
1

TRACK: A Novel Connected Dominating Set based
Sink Mobility Model for WSNs

Avinash Srinivasan and Jie Wu
Department of Computer Science and Engineering

Florida Atlantic University
Boca Raton, FL 33431

Email: {asriniva@, jie@cse.}fau.edu

Abstract—The core functionality of a wireless sensor network
(WSN) is to detect deviations in expected normal behavior and
report it to the sink. In this paper, we propose TRACK — a
novel sink mobility model exploiting the Connected Dominating
Set (CDS) property of a network graph. TRACK, to the best of
our knowledge, is the first contemporary sink mobility model to
exploit the CDS property for WSN lifetime longevity and secure
data aggregation. In TRACK, the CDS of the given network
is computed and then the Minimum Spanning Tree (MST) of
the CDS is constructed. Using the CDS-MST as the underlying
framework, a Hamiltonian Circuit (HC) is constructed, along
which the sink is mobilized to traverse the network. Since
TRACK, by the very definition of CDS, passes through the
transmission range of every node in the network, data can be
relayed directly from the source node to the sink, eliminating
the need for multi-hop routing. By virtue of this property, nodes
in the WSN are discharged from their routing obligations and
data aggregation becomes more secure. Additionally, we propose
an extended version of TRACK called M-TRACK in this paper.
The extended model trades higher fractions of sensor energy
with the objective of minimizing the length of sink trajectory.
This consequently minimizes the delay between consecutive sink
visits, mitigating buffer-overflow of sensors. M-TRACK does
necessitate multi-hop routing, but keeps it within a bounded
number of hops. We confirm the efficiency and robustness of our
models via simulation and analysis, and show that our model
can extend the WSN lifetime up to seven times that which can
be achieved using a static sink.

Keywords: Connected dominating set (CDS), data aggregation,
Hamiltonian circuit (HC), minimum spanning tree (MST), mobile
sink, trajectory, wireless sensor networks (WSNs).

I. INTRODUCTION

Wireless sensor networks (WSNs) have become the epitome
of pervasive technology, operating in environments typically
not encountered by their counterparts. Sensor nodes have to be
physically small to be pervasive, and have to be manufactured
economically since they are deployed in large numbers and
almost never reclaimed. Consequently, WSNs formed on-the-
fly by ad-hoc networking of such small, inexpensive devices do
not command the luxury of extensive computing and battery
power. In literature, the usefulness of a WSN has typically
been measured as the duration of time over which it delivers its
intended services, which is referred to as the network lifetime.

This work was supported in part by NSF grants CCR 0329741,
CNS 0422762, CNS 0434533, CNS 0531410, and CNS 0626240. Correspond-
ing author’s e-mail: asriniva@fau.edu

The lifetime of a WSN is typically measured as the duration
from the initial deployment of the network until the failure of
the first sensor. Therefore, it is essential to prolong the life of
each and every sensor in the network [11] in order to prolong
the lifetime of a WSN. While some researchers have proposed
extending the lifetime of a WSN by using a mobile element
[8], several others have employed multiple mobile elements
for the same [10]. There is another class of researchers who
propose using multiple static sinks at optimal locations for
extending the lifetime of WSNs [9].

Sensor nodes, with their limited transmission capabilities,
have to seek the cooperation of other nodes to relay data to
the sink by employing a secure multi-hop routing protocol.
One obvious drawback of multi-hop routing is that it leads
to dissimilar rates of battery power depletion of nodes across
the network. Specifically, nodes in the vicinity of the sink are
subject to rapid battery depletion since they have to forward
the data from hundreds of thousands of nodes in the network.
On the otherhand, nodes away from the sink are seldom
required to forward data and hence last longer. To address
the aforementioned problem of uneven power depletion, sink
mobility has often been employed as an effective solution.
Since, with mobility, the sink moves to new locations, either
being time-driven or event-driven, different nodes come into
the sink’s vicinity, which forces them to assume the role of
a relay node and forward data. Some benefits of employing
mobile sinks are as follows:

• Reducing the distance over which the data is relayed
reduces the energy expended by multiple sensors enroute.

• It enhances the security and integrity of data by lim-
iting the number of intermediate sensors. With few or
no intermediate nodes, there is little room for attacks
like blackhole, wormhole, packet-dropping, modification,
man-in-the-middle, etc.

• Sink mobility mitigates collision and contention in the
network, thereby enhancing system throughput. It also
mitigates the holes [12] and hot-spot [5] problems in
WSNs.

• With mobile sinks, sparse and disconnected regions in a
network are covered efficiently. Even network partition
problems can be resolved to a large extent.

