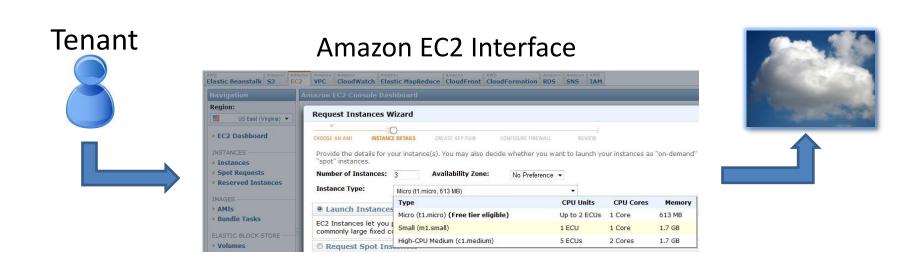
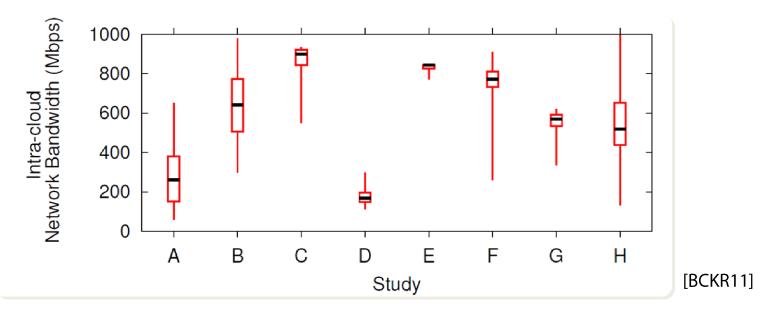


Leveraging Tenant Flexibility in Resource Allocation for Virtual Networks

Presenter: Sheng Zhang


Sheng Zhang, Zhuzhong Qian, Jie Wu, and Sanglu Lu Nanjing University & Temple University 5-AUG-2014 ICCCN'14@Shanghai, China

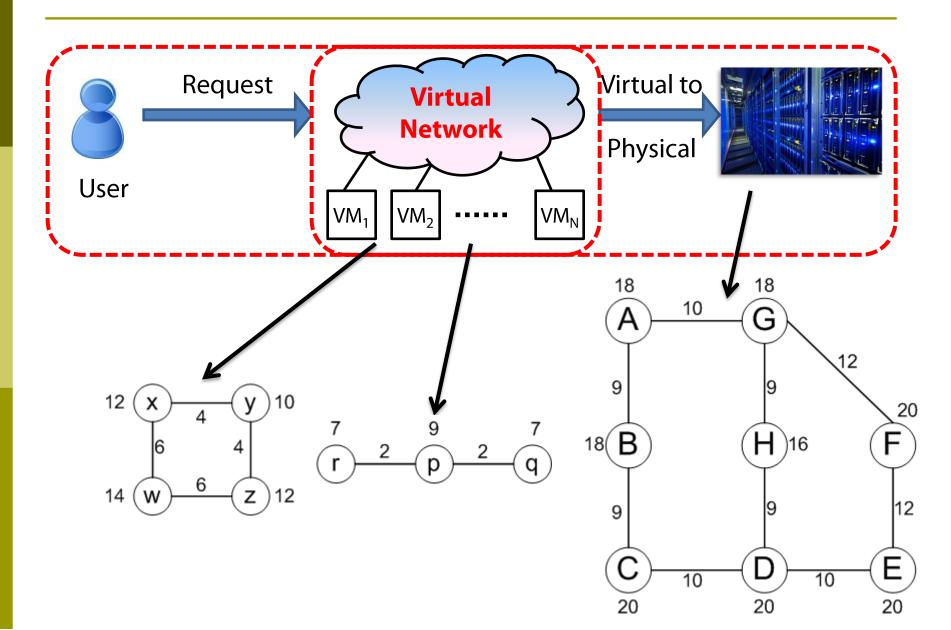
Cloud Computing



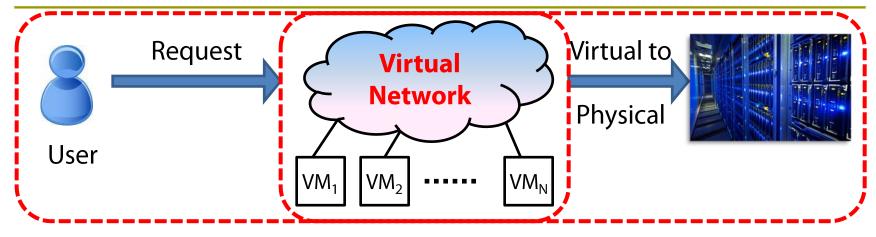
Bandwidth Guarantee? No.

