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Abstract—Video streaming is one of the applications with the
highest traffic on the Internet. This high traffic leads to a lot of
workload on the video servers (data centers), and increases the
energy consumption of the servers. Reducing energy consumption
becomes more important in the case that the data centers use
renewable energy. The cost of these servers changes over time,
based on the availability of energy resources such as solar and
wind power. As a result, in order to reduce the cost of the servers,
we need to use a mechanism to reduce the load on the servers,
especially during times of energy cost increases. One way to tackle
this problem is to lease some storage clouds that work as proxies
during these periods of time, and provide the users with the
popular videos through these storage clouds. However, finding the
proper time during which the videos should be downloaded, and
the efficient amount of storage, is not straightforward. Moreover,
the popularity of the videos might change over different times of
day, and for different geographic locations. In this paper, we find
the optimal cloud lease that results in the minimum cost. For
this purpose, we model the problem as a linear programming
optimization, which can be solved in polynomial time. We also
propose an optimal solution for the case of multi-resolution video
coding, in which different users can request and watch the videos
with different qualities.

Keywords—Video streaming, renewable energy, storage cloud,
multi-resolution video, optimization, video-on-demand, network cod-
ing.

I. INTRODUCTION

Due to recent advances in technology, which make the
Internet more accessible, and the changes in life requirements,
people use video streaming widely and more frequently. Recent
studies show that video streaming is a dominant form of traffic
on the Internet; for example, the YouTube and Netflix servers
produce 20-30% of the web traffic on the Internet as shown in
recent studies [1], [2]. This video traffic increases the workload
on the video servers, and as a result, the energy consumption
of the servers. Because of limited fossil fuels resources and
global warming, green computing and using renewable energy
resources received a lot of attention from the community [3]–
[5] in recent years, as to reduce energy consumption and use
of the limited energy resources.

Reducing energy consumption becomes more important in
the case that the data centers use renewable energy. The cost of
these servers changes over time, depending on the availability
of renewable energy resources such as solar and wind power.
Consequently, we need to use a mechanism to use the resources
efficiently and reduce the workload on the servers, especially
when the energy cost increases. One efficient way to tackle this
problem is to use some helper nodes (proxies) that have been
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Fig. 1. Motivation example. (a) Direct streaming, expected requests: 10.
(b) Indirect streaming, expected requests: 10. (c) Direct streaming, expected
requests: 1. (d) Indirect streaming, expected requests: 1.

explored [6]–[10]. The helper nodes work in conjunction with
the servers to serve the users with the videos [11], [12], which
reduces the workload on the servers. The servers provide the
portion of the video files that cannot be obtained from the
helper nodes. These helper nodes can be considered as storage
clouds (proxy clouds) that can be leased for a period of time.
In the remainder of the paper, we use the terms proxy clouds
and storage clouds interchangeably.

In this work, we consider a set of video servers that use
renewable energy as their primary source of energy. However,
the renewable energy sources may not be available, or may not
be available in the right quantity; this may increase the energy
cost of the servers, as they need to use other power sources. In
order to minimize the video streaming cost, the company that
owns the video servers can lease some storage clouds, such as
Amazon, to help the servers in providing the popular videos
to the users. Using this policy, the load on the video servers
and their energy decreases. However, the company needs to
pay a leasing cost for the storage clouds. Thus, the efficiency
of leasing the storage clouds depends on the popularity of the
videos and the energy cost of the video servers.

Consider the example in Figure 1(a). We have one server
(data center) that use renewable energy as its power source,
one storage cloud, and one region of the users. Assume that
the available renewable energy is not sufficient for the data
center at the current time, and it need to use another source of
energy, which increases its cost. For simplicity, assume that we
have just one video with a rate and size equal to 1 Mb/s and
3.6 Gb, respectively. Also, the expected number of users that
request the video is 10. We assume that the storage energy cost
on the server and the cloud are equal to 5 per Mb. Moreover,
the bandwidth cost of the server to the users and the cloud is
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equal to 3 per Mb. The bandwidth cost from the cloud to the
users is equal to 2 per Mb.