The mobility model, TRACK, that we propose in this paper
is based on the Connected Dominating Set (CDS) property of

2

a network graph. The CDS is developed using the localized
Rule-k algorithm proposed by Dai and Wu in [7]. Once the
CDS of the given network graph is obtained, the Minimum
Spanning Tree (MST) of the CDS is constructed using the
Euclidian length of edges as the weighing criteria. For clarity,
the Euclidian length of an edge e(i, j) is the Euclidian distance
between nodes i and j. After the MST is constructed, a
Hamiltonian Circuit (HC) is developed for the sink to traverse
the network [1]. However, sensors suffer from buffer overflow
if the sink does not visit them in a timely manner. Hence, delay
optimization is critical to network longevity. Therefore, we
extend TRACK and propose MultiLevel-TRACK (M-TRACK)
that trades higher fractions of sensor energy with the objective
of shortening sink trajectory length to minimize the delay
between consecutive sink visits.

Most existing protocols, reviewed in Section VI, either
choose random mobility and let the sink traverse the network
along a random trajectory, or opt for controlled mobility by
defining the trajectory in terms of regular shapes such as a
circle, a square, or a straight line. In this paper we advocate
controlled mobility and propose a CDS-based trajectory. In-
tuitively, the trajectory along a CDS defines an optimal path
since each node in the network is either in the CDS or within
the range of a node in the CDS. Consequently, each node can
communicate directly with the sink while it is moving along
the CDS. With this as our base model, we propose an extended
model, M-TRACK, that further optimizes the length of sink
trajectory thereby minimizing sink visit delays. In summary,
our contributions in this paper are as follows:
• TRACK is the first sink mobility model to exploit the

CDS property of a network graph.
• CDS has been long employed for routing and cover-

age, but TRACK is the first to consider it for network
longevity and secure data aggregation.

• We also propose an extended version of TRACK
called M-TRACK based on MultiLevel-CDS to minimize
buffer-overflow.

• We present algorithms for the construction of TRACK
and M-TRACK and discuss them in detail.

• We validate the performance of our models through
simulation and analysis.

The rest of the paper is organized as follows. In Section II,
we give a brief overview on CDS and MST. In Section III, we
present the overview of TRACK and its extended version M-
TRACK. We also present formal algorithms for these models.
In Section IV, we analyze TRACK, highlighting its strengths
and salient features. We discuss the simulation results in detail
in Section V. In Section VI, we review the related work and
finally conclude the paper in Section VII.

II. OVERVIEW OF CDS AND MST

For the sake of completeness, we give a brief overview on
CDS, MST, and HC in this section. We also briefly discuss
the localized Rule-k algorithm proposed by Dai and Wu in [7].
Consider an undirected graph G = (V, E), with V being the
set of vertices and E being the set of edges. In G, a node u
dominates another node v if and only if u = v or u and v are

adjacent. For example, in Fig. 1 (a), the set {1, 4, 13, 14} is
DS. Furthermore, let the CDS of G be a set of vertices VCDS

such that VCDS ⊂ V . Now, we have the following:
Definition 1: A connected dominating set of a graph G =

(V, E) is a set of vertices VCDS ⊂ V such that for every
vertex v ∈ V − VCDS , there is at least one vertex u ∈ VCDS

that dominates v, and VCDS is connected.
For illustration, the set {1, 2, 4, 7, 8, 9, 10, 11, 13, 14} forms
the CDS of the network shown in Fig. 1 (a). Once the CDS is
obtained, Dai and Wu’s Rule-k algorithm is applied to reduce
the size of the CDS. Using Rule-k, a node u can be unmarked
from the CDS if u is completely covered by a subset of its
neighbors N ′ and the following conditions are satisfied:

1) Subgraph induced by N ′ is connected.
2) Every neighbor of u is adjacent to at least one node in

N ′.
3) All nodes in N ′ have a higher priority than u.

In our example, when Rule-k is applied to the CDS in Fig. 1
(a), CDS nodes 1, 2, 10, and 11 are pruned, resulting in
a smaller CDS (40% smaller) {4, 7, 8, 9, 13, 14}, as shown
in Fig. 1 (b). Note that the CDS can be constructed using
the vertex ID, vertex degree, remaining battery power, or
a combination of any of these as the priority value when
inducing nodes into the CDS. The CDS constructed in Fig. 1
(a) is based on vertex ID priority.

Definition 2: Given a connected, undirected graph G =
(V, E), a spanning tree of G is a subgraph G′ which is a
tree that connects all the vertices in V together. An MST is
a spanning tree G′′ with a weight less than or equal to the
weight of every other spanning tree G′ of G.

Definition 3: Given a connected, undirected graph G =
(V, E) and its CDS-MST, a Hamiltonian Circuit (HC) of the
CDS-MST is a path that visits each edge exactly once and
returns to the starting vertex.

We have slightly adapted the definition of HC in Definition 3
to our model requirements.

