 1, it is a simple contagions. If node
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Fig. 1. An illustration of ana-complex contagions in a social network.

N1 is the initial activated node, it only takes2 steps to active
all other nodes. In the first step,N2, N3, andN6 can receive
the information fromN1. Then, in the second step,N4 and
N5 can be activated byN3. In a 2-complex contagions, if
the initial activated nodes areN1 andN2, it needs4 steps to
spread the information to all other nodes.N3 has two activated
neighborsN1 andN2. Hence, after the first step,N3 becomes
active. In the second step,N6 can be activated byN1 andN3.
In the third step, the information can be spread toN5 by N3

andN6. Finally, N3 andN5 can disseminate the information
to N4. In a 3-complex contagions with the initial activated
nodes:N1, N2, andN3, it is impossible to activate any other
node. Therefore, information diffusion in complex contagions,
which requires independent affirmation from multiple sources,
is more challenging than simple contagions.

Recently, the researchers proposed two complex conta-
gions models in social networks:ring lattice-based complex
contagions(RLCC) [4] and grid-based complex contagions
(GCC) [5]. In [4], Centola and Macy show the analytic and
simulation results based on the Watts and Strogatz’s small
world model [6], which is a ring lattice-based approach. In
this model, complex contagions spread using mostly the local
links (or strong ties), and are going to be significantly slower
in many settings, which requires a substantially large number
of random ties to even create one single ‘bridge’ to diffuse the
contagion. In [5], Ghasemiesfeh, Ebrahimi, and Gao analyze
the complex contagions problem in the Kleinberg’s small
world model, which is a grid-based approach. The complex
contagions’ speed depends heavily on the way long-range links
(or weak ties) distributed in a network. However, the random
generated long-range links may not be efficient in helping
complex contagions in both approaches.

The aforementioned models do not follow the hierarchical
property of social network [7, 8]. Therefore, in this paper,
we first introduce atree-based complex contagions(TCC)
model, which is one of the most intuitive representations of
the hierarchical structure. In TCC, we convert the OMSN into
a complete binary tree, in which the children nodes under
the same parent connect with each other, and the children
nodes also connect with the cousin nodes of their parent nodes.
However, TCC has the bottleneck problem, which may prevent
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the complex contagions. Then, we propose another hierarchical
structure:clique-based complex contagions(CCC). In CCC,
there is ak-clique in the center; other nodes connect to
every node in thisk-clique, which forms a star structure.
The CCC structure can accelerate the complex contagions’
speed. However, it increases the number of links dramatically.
Finally, we introduce a load-balanced structure:hypercube-
based complex contagions(HCC). In HCC, we convert the
OMSN into anm-dimensional balanced hypercube, in which
each node has a backup (matching) node that shares the same
set of neighboring nodes. HCC is a bipartite graph, which
guarantees the fault tolerance. Thus, there is no bottleneck
problem in HCC.

The major contributions of our work are as follows: (1)
We point out the limitations of ring lattice-based and grid-
based complex contagions approaches. (2) We present three
efficient hierarchical complex contagions schemes: tree-based,
clique-based, and hypercube-based. The tree-based approach
uses a complete binary tree structure. Clique-based complex
contagions scheme utilizes the centerk-clique and forms a
star structure. Finally, hypercube-based complex contagions is
based on the balanced hypercube structure. (3) We analyze
characteristics of these complex contagions schemes in number
of links, diameter, node degree, and bisection width. (4) We
evaluate the proposed schemes in synthetic social network
models. We compare the performance in both one information
2-complex contagions and multiple information 2-complex
contagions. (5) Analysis and simulation results show that
CCC has the smallest delivery time when there is only single
message, and HCC has the best performance when the number
of messages increases.

II. RELATED WORK

Opportunistic mobile social network, a new type of DTN,
becomes more and more interesting, due to the widespread
use of smart phones. Researchers study OMSNs from a social
networking point of view [3, 9]. There has been some work
on data dissemination in OMSNs [1, 2]. In [1], Ning et al.
proposed a credit-based incentive-aware data dissemination
scheme in DTN. Their scheme effectively tracks the value of
a message, which highly depends on its probability of being
delivered by an intermediate node. Gao and Cao proposed
a user-centric data dissemination in [2]. Their approach was
based on a social centrality metric, which considers the social
contact patterns and interests of mobile users simultaneously,
and thus ensures effective relay selection. These approaches
studied the simple contagions problem. In this paper, we study
the complex contagions to spread behaviors and beliefs.