We first compute the total cost in the case of direct
download from the server, which is shown in Figure 1(a).
The expected number of requests is equal to 10; thus, the
total bandwidth cost from the server to the users is equal
to 1 × 10 × 3 = 30. The storage cost of the server is
3.6×5 = 18 . As a result, the total cost of direct downloading
becomes 48. In the case of indirect streaming shown in
Figure 1(b), the bandwidth cost of the cloud and the server
become 1 × 10 × 2 = 20 and 1 × 3 = 3, respectively. Also,
the storage cost of the cloud is 3.6× 5 = 18. In this case, the
total cost becomes 41. Therefore, indirect streaming is more
efficient than direct streaming.

The popularity of the videos has an effect on the efficiency
of direct or indirect streaming. Assume that the costs are the
same as before, but the expected request for the video is 1.
Figure 1(c) shows the costs in the case of direct streaming. The
downloading cost of direct streaming becomes 1× 1× 3 = 3.
The storage cost remains the same, as in the previous case.
Thus, the total cost is 21. The downloading costs from the
server and cloud in the case of indirect streaming are equal
to 1 × 1 × 2 = 2 and 1 × 3 = 3, respectively. The storage
costs are the same as in the case of 10 requests. Therefore,
the total cost becomes equal to 23. Consequently, when the
popularity of the video decreases, direct streaming is more
efficient than the streaming using cloud. Figure 1(d) shows
the costs of indirect streaming.

In this work, we answer the following questions: at a
given time, how much storage and bandwidth should be leased
from the storage clouds to minimize the total video-on-demand
(VoD) streaming cost? Which videos, and which fraction of
them, should be provided by the servers to the users directly,
and which of them should be served indirectly by the storage
clouds? We study video streaming using storage cloud proxies
and servers that use renewable energy, and characterize the
minimum cost VoD streaming using linear programming. We
also propose a linear programming optimization for the case
of multi-resolution VoD streaming.

The remainder of this paper is organized as follows: In
Section II, we introduce the settings. We provide a background
on network coding and propose our linear network coding
scheme in Section III. We also motivate the optimal video
streaming problem in Section III. We formulate the problem
in the case of single and multi-resolution videos as a linear pro-
gramming in Section IV. We evaluate our proposed methods
through comprehensive simulations in Section V. We conclude
the paper in Section VI.

II. SYSTEM SETTING AND PROBLEM DEFINITION

We consider a set of data centers that provide a set of
videos to the users, as shown in Figure 2. The servers are
located in different geographic locations, e.g. on different
continents. Also, the users are distributed over a set of regions.
The servers use renewable energy as their primary power
source. As a result, their storage and bandwidth cost changes
over time. However, the future costs are not known exactly,
and we just know the expected cost at different times of a
day. In addition to the data centers, we can lease storage and
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Fig. 2. The system architecture.

bandwidth from storage clouds, that work as proxies, to keep
the videos and provide them to the users. In this way, we can
turn off some part of the data centers and reduce the cost once
the renewable sources are not available, and the cost of the
servers are high.

We represent the set of storage clouds, servers, users’
regions, and videos as H , S, R, and M , respectively. We
assume that the expected requests for each video at different
times are known (calculating the expected requests is beyond
the scope of this paper), and represent the expected requests for
video m from region i at time t as Eim(t). We also represent
the downloading rate of region i over the video m from cloud
j and sever k at time t as xjim(t) and xkim(t), respectively.
We represent the downloading cost of region i from cloud
j and server k at time t as c1ji(t) and c1ki(t), respectively.
Moreover, c1kj(t) represents the download cost from server k
to storage cloud j. The lease cost of cloud j and the storage
cost of server k at time t are represented as c2j(t) and c2k(t),
respectively. We show the size and rate of video m as vm, and
rm, respectively. Table I summarizes the notations used in this
paper.

The cost in our model consists of the downloading and
storage costs. The storage cost itself is the summation of the
leasing cost of the clouds and the cost of the storages on the
servers. Our goal is to provide the requested videos to the users
with the minimum total cost. For this purpose, we need to find
the fraction of the requests that should be served directly by
the servers, and the fraction of help that should be provided
by the cloud storages.

If we assume that the popularity of the videos, the band-
width cost, and storage cost of the cloud storages and the
servers are fixed, then we just need to calculate the cost
of direct transmission of each video from the severs to the
different regions, and the cost of indirect service from the
storage clouds. Then, the solution with the smaller cost should
be selected. However, in our model, the bandwidth and storage
cost changes over time, and we just have some estimations
about the future possible costs. Moreover, the popularity of
the videos are not fixed. As a result, it might be more efficient
to download and store some of the videos that are not popular
at the current moment, but which we expect to be requested
more frequently in the next few hours, since we expect the
renewable energy not to be available at that time.
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TABLE I. THE SET OF SYMBOLS USED IN THIS PAPER.