For illustration, consider the network with the CDS as
shown in Fig. 1 (b). In our model, the MST of the CDS
is developed using distributed MST algorithm proposed by
Gallager et al in [2], hereafter referred to as GHS-MST. The
advantage of this distributed approach is that an MST can be
formed even if not every node has a complete topology map.
Fragments of an MST are created in a distributed fashion.
Initially, G consists of |V | fragments. Each fragment selects
its minimum weight outgoing link, and via control messaging,
each fragment arranges to merge with a neighboring fragment
over its minimum weight outgoing link. This algorithm is
shown to produce an MST in O(|V | × log|V |) time provided
the edge weights are unique. For the sake of discussion, we
assign unique random weights in terms of Euclidian length for
each edge in Emst. Let d(9, 13) = 3, d(8, 9) = 4, d(4, 7) = 5,
d(8, 14) = 6, d(7, 9) = 7, and d(13, 14) = 8. Initially
MST={∅}. Individual fragments are merged resulting in the
MST as shown in Fig. 1 (c). Finally, an HC, as shown in
Fig. 1 (d), is developed by traversing each link of the MST
bidirectionally. Due to space limitations, we will not discuss
the GHS-MST algorithm in detail, but interested readers may
refer to [2].

3

11

12

6

5

3

14

15
8

4

9
7

10

2

1

13

(a)

14

12

6

1 5

2

310

15
8

4

9
7

1311

(b)

11

12

6

1 5

2

310

14

15
8

4

9
7

13

(c)

13

12

6

1 5

2

310

14

15
8

4

9
7

CDS Node MST Edge TRACK

11

(d)

Fig. 1. (a) CDS before applying Rule-k (b) CDS after applying Rule-k (c) CDS-MST (d) TRACK: Trajectory of the sink along the HC of the CDS-MST.

Algorithm 1 INITIALIZE
for each sensor node u ∈ V do

for each sensor node w ∈ V : w 6= u do
if u ∈ RNGw, w ∈ RNGu, and l(w, u) /∈ E then

E ← E
⋃

l(u,w);

III. MOBILITY MODELS

In this section we present our mobility models, TRACK and
M-TRACK, that we develop by exploiting the CDS property
of a network graph. We also present formal algorithms for
these models and delineate their working in detail.

A. TRACK

In TRACK, initially the CDS algorithm proposed in [7] is
executed on the given network graph to compute the CDS.
After the CDS is computed, GHS-MST is executed on the
CDS. The resulting MST is used as the baseline in developing
an HC as the trajectory for the sink to traverse the network.
For illustration, consider Fig. 1 (a), which shows the CDS
of a WSN with 15 sensors and Fig. 1 (b) shows the CDS
of the same after applying Rule-k. In this example, the CDS
consists of nodes {4, 7, 8, 9, 13, 14}. From Fig. 1 (c), we
see that the MST of the given CDS consists of the links
{l(4, 7), l(7, 9), l(9, 13), l(8, 9), l(8, 14)}.

We define the vertex set V of the graph as V =
Vreg

⋃
VCDS , where Vreg is the set of non-CDS nodes and

VCDS is the set of CDS nodes, and Vreg

⋂
VCDS = ∅. We

define the edge set E of the graph as E = Ereg

⋃
ECDS ,

where Ereg is the set of edges between non-CDS nodes or
a CDS and a non-CDS node, and ECDS is the set of edges
between CDS nodes. For instance, in Fig. 1 (b), (1, 6) ∈ Ereg

since 1 and 6 ∈ Vreg; (1, 9) ∈ Ereg since 1 ∈ Vreg and
9 ∈ VCDS ; and (7, 9) ∈ ECDS since 7 and 9 ∈ VCDS .
Edges in the set ECDS can be further divided into Emst and
EnonMst. In our previous example, as shown in Fig. 1 (c),
(13, 14) ∈ EnonMst and all other edges in ECDS belong to
Emst.

From Definitions 1 and 2, the MST of a CDS is a tree that
connects all vertices in VCDS with the edges in ECDS . The
MST of the graph in our example is shown in Fig. 1 (c) as
dashed edges. The path for the sink that is developed along
Emst, which we refer to as TRACK, is depicted in Fig. 1 (d).

Algorithm 2 CDS
INITIALIZE;
Execute Localized Rule-k Algorithm on G to get VCDS ;
ECDS ← ∅
for each i, j ∈ VCDS do

ECDS ← ECDS

⋃
l(i, j)

Once the MST is obtained, traversing it to obtain the sink
trajectory is accomplished as follows. There are three lists
Half-Open (HO) and Full-Open (FO) keep track whether or
not each link has been traversed bidirectionally, and Traj to
keep track of the edge traversal order. The MST is traversed
by starting at the highest ID node and adding the shortest out-
going edge. When a leaf node is reached, the incoming edge
is traversed back immediately. The FO list is always scanned
first to find the shortest out-going edge from the current vertex.
When the FO list is empty, the shortest out-going edge from
the current vertex is chosen from the HO list. This has been
formally presented in Algorithm 4. When all edges have been
moved to the Traj list and the current vertex is the starting
vertex, the HC has been successfully constructed.