- Current billing model is per-VM (CPU, storage, etc)
 - Amazon EC2 small instances: \$0.085/hour
 - No intra-datacenter network cost

Unpredictable Performance



○ When there is no bandwidth guarantee between VMs

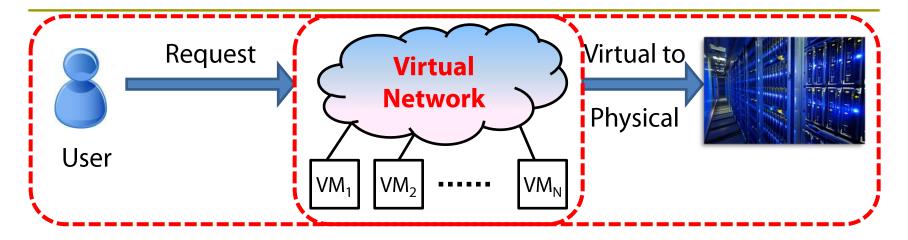

- Tenants will not migrate certain applications to clouds
- Providers cannot achieve high resource utilization, and thus lose revenue.

[BCKR11] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, "Towards predictable datacenter networks," in Proc. of ACM SIGCOMM 2011, pp. 242–253.

Virtual Networks as Better Interfaces

Previous Work

- Bin packing-based VM consolidation [WML11]
- Network-aware VM placememt [AL12]
- VC and VOC [BCKR11]
- Path splitting [YYRC08]
- Subgraph isomorphism [LK09]


[WML11] Consolidating virtual machines with dynamic bandwidth demand in data centers, INFOCOM 2011

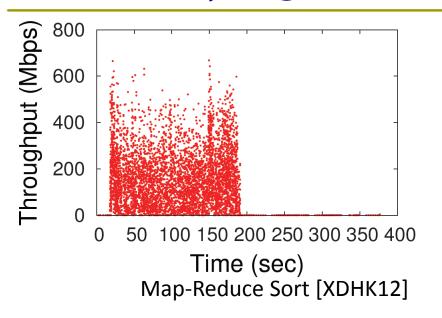
[AL12] Network aware resource allocation in distributed clouds, INFOCOM 2012

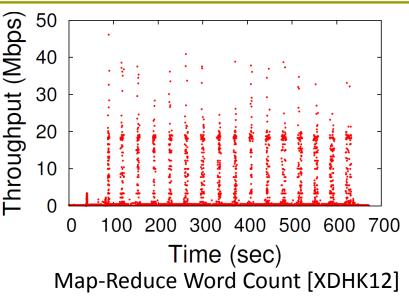
[BCKR11] Towards predictable datacenter networks, SIGCOMM 2011

[YYRC08] Rethinking virtual network embedding: substrate support for path splitting and migration [LK09] A virtual network mapping algorithm based on subgraph isomorphism detection, VISA 2009

Limitations of Previous Work

- ☐ Ignoring network requirements [WML11] [AL12]
- Tree topology [OCKR11]
- Fixed resource reservation [YYRC08] [LK09]


[WML11] Consolidating virtual machines with dynamic bandwidth demand in data centers, INFOCOM 2011


[AL12] Network aware resource allocation in distributed clouds, INFOCOM 2012

[BCKR11] Towards predictable datacenter networks, SIGCOMM 2011

[YYRC08] Rethinking virtual network embedding: substrate support for path splitting and migration [LK09] A virtual network mapping algorithm based on subgraph isomorphism detection, VISA 2009

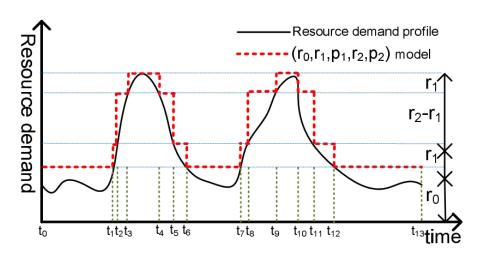
Time-Varying Resource Requirements

- Applications: different resource requirements during different executing phases
- \bigcirc Users change over time, causing fluctuating resource demands.

[XDHK12] D. Xie, N. Ding, Y. C. Hu, and R. Kompella, "The only constant is change: incorporating time-varying network reservations in data centers," in Proc. of ACM SIGCOMM 2012, pp.199–210.