Notation Definition
S/H The set of servers/storage clouds
R/M The set of users’ regions/videos
T The total number of time slots
xjim(t)/xkim(t) Upload rate of video m from the storage cloud j/server k

to the users in region i-th at time t
ykjm(t) The fraction of video m downloaded from server k to

storage cloud j at time t
ykjml(t) The fraction of layer l of video m downloaded from server

k to storage cloud j at time t
fjm(t) The fraction of video m stored on cloud j at time t
fjml(t) The fraction of the layer l-th layer of video m stored on

storage cloud j at time t
c1ki(t) The cost of download by users in region i from server k at

time t
c1kj(t) The cost of download from server k to cloud j at time t
c1ji(t) The cost of download by users in region i from storage

cloud j
c2j(t)/c2k(t) The storage cost of cloud j/server k at time t
wk(t)/wj(t) The total download cost from server k/storage cloud j at

time t
zk(t)/zj(t) The total storage cost of server k/cloud j at time t
Eim/Eiml The expected number of users from region i that request

video m/l-th layer of video m
L The number of layers of the video

III. NETWORK CODING BACKGROUND AND VIDEO
CODING SCHEME

In this section, we first provide a short background on
network coding. We then propose the network coding scheme
that we use to code the video packets.

A. Network Coding Background

In order to use the resources optimally, we need a mech-
anism to distribute the packets of the videos on the storage
clouds, since depending on the lease cost and the popularity
of the videos it might not be efficient enough to store the
videos in full. Network coding [13], [14] helps simplify the
content distribution problem, and to solve it in an efficient way.
Network coding [15], [16] is first introduced in [13] for wired
networks, as it is shown to solve the bottleneck problem in
the single multicast problem. A useful algebraic representation
of the linear network coding problem is provided in [17]. The
authors in [18] show that selecting the coefficients of the coded
packets randomly achieves the capacity asymptotically, with
respect to the finite field size.

The coded packets in random linear network coding are
random linear combinations of the original packets over a finite
field. The general form of the coded packets is

∑n
i=1 αi ×

pi. Here, p and α are the packets and random coefficients,
respectively. The packet pi can be an original packet or a coded
packet. Using random linear network coding, we are able to
decode the random coded packets using any set of n linearly
independent coded packets. In order to decode the packets,
Gaussian elimination for solving a system of linear equations
can be used. Random linear network coding can be used in a
variety of applications, such as providing reliable transmissions
and increasing the throughput of networks. It also simplifies
the content placement on storages.

B. Video Coding Scheme

In order to provide a fluid data model and simplify the
distribution of the video packets, we perform intra-layer coding
inside each video. For this purpose, we partition each video

into equal size segments of packets, and linearly code the
packets of each segment using random coefficients. Figure 3(a)
shows the packets of a video, which are partitioned to a set of
segments. Figure 3(b) shows the encoded video. The coeffi-
cients are not shown in the figure for simplicity. For example,
p1+p2+p3+p4 means α1p1+α2p2+α3p3+α4p4, where α1

to α4 are random coefficients. Therefore, the encoded packets
of each segment in Figure 3 are different.

Intra-layer network coding helps us to simplify the place-
ment of the video packets on the clouds. Without network
coding, the placement becomes a hard problem, as we need to
decide which packets of each video should be stored on each
cloud. Moreover, this determines which packet of each video
should be transmitted to a user from the servers, and which
of them should be transmitted from the clouds. In contrast,
in the case of random linear network coding, each packet has
the same contribution and importance; as a result, once a user
receives a sufficient number of encoded packets, he can decode
them and retrieve the original packets.

We store the packets uniformly from each segment of the
video m on a storage cloud. This enables the storage clouds to
serve any users watching video m, regardless of their playback
time. Using this scheme, in order to store a fraction f of a
video on a storage cloud, we store f×n random linearly coded
packets of each segment on the storage cloud. For instance,
in order to store half of the coded video in the example,
Figure 3(b), on a storage, we store 2 random linear coded
packets of each video segment on the storage. Note that the
2 stored coded packets of each segment in Figure 3(c) are
different, since they have different random coefficients. We
did not show these coefficients for simplicity. Assuming that
the rate of video m is rm, the storage cloud can supply at the
rate of f × rm to the users that watch video m.