Recently, complex contagions models have been studied
for the spread of ideas across a social network. The research
of complex contagions can provide crucial insights into social
influence and behavior-adoption cascades on networks. In [4],
Centola and Macy study the complex contagions based on
Watts and Strogatz’s small world model [6]. The authors point
out that the weak ties are effective for simple contagions, but
they will prevent the complex contagions. In [5], the authors
analyze the complex contagions’ diffusion speed in three so-
cial network models: Newman-Watts model [10], Kleinberg’s
small world model [11], and Kleinberg’s hierarchical network
model [12]. The authors show the upper and lower bounds
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Fig. 2. An illustration of ring lattice-based complex contagions (RLCC) in
Watts and Strogatz’s small world model.

of the 2-complex contagions speed in these social network
models. Then, they generalize these results toa-complex
contagions.

III. PRELIMINARIES

A. Simple Contagions vs Complex Contagions

The similarity among different kinds of contagions invites
generalization of the small world principle from the spreadof
information and disease to the spread of collective behaviors
and beliefs. For the information and disease spreading, it
requires only one influenced source, which likes epidemics.
However, the requirement for behaviors, beliefs, and pref-
erences spreading is more complex, which is more costly,
controversial, or risky for the individuals to participate.

The problem is that, while all contagions have a minimum
threshold of one, the range of nonzero thresholds can be
quite large. For communicable diseases and information, the
threshold is always exactly one. These are examples of simple
contagions, in which contact with a single source is sufficient
for the target to become informed or infected. While infor-
mation and disease are archetypes of simple contagions, some
collective behaviors can also spread through simple contact.
However, many collective behaviors involve complex conta-
gions that require social affirmation or reinforcement from
multiple sources. For complex contagions to spread, multiple
sources of activation are required, since contact with a single
active neighbor is not enough to trigger adoption. A contagion
is complex if its transmission requires an individual to have
contact with two or more sources of activation. Depending on
how contagious the disease, infection may require multiple
exposures to carriers, but it does not require exposure to
multiple carriers.

B. Watts and Strogatz’s Small World Model and Ring Lattice-
based Complex Contagions

The classic formalization of the small world model comes
from Watts and Strogatz [6], in whichn nodes are placed on a
ring lattice, and nodes within ring distance2 are connected by
a local link (or strong tie). The long-range links(or weak ties)
are the links randomly rewired in this ring lattice. The authors
demonstrate that the rate of propagation on a clustered network
can be dramatically increased by randomly rewiring a few local
links (within a cluster), and making them into bridges between
clusters that reduce the mean distance between arbitrarily
chosen nodes in the network. They used a ring lattice to
demonstrate the small world effect for a simple contagion, as
shown in Fig. 2.
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In [4], Centola and Macy remarked that the strength of
weak ties is not always so significant in helping diffusions.
Specifically, it does not help with the diffusion of complex
contagions. Information or diseases are simple contagions.
They could be spread through a single contact. Hence, a
single long-range link can help affect remote regions, which
greatly speeds up the diffusion. In some other cases, however,
diffusion requires multiple confirmations, or multiple contacts
with affected nodes, to accumulate sufficient in influence.
Complex contagions appear due to strategic complementarity,
credibility, legitimacy, and emotional exchange, as explained
by Centola and Macy [4]. While long-range links can carry
information across long social distances, they are not as effec-
tive in spreading complex contagions, simply due to the lackof
multiple, collective contacts. Thus, fast diffusion of complex
contagion requires not only long bridges, but also “wide” ones,
which may or may not exist. Therefore, complex contagions
spread using mostly the local connections, and are going to
be significantly slower in many settings. Analytic results and
simulation results have been shown based on the Watts and
Strogatz’s small world model [6]. The authors introduce a
critical width (Wc) of bridges, which is the minimum number
of nonredundant ties required for a contagion to propagate to
an unactivated neighborhood. For simple contagions,Wc = 1,
regardless of network topology. On a ring lattice, for minimally
complex contagions (a = 2), Wc = 3. The critical width
also determines the minimum number of links that need to
be rewired to create a shortcut across the ring.