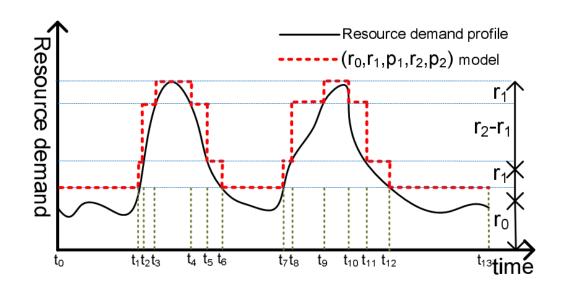
Content

- Demand Model
- Problem Formulation
- Solution
- Evaluation
- Conclusions


Demand Model

- The resource demand of a VM v at time t is denoted by R(v,t), which consists of
 - $R_0(v,t)$: basic part r_0 , always exists
 - $R_1(v,t)$: variable part r_1 , exists with a probability of p_1^v
 - $R_2(v,t)$: variable part r_2 , exists with a probability of p_2^v
- \bigcirc Tuple $< r_0, r_1, p_1, r_2, p_2 >$

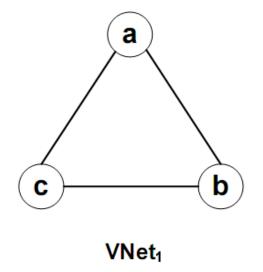
R(v,t)	r_0^{ν}	$r_0^{\nu} + r_1^{\nu}$	$r_0^{\nu} + r_2^{\nu}$	$r_0^{\nu} + r_1^{\nu} + r_2^{\nu}$
P	$(1-p_1^{\nu})(1-p_2^{\nu})$	$p_1^{\nu}(1-p_2^{\nu})$	$(1-p_1^v)p_2^v$	$p_1^{\nu}p_2^{\nu}$

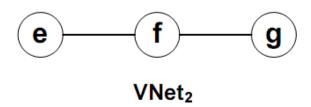

Probability distribution of R(v, t).

Tenant Flexibility

- Flexibly control the trade-off between performance and cost through adjusting $(r_0, r_1, p_1, r_2, p_2)$
- Providers charge less for shared resources than dedicated resources (i.e., the unit price for r_1 or r_2 is less than that for r_0).
- At one extreme, if a tenant cares only performance
 - Set $r_1 = r_2 = p_1 = p_2 = 0$
- At the other extreme, if a tenant wants to minimize cost
 - Set $r_0 = 0$

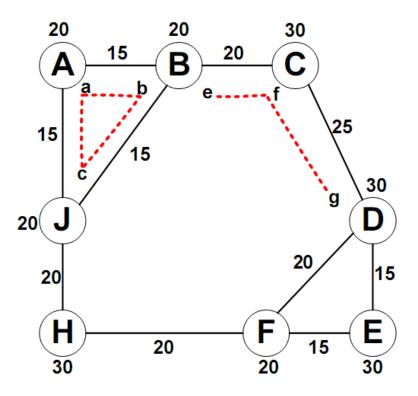
Some Other Good Properties


- Backwards-compatible
 - VDC, VC, VOC, etc. are special cases of our model
- Flexibly control the trade-off between model precision and complexity
 - By tuning # of parts in the model

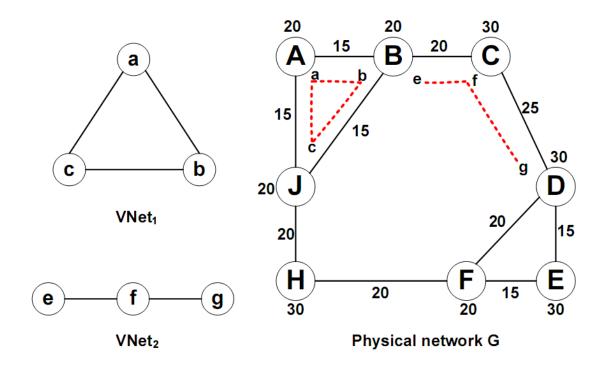

Content

- Demand Model
- Problem Formulation
- Solution
- Evaluation
- Conclusions

Virtual Network: VNet


- A weighted undirected graph
 - Vertices: VMs
 - Edges: links between VMs
- Each vertex v (resp. edge e) has a time-varying resource demand R(v,t) (resp. R(e,t))
- () lifetime: *It*