Delivering the coded packets of the current segment from
the storage clouds and the servers to a user with different
delays might result in a video lag problem. The reason is that
the user cannot decode the segment until it receives a sufficient
number of coded packets. In order to resolve this problem,
each user needs to buffer the received coded packets of the
segments and delay the playback of the video for a specific
amount of time. Using this approach, the differences of the
transmission delays do not result in a playback lag. We do not
address computing the buffering time, since that is beyond the
scope of our current work.

IV. VIDEO-ON-DEMAND STREAMING WITH STORAGE
CLOUDS

In our model, downloading from the server nodes and the
storage clouds has a cost. In the case of direct downloading
from the servers, the download cost includes the storage and
bandwidth cost of the server to the users. In the case of indirect
downloading, the downloading cost includes downloading the
videos from the server nodes to the storage clouds, and
downloading the video stored on the cloud by the users.
Consequently, it might be efficient to pay the cost to download
the videos from the servers to the clouds, and the storage
lease cost, and then, reuse the videos stored on the clouds
several times. However, because of the storage cost of the
storage clouds, it might not be efficient to store unpopular
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Fig. 3. Network coding scheme. The coefficients are not shown for simplicity; (a) Segmentation of an original video; (b) Linear network coding inside each
segment; (c) storing a half portion of the video.

videos on the clouds. Moreover, depending on the costs and
the current stored videos on the storage clouds, the economic
policy might be the partial storing of some videos. These
challenges make the optimization problem hard, even in the
case of static networks.

One storage cloud that has the smallest cost might be
sufficient to minimize the total streaming cost. However, in
our formulations, we consider the general case that multiple
clouds can be used. The idea behind using multiple clouds is
that, some regions might have some local cloud systems with a
smaller access (bandwidth) cost for that region. Moreover, by
considering multiple clouds, the optimization becomes more
general, and the single cloud is just a simplification of the
scheme that we propose. We first formulate the problem of
minimum cost video streaming, using storage clouds as a linear
programming. We then modify it to the case of multi-resolution
video streaming.

A. Single-layer Videos Streaming

We can model this optimization problem in the case of
intra-layer coding as in the linear programming in Figure 4.
The objective function (1) is minimizing the total cost of
downloading the videos, which consists of downloading and
storage costs. Here, wj(t), wk(t), zj(t), and zk(t) represent the
total downloading cost and the storage cost of the cloud j and
server k at time t, respectively. In the set of Constraints (2),
we multiply the cost of downloading from cloud j for different
regions by the downloading rate of the links, and the rate of
the videos to compute the total downloading cost from storage
cloud j. The downloading cost from a server includes the
downloading cost to the users and the storage clouds, which
are computed in the set of Constraints (3).

In the set of Constraints (4), we multiply the storage lease
cost by the fraction of stored video and the size of the video.
The summation in Equation (5) is the total storage cost of
server k due to the services provided directly to the users.
Here, we divide the download rate of video m from the server
by the expected number of users in region i to find the average
service rate to each user that region. For each server, we take
the maximum value of its service rate over different regions
to find the fraction of storage that is required to be turned on
(For example, if for multiple regions, a server needs to serve
half of a video that is stored on 2 storages; one of the storages
can be turned off). We then multiply the maximum value by
the size of the video and the storage cost.

The fraction of each video stored on a storage cloud node
at time t cannot exceed the fraction of the video that is
downloaded from the server nodes at time t plus the fraction of

stored video at the previous time slot t−1, which is represented
as the set of Constraints (6). Each cloud cannot provide a video
to the users more that the portion of the video that is stored on
it, which is represented as the set of Constraints (7). We divide
the download rate for each region by the expected number of
users served by the cloud j, to compute the average download
rate provided for each user in that region. Each user needs to
download its requested video at least at the rate of the video
to be able to decode it. For this purpose, we use the set of
Constraints (8) to make sure that the total download of the
expected users in region i that request video m is not less
than the rate of video m. The variable yjml(t) is the fraction
of video m downloaded by cloud j from server k. As a result,
its value should be in the range of [0, 1], as shown in the set
of Constraints (9).