For example, consider Fig. 1 (c). In the discussions
that follow, a link l(i, j) = e(i, j)

⋃
e(j, i). For in-

stance, in Fig. 1 (c), l(7, 9) = e(7, 9)
⋃

e(9, 7). Initially,
FO = {l(4, 7), l(7, 9), l(9, 13), l(9, 8), l(8, 14)}, HO = ∅,
and Traj = ∅. Starting with 14, which is the highest ID
node in VCDS , e(14, 8) is added to Traj = {e(14, 8)},
and l(8, 14) is moved to HO. At node 8, e(8, 9) is added
to Traj = {e(14, 8), e(8, 9)} and l(8, 9) is moved to
HO. At node 9, there are two edges to choose from,
e(9, 13) and e(9, 7). However, e(9, 13), being the shorter
edge, is included in Traj = {e(14, 8), e(8, 9), e(9, 13)},
and l(9, 13) is moved to HO. At 13, since there are no
more out-going edges, e(13, 9) is traversed and added to
Traj = {e(14, 8), e(8, 9), e(9, 13), e(13, 9)}, and l(9, 13)
is deleted from HO. At node 9, either e(9, 8) or e(9, 7)
can be chosen. However, since l(8, 9) is in HO and
l(7, 9) is in FO, e(9, 7) is chosen and added to Traj =
{e(14, 8), e(8, 9), e(9, 13), e(13, 9), e(9, 7)}. Continuing on
this line, we have Traj = {e(14, 8), e(8, 9), e(9, 13), e(13, 9),
e(9, 7), e(7, 4), e(4, 7), e(7, 9), e(9, 8), e(8, 14)}, making it a
full cycle, i.e., a Hamiltonian Circuit, as shown in Fig. 1 (d).

Once the trajectory is constructed, the sink moves onto

4

Algorithm 3 MST
Emst ← ∅;
Execute GHS-MST on ECDS ;
for each l(i, j) ∈ ECDS selected by GHS-MST do

Emst ← Emst

⋃
l(i, j);

Algorithm 4 TRACK
HO ← ∅, FO ← Emst;
max-ID← maxID(VCDS);
Extract min(Emst) with max-ID as one of the vertices;
Delete the corresponding link from FO and move it to HO;
Continue extracting the shortest edge corresponding to the
current VCDS from FO
if FO = ∅ then

Extract the shortest edge corresponding to the current
VCDS from HO;
Delete the corresponding link from HO;

Move the corresponding link to HO and delete it from FO;

the trajectory and orbits it constantly. One obvious benefit
of TRACK over several existing mobility models is that it
eliminates the need for the sink to determine its next hop
by simply following the edge order in Traj. The sink now
only needs to compute its speed while moving along TRACK.
Another benefit of TRACK over several existing models is
that it effectively overcomes the hot-spot problem. Since, by
moving along the CDS, the sink is within the communication
range of every node in the network, multi-hop routing is
eliminated. This also enhances the security of the message
since the message is directly relayed by the sensing node to
the sink. In this paper, we assume that the sink moves with a
constant speed and collects data while moving. Upon sensing
the sink in its range, each sensor node attempts to acquire the
medium and transmit its data to the sink. We realize that this
can lead to collision and contention. To resolve this problem
we assume that a MAC layer protocol with appropriate back-
off function is used in conjunction with TRACK.

Though TRACK is scalable, as the network size grows, the
trajectory length, Plength, increases quickly. Consequently, the
interval, tintrvl, between sink visits at any given location on
TRACK increases causing sensor buffer-overflow resulting in
possible loss of critical data. To eliminate this problem, we
recommend the deployment of multiple sinks along TRACK.
With this, the buffer-overflow problem can be mitigated,
and in most cases completely eliminated. However, the key
concern when employing multiple sinks is determining the
optimum number of sinks needed to eliminate the buffer-
overflow problem. This can be examined through simulation
studies, which we leave for investigation in our future work.

B. M-TRACK

We realize that TRACK can be further optimized in terms of
Plength. To optimize Plength, we propose M-TRACK, which is
a simple extension of TRACK, wherein the CDS algorithm is
executed multiple times. For the first round, the given network
is used as the input. For subsequent executions of the CDS

algorithm, the CDS obtained from the previous round is used
as the input node set. The stopping condition for the recursive
call to the CDS algorithm is reached when the current call to
the CDS algorithm cannot reduce the CDS from the previous
round any further. The final output obtained at the stopping
condition is a k-CDS, where k is the number of executions
of the algorithm. The recursive call to the CDS algorithm is a
tunable parameter and need not be executed until the stopping
condition is reached. Once the desired level of CDS - referred
to as k-CDS - is obtained with a sufficiently small |CDS|,
the GHS-MST algorithm is executed, following which the HC
is developed along the edges of the MST. The resulting HC
serves as the sink trajectory and is referred to as M-TRACK.
Note that if the trajectory is developed along the k-CDS for
any value of k > 1, the Plength will be much smaller than it
would be in TRACK.