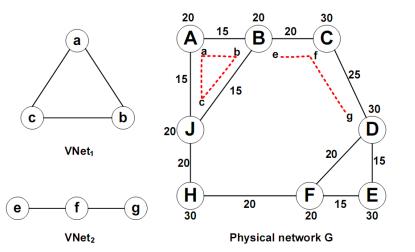
Physical Network

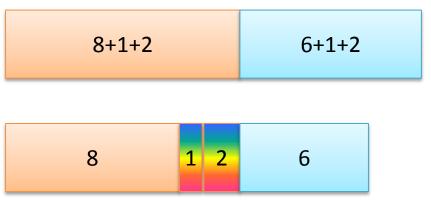

- A weighted undirected graph
 - Vertices: PMs
 - Edges: links between PMs
- Each vertex n (resp. edge e) has CPU (resp. bandwidth) capacity C(n) (resp. B(e))
- Obenote the set of simple paths between n_i and n_i by $P(n_i, n_i)$

Physical network G

Resource Allocation

- Virtual machine mapping
 - Different VMs map to different PMs
- Virtual link mapping
 - Virtual links map to physical paths




Collision Threshold (1/2)

- Resource demands from different VNets are mutually independent
- To improve physical resource utilization, we propose to share physical resources among variable parts of resource demands
- However, when more than one variable part occurs simultaneously, a collision happens.
- \bigcirc The cloud provider should provide probabilistic performance guarantee by bounding the maximum collision probability p_{th}

Collision Threshold (2/2): Example

- $\bigcirc R(b,t) = \langle 8,1,0.1,2,0.1 \rangle, R(e,t) = \langle 6,1,0.2,2,0.2 \rangle$
- If VMs b and e do not share physical resource
 - they would occupy a total of 20 units of resources.
- \bigcirc If resource sharing is exploited (assuming $p_{th}=0.1$)
 - Since $0.1 \times 0.2 = 0.02 < p_{th_i}$ we can safely share 1 (resp. 2) unit of physical resource between the first (second) variable parts of resource demands of these two VMs
 - they would occupy a total of 17 units of resources.

Objective

The revenue of accepting a VNet is

$$\mathbb{R}(VNet) = \left[\alpha \sum_{n \in V} (r_0^n + p_1^n r_1^n + p_2^n r_2^n) + \beta \sum_{e \in E} (r_0^e + p_1^e r_1^e + p_2^e r_2^e)\right] \cdot lt$$
Expectation

 \bigcirc Maximize cloud provider's revenue $\sum_{VNet} \mathbb{R}(VNet)$

Content

- Demand Model
- Problem Formulation
- Solution
- Evaluation
- Conclusions

Work-Conserving Allocation (WCA)

- Global stage
 - Virtual Machine Mapping
 - Virtual Link Mapping
- Local stage
 - Physical resource sharing among multiple variable parts of resource demands to achieve work-conserving utilization

Virtual Machine Mapping

- Sort VMs in the descending order of their respective expected resource demands
- Place each VM in that order in the unused PM with the most residual resource
 - Maximum-first fashion
 - Avoiding bottleneck
 - Early detection of requests that cannot be satisfied

Virtual Link Mapping

- Given a pair of VMs, map the virtual link between them to the shortest path between the corresponding PMs
- If we cannot find such a path, divide the bandwidth demand of the VL into two equal parts, and then map them separately.
- Keep splitting the demand into equal parts until we can successfully map them or the number of equal parts becomes larger than a threshold, say K.

The Local Stage Sharing (1/2)

Share physical resources among multiple variable parts of resource demands from different virtual networks

○Two demands <30,20,0.4,10,0.3> and <20,15,0.2,10,0.1> shares a physical machine which has 100 units of physical resources. The collision threshold is 0.1.

$$r_0^{V1} = 30$$

$$r_2^{v1} = 10$$

 $r_2^{v2} = 10$

$$r_0^{v2} = 20$$

The Local Stage Sharing (2/2)

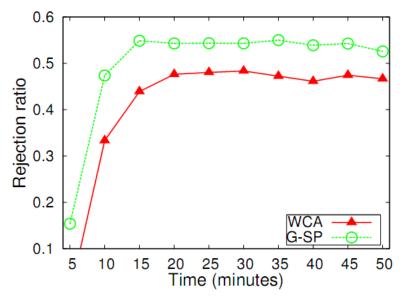
Share physical resources among multiple variable parts of resource demands from different virtual networks

$$r_0^{v1}$$
=30 r_1^{v1} =20 r_2^{v1} =10 r_0^{v2} =20 r_0^{v2} =20 AC(PM) =20

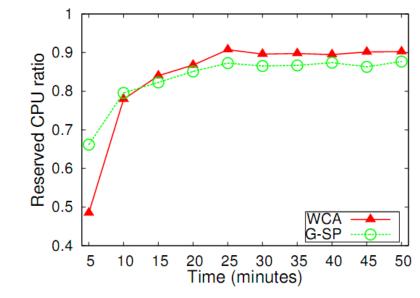
- Let's check whether a third demand <20,15,0.3,5,0.1> could be placed in this PM.
 - The basic part (i.e., 20) is OK
 - The first variable part (i.e., 15, 0.3) cannot be placed together with $r1^{v1}$ and $r1^{v2}$, because they would collide with a probability of 0.212, which is larger then 0.1.