Theorem 1: The proposed linear programming in Figure 4
can be solved in a polynomial time.

Proof: In the case that, the number of variables and
constraints are a linear function of the input size, the solution
of a linear programming optimization can be calculated in
polynomial time [19]. Therefore, we need to show that the
number of constraints and variables in our proposed optimiza-
tion are polynomial.

The number of variables xjim(t), xkim(t), and ykjm(t)
are equal to |H| × |R| × |M | × T , |S| × |R| × |M | × T , and
|S| × |H| × |M | × T , respectively. Moreover, the number of
fjm(t) are equal to |H|×|M |×T . We have T variables w and
z for each server and storage cloud. As a result, the number
of w and z variables are equal to 2× (|S|+ |H|)× T .

The number of Constraints (2) and (3) are equal to |H| ×
T and |S| × T , respectively. Also, we have |H| × T set of
Constraints (4). For each storage cloud, video, and time, we
have one Constraint (6), so in total |H|× |M |×T constraints.
The number of Constraints (7) and (8) are equal to |R|×|H|×
|M | × T and |R| × |M | × T , respectively.

The set of Constraints (5) can be converted to the following
equivalent linear form:

z′km(t) ≥ xkim(t)

Eim(t)
, ∀k, t,m, i : k ∈ S, i ∈ R, t ∈ [1, T ]

zk(t) ≥
∑
m∈M

z′km(t)vmc2k(t), ∀k, t : k ∈ S, t ∈ [1, T ]

where, z′km(t) is an axillary variable for converting the max
operation in Constraint (5) to a linear form. Consequently,
the number of variables z′km(t) are equal to |S| × |M | × |T |.
Moreover, the number of above two set of constraints are equal
to |S| × |M | × |R| × T and |S| × T .
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min
T∑

t=1

[ ∑
j∈H

[wj(t) + zj(t)] +
∑
k∈S

[wk(t) + zk(t)]
]

(1)

s.t. wj(t) ≥
∑
i∈R

∑
m∈M

xjim(t)rmc1ji(t), ∀j, t : j ∈ H, t ∈ [1, T ] (2)

wk(t) ≥
∑
i∈R

∑
m∈M

xkim(t)rmc1ki(t) +
∑
j∈H

∑
m∈M

ykjm(t)vmc1kj(t), ∀k, t : k ∈ S, t ∈ [1, T ] (3)

zj(t) ≥
∑
m∈M

fjm(t)vmc2j(t), ∀j, t : j ∈ H, t ∈ [1, T ] (4)

zk(t) ≥
∑
m∈M

max
i∈R

(xkim(t)

Eim(t)

)
vmc2k(t), ∀k, t : k ∈ S, t ∈ [1, T ] (5)

fjm(t)− fjm(t− 1) ≤
|S|∑
k=1

ykjm(t), ∀j,m, t : j ∈ H,m ∈ M, t ∈ [1, T ] (6)

xjim(t)

Eim(t)
≤ fjm(t)rm, ∀i, j,m, t : j ∈ H, i ∈ R,m ∈ M, t ∈ [1, T ] (7)∑

k∈S

xkim(t) +
∑
j∈H

xjim(t) ≥ Eim(t)rm, ∀i,m, t : i ∈ R,m ∈ M, t ∈ [1, T ] (8)

0 ≤ yjm(t) ≤ 1, ∀j,m, t : j ∈ H,m ∈ M, , t ∈ [1, T ] (9)

Fig. 4. Optimization in the case of single-layer videos.

(a) Original (b) Layer 1 (c) Layer 2

(d) Layer 3 (e) Layers 1 & 2 (f) Layers 2 & 3

Fig. 5. Multi-resolution video with 3 layers.