To illustrate the impact of k-CDS on Plength for differ-
ent values of k, consider Fig. 2. The 1-CDS of the net-
work is shown in Fig. 2 (a), which consists of six nodes:
{4, 7, 8, 9, 13, 15}. In Fig. 2 (b), the 2-CDS is shown for the
same graph. We see that the 2-CDS, which consists of only
three nodes {7, 8, 9}, is 50% smaller than that of 1-CDS. Here,
note that for the 2-CDS, the 1-CDS is used as the input unlike
1-CDS for which the entire network is used as the input. The
MST of our example network is shown in Fig. 2 (c), and the
M-TRACK itself is shown in Fig. 2 (d).

In this particular example, the stopping condition is reached
at 3-CDS which is not shown here. 3-CDS, in this example,
would merely consist of node 9, which eliminates the need
for sink mobility. The intuitive idea behind executing the CDS
algorithm recursively is as follows. The first execution builds
a 1-CDS which can be reached by all nodes in the network
in a single hop. For instance, in Fig. 2 (a), we see that all
nodes in the network can reach at least one of the 1-CDS
nodes {4, 7, 8, 9, 13, 15} in a single hop. Similarly, executing
the CDS algorithm the second time builds a 2-CDS, which can
be reached by every node in the network in at most two hops.
From Fig. 2 (b), we see that every node in the network can
reach at least one of the 2-CDS nodes {7, 8, 9} in at most two
hops. An important observation here is that all 1-CDS nodes
should either be in 2-CDS or adjacent to nodes in 2-CDS. On
similar lines, it can be argued for higher levels of CDS, which
we represent as k-CDS. So, k essentially sets the upper-bound
on the number of hops needed for routing the date from any
sensor in the network to the sink.

In M-TRACK, the algorithm is recursively executed until a
new CDS is obtained after each execution that covers all of the
previous levels CDS nodes. Here we are attempting to achieve
a shortened Plength and consequently a minimized tintrvl by
recursively building a smaller CDS. This ensures that the sink
visits each location on M-TRACK in a timely manner, thereby
avoiding buffer-overflow. However, this model has a downside.
With multiple levels of CDSs, we are reintroducing routing as
a necessity, coercing nodes to expend their energy in relaying
data. This also jeopardizes the integrity of the data being
relayed. However, we consider it to be more practical to trade-
off a slightly large fraction of sensor energy per transmission
to mitigate the problem of data loss. We believe that preserving

5

14

12

6

1 5

2

310

15
8

4

9
7

1311

(a)

11

4

12

6

1 5

2

310

9

7

8

14

15

13

(b)

11

4

12

6

1 5

2

310

9

7

8

14

15

13

(c)

11

4

12

6

1 5

2

310

9

7
14

15
8

CDS Node M−TRACKMST Edge

13

(d)

Fig. 2. (a) Level-1 CDS (b) Level-2 CDS (c) Spanning Tree of Level-2 CDS (d) M-TRACK: Trajectory of the sink along the level-2 CDS spanning tree.

6

1

2

3

4

5

(a)
3

4

2

(b)

Fig. 3. (a) TRACK trajectory path-length; (b) MTRACK trajectory path-
length.

critical sensed data is as important as extending the lifetime
of the WSN itself.

IV. ANALYSIS

For computing the path-length, Plength, of the sink trajec-
tory, let us count the number of edges along the path. From
Fig. 3 (a), we see that in TRACK, Plength is 10 for one
complete cycle. In M-TRACK, this distance is reduced to 4
along 2-CDS as shown in Fig. 3 (b). As a direct observation,
we see that the trajectory path-length in M-TRACK along 2-
CDS is lowered by 60%.