While a single random tie is sufficient to promote the
spread of simple contagions, complex contagions require more
rewiring in order to benefit from randomization. The number of
links that need to be randomly rewired increases exponentially
with the number required to form a bridge, and the number of
ties needed to form a bridge, in turn, increases exponentially
with the required number of activated neighbors [4]. Even for
this minimally complex contagion on this very small ring (with
only 16 nodes), as shown in Fig. 2, the probability that three
random links will form a bridge is close to zero. Therefore, we
believe that the ring lattice model is not efficient for complex
contagions. In this paper, we propose three novel efficient
complex contagions approaches. The details will be discussed
later.

C. Kleinberg’s Small World Model and Grid-based Complex
Contagions

Kleinberg claims that Watts and Strogatz’s small world
model lacks the essential navigability property in [11]: without
global knowledge of the network, none of the short paths
can be computed efficiently. He shows that navigability can
be obtained by adjusting the amount of randomness to the
underlying metric. Precisely, he introduces an grid-basedgraph
model, in which a constant number of random additional
long ties will be given to each node with the harmonic
distribution. In this model, the local knowledge at each node
is the underlying metric of the grid (which can be viewed as
the geographic locations of the nodes) and the positions on the
grid of its long-range neighbors. Note that a global knowledge
would be the set of positions of all the long-range neighbors
on the grid.

In [5], Ghasemiesfeh et al. study the spread speed of com-
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Fig. 3. An illustration of grid-based complex contagions (GCC) in Kleinberg’s
small world model.

plex contagions based on the Kleinberg’s small world model
we discuss above, which is in a

√
n×√

n grid with n nodes,
as shown in Fig. 3. In order to eliminate the boundary effect,
the authors wrap up the grid into a torus. They consider two
types of edges in this network. The local links are the edges
that connect two nodes on the grid with Manhattan distance2
or smaller. In addition, each node generates2 random outgoing
edges that are considered as long-range links. The probability
that nodei choosesj as a neighbor through a long-range
link follows harmonic distribution, which is proportionalto
1/ |ij|α, whereα ≥ 0 is a parameter and|ij| is the Manhattan
distance between nodesi and j. The authors claim that if
α = 2, the complex contagions’ spread speed isO(log3.5n)
andΩ(logn/log logn) with high probability. For0 < α < 2,
the complex contagions’ spread speed isO(n

4−2α
10−4α

√

log3n)
andΩ(logn/log logn) with high probability.

Essentially, it was shown that when the contagion is merely
minimally complex, i.e., requiring two active neighbors tobe
affected instead of one, it would require a substantially large
number of random long-range outgoing edges to even create
one single ‘bridge’ to diffuse the contagion. Therefore, inthe
GCC, the additional long-range links may not be significant in
helping diffusion of complex contagions.

IV. M OTIVATION

As discussed in Sections III-B and III-C, long-range links
are not effective in complex contagions. Following arguments
originally proposed by Mark Granovetter’s seminal 1973 paper,
The Strength of Weak Ties, the majority of influence in novel
information contagions is generated by weak ties [13]. How-
ever, in the complex contagions scenario, weak ties (or long-
range links) can impede diffusion. Most of the weak ties are
local bridges, which means there is no adjacent node between
two neighbors on the weak tie. Since the complex contagions
need more than one activated neighbor to trigger the adoption,
the long-range links will prevent the behaviors, beliefs, and
presences propagation.

We design a simple simulation to illustrate the participants
of the long-range links in complex contagions in three real
traces: Infocom 06 conference trace [14], MIT reality mining
campus trace [15], and Intel lab trace [16]. Here, we apply a
simple epidemic forwarding approach. We change the number
of required activated neighbors (a) to see the percentage of
involved forwarding long-range links. As shown in Fig. 4,
we can see that whena = 1, which means simple conta-
gions, most of the contagions are through long-range links.
This confirms the conclusions from Granovetter’s paper:The
Strength of Weak Ties[13]. However, when the number of
required activated neighbors increases, the percentage ofthe
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Fig. 4. An illustration of the percentage of the involved long-range links in
complex contagions in real traces.

forwardings through long-range links decreases dramatically.
Whena is 4, only 10% of the forwarding ties involved in the
epidemic process are long-range links, in Fig. 4.

Long-range links are not effective in complex contagions,
sometimes they may even impede diffusion. From the simple
simulation in Fig. 4, there are not many long-range links
involved in complex contagions. Therefore, in order to design
efficient complex contagions schemes in OMSNs, we only
consider the local links and propose tree-based, clique-based,
and hypercube-based complex contagions approaches in the
following sections. At the same time, the proposed models
follow the hierarchical property of social networks, while
RLCC and GCC do not have the hierarchical property.