B. Multi-resolution Video Streaming

In this section, we extend the proposed optimization to
the case of multi-resolution video coding [20]–[22]. In multi-
resolution codes (MRC), videos are typically divided into a
base layer and a set of enhancement layers [21], [23]. The
base layer (layer 1, or in some references, layer 0) is required
to watch the video, but the enhancement layers augment
the quality of the video streaming. Having access to more
layers increases the quality of the video; however, the i-
th enhancement layer is almost not useful unless all of the
enhancement layers with a smaller index are provided. The
reason we say almost useless is that the output of the decoding
contains just some shadows, without the required details. In
Figure 5(a), an original image is shown, and Figures 5(b)-(d)
show the constructed layers from this image. The first layer
is the most important layer, which is required to watch the
video. Figures 5(c) and (d) depict that layers 2 or 3 cannot be
used without all of the layers with a smaller index. Figure 5(f)

Layer 1

Time

(a) (b)Intra-layer coding
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Fig. 6. Network coding in the case of multi-resolution videos. The coefficients
are not shown for simplicity; (a) A multi-resolution video with 3 layers; (b)
intra-layer linear network coding among the packets of each layer.

shows that decoding layers 2 and 3 together, without layer 1,
is almost useless, as well. Combining layer 2 to and layer 1
together increases the quality of the image, as illustrated in
Figure 5(e).

Using multi-resolution videos has three advantages. Firstly,
the users can select a lower video quality once they have
a video lag problem because of a connection problem or
bandwidth limitation. Secondly, the users can save their 4G
data if they have download limitations. Thirdly, switching to
a lower quality reduces the load on the server and the storage
clouds, which reduces the total cost of the system.

Our coding scheme is similar to that of the single layer
video. The only difference is that each video has several
layers, and each layer has its own segmentation. The coding
is performed among the packets of the same segment and
the same layer, which is called intra-layer network coding.
Consider the 3-layers video in Figure 6(a). Each segment of
each layer contains 2 packets. For instance, the packets in the
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min
T∑

t=1

[ ∑
j∈H

[wj(t) + zj(t)] +
∑
k∈S

[wk(t) + zk(t)]
]

(10)

s.t. wj(t) ≥
∑
i∈R

∑
m∈M

L∑
l=1

rmlxjiml(t)c1ji(t), ∀j, t : j ∈ H, t ∈ [1, T ] (11)

wk(t) ≥
∑
i∈R

∑
m∈M

L∑
l=1

xkiml(t)rmc1ki(t) +
∑
j∈H

∑
m∈M

L∑
l=1

ykjml(t)vmlc1kj(t), ∀k, t : k ∈ S, t ∈ [1, T ] (12)

zj(t) ≥
∑
m∈M

L∑
l=1

fjml(t)vmlc2j(t), ∀j, t : j ∈ H, t ∈ [1, T ] (13)

zk(t) ≥
∑
m∈M

L∑
l=1

max
i∈R

(
xkiml(t)/

[ L∑
l′=l

Eiml′(t)
])
vmlc2k(t),∀k, t :∈ S, t ∈ [1, T ] (14)

fjml(t)− fjml(t− 1) ≤
|S|∑
k=1

ykjml(t) ∀j,m, t : j ∈ H,m ∈ M, t ∈ [1, T ] (15)

xjiml(t)/
[ L∑
l′=l

Eiml′(t)
]
≤ fjml(t)rml, ∀i, j,m, t : j ∈ H, i ∈ R,m ∈ M, t ∈ [1, T ] (16)

∑
k∈S

xkiml(t) +
∑
j∈H

xjiml(t) ≥ rm

L∑
l′=l

Eiml′(t) ∀i,m, l, t : i ∈ R,m ∈ M, 1 ≤ l ≤ L, t ∈ [1, T ] (17)

0 ≤ yjml(t) ≤ 1 ∀j,m, l, t : j ∈ H,m ∈ M, 1 ≤ l ≤ L, t ∈ [1, T ] (18)

Fig. 7. Optimization in the case of multi-resolution videos.

first segment of layer 1 are p1 and p2. As a result, the coded
packets over the first segment of layer 1 are in the form of
α1p1 + α2p2, where α1 and α2 are random coefficients. The
encoded layered video is shown in Figure 6(b). Note that we
did not show the coefficients in Figure 6(b) to simplify the
example. In this example, in order to store half of a video layer,
we can store one random linear coded packet of each segment
of that layer. In this paper, we do not consider intra-layer
network coding. The reason is that, in our previous work [24]
we found that, in practice, the effect of inter-layer network
coding is marginal. As a result, because of more computational
complexity of joint inter- and intra- layer network coding, we
avoid it in this work.