Content

- Demand Model
- Problem Formulation
- Solution
- Evaluation
- Conclusions

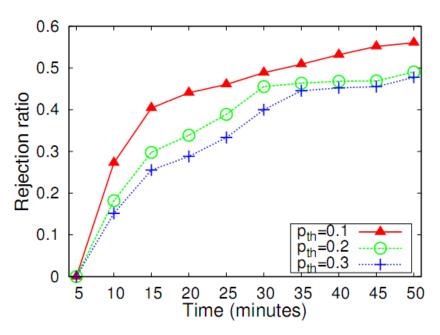

Simulation Setup (1/2)

- O Physical Network: 60 PMs, each pair of them is connected with a probability of 0.3
- CPU capacity of each PM: 100
- Bandwidth capacity of each PL: 100
- Collision threshold: 0.2
- \bigcirc # of VMs in a Vnet: [Avg-4, Avg+4]
- Each pair of VMs is connected with a probability of 0.3
- The peak resource demand of each VM or VL: [20, HR]
- The lifetime of each VNet follows an exponential distribution with an average of 300 seconds.

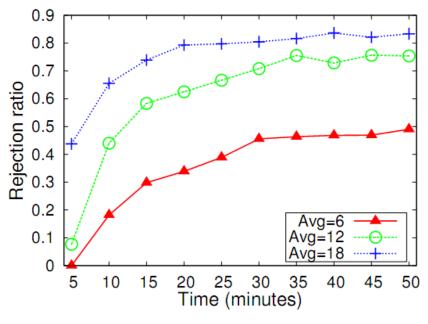

Simulation Setup (2/2)

Notation and its value by default	Definitions	
K=3	the maximum number of portions that	
K = S	a networking demand can be split into	
) = 1/12	the average interval between two	
$\lambda = 1/12$	consecutive VNets' arrivals	
$p_{th} = 0.2$	collision threshold	
Avg=6	the average number of VNs in a VNet	
HR=30	the maximum resource demand of a VN or VL	
$p_1 = 0.3$	the occurring probability of the 1st variable part	
$p_2 = 0.1$	the occurring probability of the 2nd variable part	

Simulation Results (1/3)

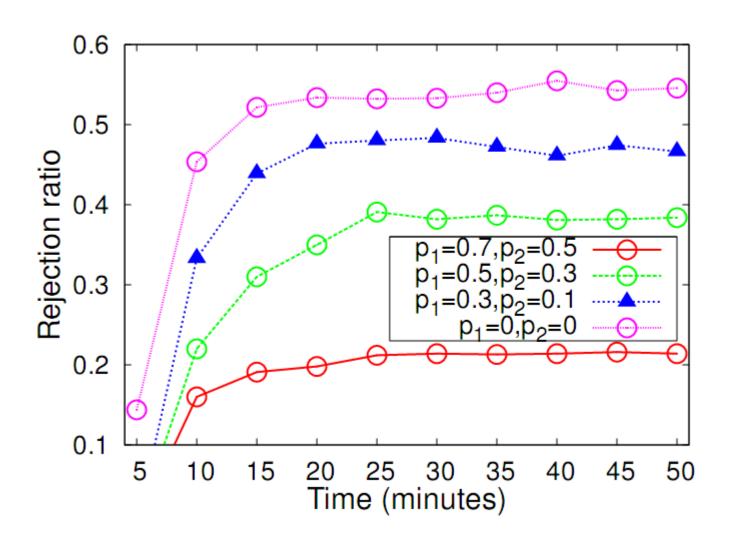


(a) Percentage of rejected requests



(b) Reserved CPU resource

Simulation Results (2/3)



(a) Rejection ratio with varying p_{th}

(b) Rejection ratio with varying Avg

Simulation Results (3/3)

Conclusions

- Opynamic resource demand model
 - Allows a tenant to flexibly control the trade-off between application performance and placement cost
- Work-conserving allocation (WCA) algorithm
 - VM mapping: maximum-first fashion
 - VL mapping: shortest path + adaptive path splitting
 - Local resource sharing: bin-packing
- Evaluations confirm the advantages of WCA.

Thanks for your attention!