V. TREE-BASED COMPLEX CONTAGIONS (TCC)

Complex contagions is a complex broadcasting process.
In network science, tree-based structure is one of the most
intuitive representations to study the broadcast process.In
a number of settings, nodes represent objects that can be
classified according to a hierarchy or taxonomy; nodes are
more likely to form links if they belong to the same small sub-
tree in the hierarchy, indicating they are more closely related.
Here, we introduce a tree-based complex contagions (TCC) for
beliefs or behaviors spreading.

As shown in Fig. 5, it is a binary tree structure. In TCC, the
children nodes under the same parent connect with each other,
and the children nodes also connect with the cousin nodes of
their parent nodes. Therefore, the initial active nodes canbe
any two linked nodes in this binary tree.

In a tree-based 2-complex contagions, if the initial activated
nodes have at least one common neighbor, then in our proposed
TCC model, the whole network will be activated. In TCC,
the spread speed is the height of the tree, which can achieve
efficient complex contagions. The major difference between
TCC and the previous approaches – RLCC and GCC is that,
in TCC, without the random generated long-range links, the
complex behaviors or beliefs can also be spread in a short
time to the whole network. The disadvantage of TCC is the
bottleneck problem. If the high level ‘parent’ nodes are not
activated, their children nodes cannot be activated.

VI. CLIQUE-BASED COMPLEX CONTAGIONS (CCC)

In social networks, there is a small amount of individuals,
who are more popular than other people. According to prefer-
ence attachment algorithm [7] and rich club phenomenon [8],
we realize that there exists a popular individual community
in the social networks. When a company plans to release a
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Fig. 5. An illustration of tree-based complex contagions (TCC).
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Fig. 6. An illustration of clique-based complex contagions (CCC).

new product, they will invite some people to try the new
product, and complex contagions to other people. It is obvious
that choosing the individuals from the popular community can
increase the spreading speed.

In this section, we propose a clique-based complex conta-
gions (CCC) scheme, which is also a hierarchical architecture.
Here, we consider the set of the popular people as ak-clique.
Other individuals connect to all nodes in thisk-clique, which
forms a star structure. As shown in Fig. 6, the center is a3-
clique. For a2-complex contagions, any two initial activated
nodes can spread the behaviors or beliefs to all nodes in the
network. If the initial activated nodes are in the clique, the
spread speed will increase dramatically.

VII. H YPERCUBE-BASED COMPLEX CONTAGIONS (HCC)

In the social network, many pairs of nodes have multiple
common friends. For 2-complex contagions, it requires 2
sources of activation to trigger adoption. Therefore, if the
pair of nodes are activated, eventually, their common friends
will be activated. In this section, we leverage the matching
pair property of the balanced hypercube to achieve efficient
complex contagions.

An m-dimensional hypercube is a graph having2m nodes.
Two nodes are joined by an edge if their addresses, as binary
integers, differ in exactly one bit position. Balanced hypercube
is a special hypercube, which has been studied in computer
system [17]. Balanced hypercube is a load-balanced graph.

Definition 1: An m-dimensional balanced hypercube con-
sists of22m nodes(a0, a1, ..., ai−1, ai, ai+1, ..., am−1), where
a0 and ai ∈ {0, 1, 2, 3} (1 ≤ i ≤ m − 1). Every
node(a0, a1, ..., ai−1, ai, ai+1, ..., am−1) connects the follow-
ing 2m nodes:

1) ((a0 + 1)mod 4, ..., ai−1, ai, ai+1, ..., am−1),
((a0 − 1)mod 4, ..., ai−1, ai, ai+1, ..., am−1), and

2) ((a0 + 1)mod 4, ..., (ai + (−1)a0)mod 4, ..., am−1),
((a0 − 1)mod 4, ..., (ai + (−1)a0)mod 4, ..., am−1).
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Fig. 7. An illustration of hypercube-based complex contagions (HCC).

Fig. 7 is an example of a 2-dimensional balanced hyper-
cube. In a balanced hypercube, every node has another node
matching it, i.e., these two nodes have the same adjacent nodes.
As shown in Fig. 7, nodes(0, 0) and (2, 0) are a pair of
matching nodes, which have the same adjacent nodes:(1, 0),
(3, 0), (1, 1), and(3, 1).