We assume that each layer of the video m has a constant
streaming rate rm and size vm, and each video contains L
video layers. We extend the variables used to formulate the
single-layer video streaming to the case of multi-resolution
videos, as follows. Variables xjiml(t) and xkiml(t) are the
downloading rate from storage cloud j and server k to the
users in region i over the l-th layer video m at time slot
t, respectively. We use variables ykjml(t) and fjml(t) to
represent the fraction of downloaded layer l of video m at time
slot t from server k to cloud j and the fraction of the video
layer stored on the storage cloud, respectively. The variable
Eiml represents the expected number of users in region i that
requested the first l layers of video m. Moreover, we assume
that the size of the l-th layer of video m and its rate are equal
to vml and rml, respectively. The download and storage costs
are the same as in the previous section.

The optimization problem in the case of intra-layer coding

can be modeled as the linear programming in Figure 7.
The objective function is similar to (1) and the the set of
constraints (15) are similar to (6). The difference between the
optimization in Figure 7 and Figure 4 is that each video in 7
has several layers. In the set of Constraints (14), in order to find
the average number of users that need to receive layer l, we
divide xkiml(t) by set of users that their number of requested
layers is more than or equal to l layers. The reason is than, as
mentioned before, the video layers have a prefix format. As a
result, the users that request l′ ≥ l layers need to receive video
layer l to decode the layers 1 to l′. For the same reason we
divide xkiml(t) by the summation of the expected users that
request l to L number of layers in the set of Constraints (16).

Theorem 2: The proposed linear programming in Figure 7
can be solved in polynomial time.

Proof: The proof is similar to that in Theorem 1. The only
difference is that the number of some variables and constraints
is multiplied by the number of layers L. As a result, the number
of variables and constraints is still a linear function of the input
size.

V. SIMULATIONS

In this section, we compare the proposed VoD streaming
using storage clouds with VoD streaming without using storage
clouds. We first report our result in the case of single-layer
videos. Then, we present the simulation result for multi-layer
videos.
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A. Simulation Setting

In order to evaluate our proposed method, we developed
a simulator in the MATLAB environment. For the case of
streaming without storage clouds, we modify our proposed
method by removing the variables and constraints that corre-
spond to the storage clouds. The constraints that are removed
include Constraints (2), (4), (6), (7), and (9). Moreover, wj

and zj are removed from the objective function (1). The last
change is that we no longer have the second summations in
Constraints (3) and (8).

We run the simulations on 100 settings, in which the
expected number of requests for each video, storage, and
bandwidth costs are chosen randomly. The ranges of the
random numbers are mentioned for each figure in the next
sections. The number of servers, clouds, regions are set to 3.
The number of videos in the simulations are set to 30. The
rate and the size of each video is set randomly in the range of
[1, 2] Mb/s and [3.6, 7.2] Gb, respectively. The reason for not
choosing a larger number of videos is that it just increases the
run time of the simulations, and it does not have any effect on
the performance rate of our cloud-based streaming compared
to the direct streaming scheme.

B. Single-Layer Video Streaming

In the first experiment, we evaluate the effect that the
storage cost has on the total VoD streaming cost in Figure 8(a).
The expected requests for each video is randomly set to a
number in the range of [1, 10]. The bandwidth cost from the
servers to the users, servers to the cloud, and cloud to the
users are chosen in the ranges of [2, 5]. The storage cost of
the servers and the clouds are shown in the x-axis of the figure.
As it is expected, increasing the storage cost of the clouds and
the servers increases the total cost of both of the direct and
cloud-based streaming. Figure 8(a) shows that the total cost of
the direct streaming is more than 20% more than that of the
cloud-based streaming.

We measure the effect of cloud bandwidth cost on the
total streaming cost in Figure 8(b). The storage cost of the
clouds and servers are set in the range of [2, 5]. Also, the
bandwidth cost from the servers to the users and servers to
the clouds are set randomly in the range of [2, 5]. As the
bandwidth cost of the clouds increases, the total streaming cost
of the cloud-based streaming method becomes closer to that of
streaming without cloud. However, the total cost of the cloud-
based streaming never exceeds that of the direct streaming,
since even in the cloud-based streaming, we can provide the
videos to the users directly from the servers in the case that
the total cost of the cloud-based streaming is more than that
of the direct streaming. In Figure 8(b), the streaming cost of
the direct streaming is up to 50% more than that of the cloud-
based streaming.