The sink speed in our models can be computed as
Sinkspeed = Plength

tovrflo
. Here, tovrflo is a tunable parameter

and is adjusted according to the requirements of a partic-
ular network and the dynamics of the sensing field. From
the above equation, the time interval between sink visits
tintrvl at any location on the trajectory can be computed as
tintrvl = Plength

Sinkspeed
. To overcome the buffer-overflow problem,

the required condition is tintrvl ≤ tovrflo. The length of the
trajectory, Plength, is very critical and has the most significant
impact on the performance of the network. Plength in both of
our models is computed as follows:

Plength =
∑

∀e(i,j)∈Emst

len
(i,j)
link (1)

where len
(i,j)
link is the effective length that l(i, j) ∈ Emst

adds to Plength. len
(i,j)
link itself is computed as len

(i,j)
link =

2 × d(i, j), where d(i, j) is the Euclidian distance between
nodes i and j. Plength is computed as the sum of the lengths
of all links in Emst. For example, in Fig. 3 (a) we have
Plength = len

(1,2)
link + len

(2,4)
link + len

(4,5)
link + len

(4,3)
link + len

(3,6)
link ,

where len
(1,2)
link = d(1, 2)+d(2, 1), len

(2,4)
link = d(2, 4)+d(4, 2),

and so on. In summary, Plength can be computed as follows:

Plength = 2×
∑

∀e(i,j)∈Emst

d(i, j) + δ (2)

Since the trajectory is slightly offset from the CDS nodes,
in Equation 2, δ is used to compensate for the offset. The
irregularly-shaped trajectory of the sink along the CDS is
equivalent to a circular trajectory whose radius is given by:

r =

∑

∀e(i,j)∈Emst

d(i, j) + δ

π
(3)

Equivalently, our irregular shaped trajectory can be ex-
pressed as a square whose side is given by a = r

2×π .
In [10], it is not possible to have a single mobile entity,

while moving along a straight line trajectory, to gather data
from all the sensors in the network in a single hop. However,
in TRACK, a single sink can collect data from all the sensors
in the network in one hop. In this aspect, TRACK is far more
efficient compared to the model in [10]. Also, in [10], the
sink is idle on its return journey to its starting point. But in
TRACK and M-TRACK, the sink collects data continuously
without idling. With M-TRACK, a shorter trajectory for the
sink can be developed to mitigate the buffer-overflow problem.

However, M-TRACK necessitates multi-hop routing for the
sensors to relay their data to the sink. However, the routing
here is simple and easy to implement. Every node forwards
its data to its dominating node. If a node has more than
one dominating node, then it can randomly choose one of
the dominating nodes to forward its packets to or use an
underlying reputation monitoring system to monitor its dom-
inating nodes and for routing data, use the most trustworthy
dominating node. If a dominant node receiving the message is
further dominated by a higher level CDS node, then it merely
forwards its data as well as the data from the nodes’ that it
dominates to its dominant node. This process continues until
the data reaches nodes that are within one-hop’s distance from
the sink’s trajectory. The maximum number of hops in M-
TRACK is a tunable parameter and hence gives leverage in
optimizing the tradeoff between length of the trajectory and
energy expenditure of sensors.

We realize that when nodes fail or move to a new region, or
new nodes join, TRACK, along the current CDS, may not be
the best path for the sink to traverse the network. This problem
can be resolved by rebuilding the CDS, MST, and subsequently

6

 0

 10

 20

 30

 40

 50

 60

 70

 60 80 100 120 140 160 180 200 220 240

S
iz

e
of

 C
D

S

Number of Nodes

Vertex-ID
Vertex-Degree

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 60 80 100 120 140 160 180 200 220 240

S
iz

e
of

 C
D

S

Number of Nodes

Vertex-ID
Vertex-Degree

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 60 80 100 120 140 160 180 200 220 240

S
iz

e
of

 C
D

S

Number of Nodes

Range-20m
Range-40m
Range-60m

(c)

Fig. 4. (a) Size of CDS with Fixed d=15 (b) Size of CDS with Fixed d=30 (c) Size of CDS with range varied from 20m to 60m.

the HC-based TRACK whenever such events occur. However,
with frequent node failures, movements, and/or joins, it be-
comes impractical to rebuild the TRACK repeatedly. We will
further investigate these scenarios in our future work. For now,
we assume a static network with a fixed number of nodes in
our simulations, and that no new nodes will be added to the
network. With this, our only concern will be to address node
failure. However, since we are measuring the network lifetime
as the time from initial deployment of the network until the
failure of the first node, node failure is a desired factor to
evaluate the effectiveness of our model.

V. SIMULATION AND RESULTS

In this section, we first discuss the simulation environment
followed by the results.

A. Environment

All simulations have been carried out on a custom built,
stand-alone C++ simulator. In our simulations, a sensor field
of area 100 × 100 m2 has been considered. The following
parameters have been considered as tunable in our simulations:
number of sensor nodes Nsen, number of sink nodes Nsink,
and transmission range Ri of sensor node i expressed in
meters. The network has been modeled as an undirected graph
G = (V, E), where V is the set of nodes and E is the set
of edges between these nodes. An edge exists between two
nodes u and v, if u lies in RNGv and v lies in RNGu.
Each link l(u, v) ∈ E is considered to be bidirectional. The
results presented in this section have been averaged over 1000
iterations for statistical stability.