An m-dimensional balanced hypercube has a matching
pair property (Property 1): In an m-dimensional balanced
hypercube, nodes can be partitioned into a set of matching
pairs v = (a0, a1, ..., am−1) and v′ = (a0 + 2, a1, ..., am−1).
Therefore, in order to active all nodes, it only needs one
matching pair of nodes to be the initial activated nodes.

Another important property of balanced hypercube (Prop-
erty 2) is: An m-dimensional balanced hypercube has22m

nodes, each of which has2m adjacent nodes. Since, each node
has2m adjacent nodes, HCC is a fault-tolerant approach. HCC
also does not have the bottleneck problem.

VIII. A NALYSIS

In this section, we will compare RLCC, GCC, TCC, CCC,
and HCC from different network characteristics: number of
links, diameter, node degree, and bisection width.

A. Number of Links

The number of links in the network measure the connectiv-
ity of the network. Normally, for a network model, the number
of links is the fewer the better.

For RLCC, it is a2-dimensional ring lattice structure. The
number of links depends on the number of neighbors every
node is connected to (K). In Fig. 2,K is equal to4. The total
number of links in RLCC isnK2 , wheren is the total number
of individuals in the network.

For GCC, it is an extension of2-dimensional mesh with
wrap structure. Each node has8 local connected neighbors,
e.g., in Fig. 3,N1 has 8 local links toN2, N3, N4, N5, N6,
N7, N8, andN9, and 2 randomly selected long-range links,
e.g., in Fig. 3,N1 has 2 random long-range links toN10.
Therefore, the total number of links in GCC is5n.

For TCC, it is an extension of a binary tree. Here, we
assume the height of the binary tree ish. For the number of
links, we have the following conclusion:

For h = 0, there is only one node. So, there is no link.

Forh = 1, there are three nodes, which are fully connected.
Therefore, the total number of links is3;

For h = 2, there are7 nodes in the binary tree. The root
node has only2 connections (e.g.,N1 has 2 links: (N1, N2) and
(N1, N3) in Fig. 5(a)). Each node in the second level has6 con-
nections (e.g.,N2 has 6 links: (N2, N1), (N2, N3), (N2, N4),
(N2, N5), (N2, N6), and (N2, N7) in Fig. 5(a)), while each
node in the bottom level has only3 connections. Therefore,
the total number of links is(1× 2 + 2× 6 + 4× 3)/2 = 13.

For h ≥ 3, there are2h+1 − 1 nodes in the binary tree.
The root node has only2 connections. Each node in second
level has 6 connections, while each node in bottom level
has only3 connections. Each node between the second level
and bottom level has7 connections (e.g.,N4 has 7 links:
(N4, N2), (N4, N3), (N4, N5), (N4, N8), (N4, N9), (N4, N10),
and (N4, N11) in Fig. 5(a)). Therefore, the total number of
links is

(1× 2+2×6+22×7+...+2h−1×7+2h×3)/2 (1)

=7×
(

1+2+22+...+2h−2
)

+2h−1×3

=10×2h−1−7 = 10×2log2n−1−7.

For CCC, the number of links depends on the size of the
k-clique. We can get the number of links as the equation:
(n−k)×k+k×(n−1)

2 = (2n − k − 1) × k

2 . The first term is the
total number of links for outside clique nodes, and the second
term is the total number of links for the nodes in thek-clique.

According to the definition of the balanced hypercube (Def-
inition 1), for HCC, it is anm-dimensional balanced hypercube
with 22m nodes. Each node has2m number of links. Therefore,
the total number of links in HCC ism× 22m = n

2 × log2n.

B. Diameter

The diameter of a network is the longest of all the
calculated shortest paths in a network. In other words, once
the shortest path length from every node to all other nodes
is calculated, the diameter is the longest of all the calculated
path lengths. The diameter is representative of the linear size
of a network, which is an important measure of communica-
tion delay. Normally, the shorter the diameter, the lower the
communication delay.

The RLCC and GCC are based on the small world model,
in which, the diameter of the network is around 6 [18]. Six
degrees of separation means that everyone is six or fewer steps
away from any other person in the world, so that any two
people can be connected in a maximum of six steps.

The diameter of the binary treeT is the largest of the
following quantities: the diameter ofT ’s left subtree; the
diameter ofT ’s right subtree; the longest path between leaves
that goes through the root ofT (this can be computed from
the heights of the subtrees ofT ).

Theorem 1: In TCC, the diameterD of our proposed
binary tree is as follows:

D =

{

0, h = 0
1, h = 1

2(h− 1), otherwise
(2)

whereh is the height of the binary tree.