In the next experiment, we study the effect that the number
of expected requests has on the total cost of our proposed
method. We set the storage cost of the clouds and servers in
the range of [2, 5]. The bandwidth cost from the servers to
the users, servers to the clouds, and clouds to the users are
chosen in the ranges of [1, 8], [5, 8], and [2, 5], respectively.
Figure 9(a) shows that the total streaming cost of both of the
methods increase as the expected requests increase. Moreover,
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Fig. 8. The total VoD streaming cost in the case of single-layer videos.
Number of servers, clouds, and regions is equal to 3. C1ki ∈ [2, 5], C1kj ∈
[2, 5], Eim ∈ [1, 10]. (a) C1ji ∈ [2, 5]. (b) C2k ∈ [2, 5], C2j ∈ [2, 5].
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Fig. 9. Single-layer video streaming. Number of servers, clouds, and regions
is equal to 3, C1ki ∈ [1, 8], C1kj ∈ [5, 8], C1ji ∈ [2, 5], C2k ∈ [2, 5],
C2j ∈ [2, 5]. (a) Effect of expected number of requests on the total cost. (b)
Empirical CDF of the performance of cloud-based streaming over streaming
without cloud, Eim ∈ [15, 20].

the efficiency of using storage clouds increases as the expected
number of requests increases. The reason is that, the download
cost of cloud-based streaming consists of bandwidth cost from
servers to the clouds and clouds to the users. As a result, even
if the bandwidth cost of the clouds is less than the bandwidth
cost of the servers to the user, indirect downloading might
not be efficient in the case of few expected requests for a
video. In contrast, once the popularity of the videos increases,
it becomes more beneficial to pay the cost of downloading
the videos from the servers to the clouds once, and then use
the less expensive links (if exist) of the clouds to provide the
videos to the users.

Figure 9(b) shows the empirical CDF of the cloud-based
streaming over streaming without cloud. We define the per-
formance as the cost of streaming without cloud divided by
the cost of cloud-based streaming. The figure shows that in
50% of the cases, the performance of cloud-based streaming
is between 1.35 and 1.85. Moreover, in 20% of the cases, the
performance of our approach is between 1.50 and 1.85.

C. Multi-Resolution Video Streaming

For the case of video streaming without storage clouds,
we modify the proposed linear programming by removing the
variables and constraints related to the storage clouds. For
this goal, we remove Constraints (11), (13), (15), (16), and
(18). Furthermore, wj and zj are removed from the objective
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Fig. 10. Multi-resolution video streaming. Number of servers, clouds, and
regions is equal to 3. C1ki ∈ [2, 5], C2k ∈ [2, 5]. (a) Eim ∈ [1, 10],
C1kj ∈ [2, 5], C1ji ∈ [2, 5]. (b) C1kj ∈ [1, 8], C1ji ∈ [5, 8], C2j ∈ [2, 5].

function (1). Finally, we do not have the second summations
in Constraints (12) and (17). In the simulations with multiple-
resolution videos, we set the number of layers to 3.

In Figure 10(a), we evaluate the effect of cloud storage cost
on the total streaming cost. The setting is shown in the caption
of the figure. It is clear that the storage cost of the clouds do
not have any affect on the total cost of direct streaming. The
figure depicts that as storage cost of the clouds increases, the
gap between the direct streaming and cloud-based streaming
decreases. In this figure, the total cost of the direct streaming
is up to 23% more than that of the streaming using the help
of the clouds.

Figure 10(b) shows the effect of expected number of
requests on the total cost. Similar to Figure 9(b), the total cost
of both direct streaming and cloud-streaming methods increase
as the expected number of requests increases. Moreover, the ef-
ficiency of the cloud-based dreaming increases as we increase
the expected number of requests.

VI. CONCLUSION

One form of application on the Internet with a high traffic
is video streaming. With the increase in the energy demand of
the data centers that provide the video files to the users, the
importance of using renewable and green energy is increasing.
In order to minimize the energy cost of the data centers,
which are geographically distributed all over the world, we
need to try to reduce the load on the servers at the time
durations to which the green sources of energy, such as sun
and wind, are not available. One way to achieve this goal
is to lease storage clouds and store the popular videos on
these clouds. In this paper, we study the problem of cloud
leasing in order to minimize the total video streaming cost.
We model the problem as an optimization problem, which
becomes a linear programming problem in the case of linear
energy cost functions. We extend our solution to the case of
multi-resolution video coding, which provides the users with
videos in different quality levels, based upon requests.
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