B. Results

We have studied the impact of different parameters on the
size of the CDS. First, we fix the diameter of the network to
d = 15 and accordingly vary the transmission range of the
sensors as the density of the network changes. Varying the
range of the sensors with changing density of the network to
keep the diameter constant helps us to understand the impact of
network size independent of density. The results for d = 15 are
presented in Fig. 4 (a). Similarly we have studied the impact of
diameter d = 30 on the CDS size and the results are in Fig. 4
(b). We see that both these graphs have two curves each: one

for the CDS formed using vertex ID as the priority value and
the other with vertex degree as the priority value. We see that
with higher diameter, the two priority criteria perform equally
well. Also, we can see that with increasing diameter, the size
of the CDS shrinks. With d = 15 and vertex ID as the priority,
the CDS is on average about 29% the size of the network and
with vertex degree as the priority, it is about 25% the size of
the network. For d = 30, it is about 14.5% with both vertex
ID and vertex degree as priority. The size of the CDS, with
d = 15 and vertex ID as priority, is on average about 6%
smaller that that with vertex degree, and with d = 30, it is
below 0.5%. In the rest of our simulations, unless otherwise
specified, vertex ID is used as the priority value in constructing
the CDS.

We have also studied the impact of density on CDS size
by fixing the transmission range. We have simulated three
different scenarios varying the range from 20m to 60m in
increments of 20m; the results are presented in Fig. 4 (c). It
is evident that as the transmission range increases, the size of
the CDS shrinks. Nonetheless, the size of the CDS increases
with increase in the network size but at much slower rate
with higher transmission range. With range fixed at 20m, the
size of the CDS, on average, is about 42% of the size of the
network. Similarly, with range fixed at 40m and 60m, the CDS
size is 22% and 15% the size of the network respectively. In
Fig. 5, we have presented the size of k-CDS for three different
scenarios: minimum path-length where k can be any positive
integer (scenario-1) usually greater than 2, path-length with
2-CDS (scenario-2), and the optimal path-length where again
k can take any value of any positive integer (scenario-3). The
difference between scenario-1 and the scenario-3 is that in the
former, the CDS algorithm is recursively executed until the
stopping condition is reached while in the latter, the stopping
condition need not be reached. Fig. 5 (a) shows the size of k-
CDS for the three scenarios with a transmission range of 20m.
We see that the size of K-CDS for scenario-2 is considerably
smaller when compared to the size of k-CDS for scenario-3.

Similarly, in Fig. 5 (b) and (c), we have presented the results
for the three scenarios with transmission range fixed at 40m
and 60m respectively. We can see from the results that the size
of the CDS, irrespective of the scenario under consideration,
increases with an increase in the network size but decreases
with an increase in the transmission range. scenario-3, with

7

 0

 5

 10

 15

 20

 25

 60 80 100 120 140 160 180 200 220 240

S
iz

e
of

 k
-C

D
S

Number of Nodes

MinPathLength
2-CDS

Optimal

(a) Range=20m

 0

 5

 10

 15

 20

 25

 60 80 100 120 140 160 180 200 220 240

S
iz

e
of

 k
-C

D
S

Number of Nodes

MinPathLength
2-CDS

Optimal

(b) Range=40m

 0

 5

 10

 15

 20

 25

 60 80 100 120 140 160 180 200 220 240

S
iz

e
of

 k
-C

D
S

Number of Nodes

MinPathLength
2-CDS

Optimal

(c) Range=60m

Fig. 5. Comparison of CDS size: minimum path-length, 2-CDS, and Optimal.

transmission ranges 20m, 40m, and 60m has performed well
below scenario-2, but it is scenario-1 that performs best as far
as keeping the CDS size the smallest is concerned.

In Fig. 6 (a), we have presented the results that depict
the improvement in the overall network lifetime achieved in
both TRACK and M-TRACK. In the results presented, the
transmission range of sensors is kept constant at 40m and
a network with a static sink located at the center of the
network with a lifetime value of 1 is used as the benchmark
for evaluating the performance of our models. We see that
M-TRACK outperforms TRACK as long as the network is
less dense. M-TRACK quickly improves the network lifetime
to nearly six times that of the benchmark and eventually
stabilizes around the same value as the density increases. The
performance of M-TRACK ceases to improve with increasing
network density.

On the otherhand, with increasing density, the lifetime
improvement achieved by TRACK quickly outperforms M-
TRACK and starts to stabilizes at a value of 7. This is
due to the fact that, with increase in network size, nodes
along the M-TRACK are forced to forward data from other
nodes in the network. Consequently, a hot-spot zone develops
around the trajectory and nodes start to die quickly. This is
where the benefits of one-hop transmission of TRACK become
significant. Without any routing obligations, nodes tend to
survive longer and the hot-spot problem does not arise.