Proof: As we can see from Fig. 5, whenh = 0, there is
only one node; therefore the diameter is0. When h = 1, it
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is a three-node fully connected graph, which has diameter1.
When the height is larger than1, according to our proposed
binary tree structure, the leaf nodes can connect their ‘cousin’
nodes through their ‘parents’, which do not need to go through
the root. Therefore, the diameter is2(h− 1) in this situation.

Since, there are2h+1−1 nodes in a binary tree with height
h, we have

D =

{

0, n = 1
1, n = 3

2(log2(n+ 1)− 2), otherwise
(3)

wheren is the number of nodes.

In CCC, we can see clearly from Fig. 6, the distance
between two nodes insider the clique is 1. The distance
between two nodes outside the clique is 2. The distance from
one node inside the clique to another node outside the clique
is 1. Therefore, the diameter of CCC is 2.

Theorem 2: In HCC, The diameterD of m-dimensional
balanced hypercubes is as follows:

D =

{

2m, m is even orm = 1
2m− 1, m is odd other than1. (4)

The details of the proof can be found in [17]. The bal-
anced hypercube has a smaller diameter than the traditional
hypercube whenm (m > 1) is odd.

In RLCC and GCC, weak ties play an important role in
reducing the network diameter. Our proposed TCC, CCC, and
HCC remove the long-range links, since the long-range links
prevent the complex contagions. For fair comparison, if there
are only local links in the small world models, in RLCC, the
diameter of the ring lattice isn/2, which is much larger than
the diameters in TCC and HCC in large scale OMSNs. Since,
the diameter of2-dimensional mesh with wrap is2

⌊√
n

2

⌋

, for

GCC, the diameter of the grid is⌈√n⌉ − 1 [11].

C. Node Degree

The degree of a node in a network is the number of
connections or edges the node has to other nodes.

In RLCC, the average degree is equal to a predefined
parameterK, which determines the number of neighbors every
node is connected to. In Fig. 2, the node degree is4. In GCC,
the average node degree is10 (or 9), which is the summation
of its 8 nearest neighbors with Manhattan distance2 or smaller
and2 different long-range linked nodes (or 2 long-range links
connected to the same node, as shown in Fig 3).

Theorem 3: The node degree of TCC is smaller than or
equal to7.

Proof: In TCC, the degree for the top root is2. For the
bottom leaves, the node degree is3, which is one link to their
‘brother’, one link to their ‘parent’, and another link to their
‘uncle’. For the remaining nodes, the node degree is7, which
is the summation of the links to4 of its next generation (e.g.,
for nodeN4: (N4, N8), (N4, N9), (N4, N10), and (N4, N11) in
Fig. 5(a)), one link to its same generation (e.g., for nodeN4:

3 2
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3

3

3 2 2 3

(a) GCC 1

3 3
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(b) GCC 2
Fig. 8. Comparison of2-Complex Contagions Spreading Speed: the number
in the node is the activated step. 0 means the initial activated node, while 1
means the node activated in step 1.

(N4, N5) in Fig. 5(a)), and two links to its elder generation
(e.g., for nodeN4: (N4, N2) and (N4, N3) in Fig. 5(a)).

In CCC, the degree of the nodes which are outside thek-
clique is k. However, the degree of the nodes which belong
to the k-clique is n − 1. Therefore, CCC is not a load
balance architecture. In HCC, the degree of any node in an
m-dimensional balanced hypercube is equal to2m.

D. Bisection Width

Definition 2: Bisection widthis the minimum number of
arcs that must be removed to partition the network into two
equal halves.

In other words, bisection width is the minimum number of
communication links that can be removed to break it into two
equally-sized disconnected networks. Normally, the bisection
width is the larger the better.

For RLCC, the bisection width is according to the number
of neighbors (K). The bisection width of RLCC follows the
following theorem:

Theorem 4: The bisection width of RLCC withK neigh-
bors is smaller than or equal to2K.

Proof: For complex contagions,K must be larger than
1. For K = 2, RLCC will be a simple1-dimensional ring.
Therefore, in order to partition this ring, it only needs to break
2 links. In this situation, the bisection width is2. WhenK is
equal to3, RLCC will be a2-dimensional ring. The bisection
width is 4, which needs to break the links in 2 dimensions.
When K is 4, there are two more links which cross the 2
dimensions, which must be broken in order to split into two
halves. The bisection width is6 in this situation. WhenK is
larger than4, the additional links to connect the 2-dimensional
nodes in long distance also need to break. Thus, in order to
split the graph into two halves, it needs to break all links on
the boundary, which is2K. Therefore, The bisection width of
RLCC with K neighbors is smaller than or equal to2K.

For GCC, in order to partition the network into two equal
halves, we need to remove

√
n links. Therefore, the bisection

width in GCC is
√
n [11]. For TCC, we only need to break

the binary tree into its left subtree and right subtree to split the
graph into two halves. From Fig. 5, we can see clearly that we
only need to break the intermediate links to partition the tree
structure. Therefore, the bisection width is1 for n ≤ 3 or 5 for
n > 3. For CCC, the bisection width is according to the size
of the clique (k). The bisection width is(k(n− k + 1)) /2,
which splits thek-clique into halves, and other nodes also
into halves.
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TABLE I. CHARACTERISTICS OF COMPLEX CONTAGIONS MODELS

WITH n NODES

Model Number of Diameter Node Bisection
links degree width

RLCC nK

2
n

2 K 2K

GCC 5n
⌈√

n
⌉

−1 10 or 9
√
n

TCC 10·2log2n−1
−7 2(log2(n+1)−2) 7 5

CCC (2n−k−1) k

2 2 k or n−1
k(n−k+1)

2
HCC n

2 log2n log2n or log2n−1 log2n
n

2

Theorem 5: The bisection width of TCC isn/2.

Proof: For HCC, according to the matching pair property
(Property 1), the nodes in the balanced hypercube can be
partitioned into a set of matching pairs. Thus, in order to
split the structure into two halves, we need to break the
links between the matching pairs, which aren/2 links [17].
Therefore, the bisection width for HCC isn/2.

E. Discussion

We conclude our analysis results in Table I. Compared
with RLCC, our proposed TCC reduces the diameter; at
the same time, it does not increase the node degree and
bisection width. In other words, it increases the spread speed
for complex contagions, while it guarantees the structure to
be congestion-free. CCC has a higher bisection width and
lower diameter compared with RLCC and GCC. However, it
increases the number of links and node degree dramatically,
which means it is not suitable for sparse networks. HCC is a
more balanced model, which has a higher bisection width and
smaller diameter, while the number of links and node degree
are not big. HCC is also a congestion-free model, which is
fault tolerant and load balancing.

To evaluate the efficiency of the complex contagions, we
need to calculate the spreading speed. Here, we compare the
2-complex contagions spreading speed in different models in
a 16 nodes network (in the TCC model, there is only 15
nodes). From Figs. 2, 5, 7, and 8, we can see that RLCC is
the most inefficient model. Even for a small network, RLCC
needs 7 steps to activate all nodes. For GCC and TCC, the
initial activated nodes are very important, especially forTCC.
Figs. 5(a) and 5(b) indicate that if we choose higher level
nodes as the initial activated nodes, the spreading speed is
much faster. HCC is a load balance model. If we choose a pair
of matching nodes as the initial activated nodes, the spreading
speed can be controlled, and is very fast. For CCC, the spread
speed is the fastest among all approaches. If the initial activated
nodes belongs to thek-clique, they only need 1 step to spread
the information to all other nodes. At the same time, CCC is
also suitable fora-complex contagions, while the number of
required activated neighbors (a) is larger than2.

IX. SIMULATION

In this section, we compare the performance of our pro-
posed three complex contagions models (TCC, CCC, and
HCC) with two state-of-the-art models (RLCC and GCC).

(1) RLCC: for RLCC, it is a ring lattice structure, while
each node has4 nearest neighbors. It has three random
rewired ties connecting to long distance nodes, which are
the weak ties, as shown in Fig. 2. (2) GCC: the grid-based
complex contagions model follows the rules we presented in
Section III-C. In our simulation, we setα to 2. (3) TCC: we
create a complex binary tree with extra links, as discussed
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Fig. 9. Comparison of the delivery time for complex contagions.

in Section V. (4) CCC: in the simulation, we create a3-
clique based star structure. (5) HCC: the balanced hypercube
generation rule follows the Definition 1.

The contact table is generated with one contact per second,
while the probability of choosing the links is equal. Since,
we compare the 2-complex contagions, there are two initial
activated nodes, which have at least one common neighbor.

The simulation is compared in the following categories: (1)
One message 2-complex contagions: there is only one message,
which needs two activated nodes to trigger the adoption,
spreading by the initial activated nodes. (2)Multiple messages
2-complex contagions: there are multiple messages spreadings
at the same time by different initial pairs of activated nodes.
Due to the limited contact duration and bandwidth, at each
contact, we assume that only one message can be spread.
When one node keeps more than one message, it randomly
chooses one message from its buffer to propagate. In our
simulation, we will compare the spreading speed in different
stages: 20%, 40%, 60%, 80%, and 100% nodes activated. We
generate a 1,024-node network with 1,048,576 contacts. The
contact nodes are uniformly selected from the pairs of linked
nodes in these models.

A. Simulation Results

(1) One message 2-complex contagions: in Fig. 9(a), we
compare the delivery time for one message 2-complex con-
tagions in these five schemes. We can see that it takes the
longest time to active the nodes in RLCC, especially at the
final stage from 80% activated nodes to 100% activated nodes.
Since the three random rewired weak ties may not form a
‘broad’ bridge, the complex contagions cannot propogate to
long distance neighbors in this situation. CCC creates many
more links; therefore, it has the best performance in terms
of delivery time. GCC and HCC have a similar performance,
while GCC has shorter latency to finish the whole complex
contagions process than HCC.

(2) Multiple messages 2-complex contagions: in Figs. 9(b),
9(c) and 9(d), we conduct three comparisons for multiple
messages 2-complex contagions: two, four, sixteen messages,
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respectively. Since the spreading speed of CCC highly relies
on the k-clique, when the number of spreading messages
increases, the performance of CCC decreases. Therefore, ini-
tially, there are many traffics on thek-clique, which will
increase the complex contagions time. We find that HCC has
the shortest delivery time, especially when the amount of
messages increases. In HCC, every pair of matching nodes has
multiple common neighbors. Therefore, multiple messages can
be spread in parallel paths, which can achieve efficient complex
contagions. When there are four messages in the network,
RLCC cannot activate all nodes for these messages. When the
number of messages increases to 16, RLCC can only spread
all the messages to about 40% of nodes, while TCC and CCC
also cannot activate all other opinion-free nodes.

(3) Comparison of the delivery ratios: we compare the
delivery ratios in different number of spreading messages.
From Fig. 10, we can see that when the number of messages
increases, the delivery ratios for RLCC decreases dramatically.
When there are 16 messages, RLCC can only achieve about
40% delivery ratio. The delivery ratios of HCC are almost
100% in all situations. GCC, TCC, and CCC cannot achieve
high delivery ratio when the amount of messages increases.

B. Summary of Simulation

In the simulation, we compare the spreading speed of
different 2-complex contagions schemes in different numbers
of messages environments. Since CCC has many more links,
it has the best performance in terms of delivery time in single
message 2-complex contagions. However, when the amount of
messages increases, CCC has a congestion problem because
of the high dependence of thek-clique. Although HCC has a
greater delivery time than CCC and GCC in a single message
environment, it has the best performance for multiple messages
complex contagions. This is because that in HCC, the matching
pair of nodes has multiple adjacent neighbors, which can solve
the congestion problem. Since the random rewired long-range
links cannot reform a bridge for complex contagions, RLCC
has the largest delivery time and lowest delivery ratio among
all models. Because of the bottleneck problem, TCC has a
larger delivery time than GCC, CCC, and HCC.

X. CONCLUSION

Information dissemination is a key application for op-
portunistic mobile social networks (OMSNs). Most of the
recent research is focused on simple contagions, in which the
information dissemination only requires one activated source
to infect the opinion-free nodes. However, for some behaviors,
beliefs, or preferences, the willingness to participate may

require independent affirmation or reinforcement from multiple
sources, which called complex contagions.

In this paper, we study the complex contagions problem in
OMSNs. We propose three novel hierarchical complex conta-
gions schemes: tree-based, clique-based, and hypercube-based
complex contagions. The tree-based scheme is a complete
binary tree model. The clique-based scheme is a star structure
with a k-clique in the center. The hypercube-based scheme is
based on a balanced hypercube model. We compare the charac-
teristics of these five models in formal analysis and simulation.
The results show that CCC has the best performance in terms
of delivery time when there is only one message. When the
number of messages increases, HCC has the smallest delivery
delay among these five models. In this paper, we consider
the 2-complex contagions in undirected social networks. In
the future work, we will extend our research ina-complex
contagions in directed networks.
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