In Fig. 6 (b), we have plotted the results comparing the
network lifetime improvement achieved in M-TRACK with a
fixed transmission range of 40m for varying values of k. We
see that the M-TRACK achieves up to six fold improvement in
network lifetime with k = 2. With k = 3, the system achieves
nearly four times higher lifetimes for smaller network sizes
but beyond a certain network size, it starts to decay, eventually
bringing down the effective lifetime of a network to just over
two fold. With k = 4, though it achieves higher lifetimes
for smaller network sizes compared to when k = 2 and 3, it
constantly decays bringing down the lifetime on par with that
of a static sink for larger networks.

Finally, in Fig. 6 (c), we have plotted the results comparing
the network lifetime improvement achieved in M-TRACK for
varying transmission ranges with k = 2. We see that with the
sensor transmission range fixed at 20m, the average lifetime
improves approximately by two fold for a network of 50 nodes

and to over four fold for a network of 250 nodes. Similarly,
for a transmission range of 40m, the lifetime improves by two
fold for a network of 50 nodes and to nearly six fold for a
network of 250 nodes. For a transmission range of 60m, a
maximum lifetime improvement of approximately three fold
is achieved for a 50 node network and for a 250 node network
the lifetime improvement is nearly seven fold. It is evident that
with increasing transmission range, the lifetime of the network
increases quickly in smaller networks when compared to larger
networks. The lifetime improvement with 60m range is on
average about 30% higher when compared to a 40m range
and about 50% higher when compared to a 20m range. With
60m range, the lifetime improvement achieved in M-TRACK
is on average about 6.5 times that of the benchmark model.

In summary, we have confirmed through simulations that
both of our models, TRACK and M-TRACK, outperform a
WSN with static sink(s). We have shown that our models can
improve the network lifetime up to seven times that which
is achieved in a network with a static sink. We have drawn
meaningful results by comparing the size of the CDS and
consequently the length of the sink trajectory for different
transmission ranges. Similarly, we have drawn a meaningful
relationship between network lifetime and network density.

VI. RELATED WORK

Recently, mobile entities, mostly mobile sinks, have been
used as data collection and processing elements to achieve
network longevity in WSNs. Sink mobility in WNS can be
classified into four groups as follows: random, predictable,
controlled, and adaptive. Adaptive mobility is the least re-
searched among the four types listed. In [3], Li and Rus pro-
pose a method for achieving guaranteed message delivery in
minimal time. Their approach considers the modification in the
mobile host trajectory and develop algorithms for minimizing
the change in trajectory. In [4], the authors have considered
random mobility of all the nodes for improving data capacity
and have proved that two-hop routes are sufficient to achieve
the maximum throughput capacity of the network.

In [6], a three-tier architecture for data collection in sparse
sensor networks is proposed. This model exploits mobile
entities called MULEs to pickup data from sensors in range
and drop it off to the sink using a random walk mobility model.
In [8], Kansal et al have proposed mobility control methods

8

 0

 2

 4

 6

 8

 10

 60 80 100 120 140 160 180 200 220 240

Li
fe

tim
e

Number of Nodes

TRACK
MTRACK

(a) Range=40m

 0

 2

 4

 6

 8

 10

 60 80 100 120 140 160 180 200 220 240

Li
fe

tim
e

Number of Nodes

MTRACK-2CDS
MTRACK-3CDS
MTRACK-4CDS

(b) Range=40m

 0

 2

 4

 6

 8

 10

 60 80 100 120 140 160 180 200 220 240

Li
fe

tim
e

Number of Nodes

Range-20m
Range-40m
Range-60m

(c)

Fig. 6. Lifetime improvement in (a) Track vs. M-TRACK (b) M-TRACK with varying k values (c) M-TRACK with varying ranges.

for improving network lifetime and data fidelity. The main
deviation in their work comes from adding controlled mobile
components to achieve predictable and larger gains. This idea
is further extended in [10] where multiple mobile entities that
move on a line are examined.

In [14], Chatzigiannakis, Kinalis, and Nikoletseas propose
four models with characteristic mobility patterns for the sink
along with different data collection strategies: (1) random-
walk mobility with passive data collection, (2) partial random
walk with limited multi-hop data propagation, (3) biased
random walk mobility with passive data collection, and (4)
deterministic walk with multi-hop data propagation. In [13],
Luo and Hubaux investigate how to optimally move the sink
along a circular trajectory. They consider joint mobility and
routing algorithms, and show that a better routing strategy
uses a combination of round routes and short paths. In [5],
the authors make the first effort toward deterministic mobility
of sink by using an integer-linear program to determine new
locations for the sinks and a flow-based routing protocol to
ensure energy efficient routing during each round.

In [9], Oyman and Ersoy focus on determining the optimal
number of sinks needed and their location, given the minimum
required operational time for the sensor network, based on
clustering techniques. In [11], Wang et al propose a linear
programming formulation for determining the movement of
the sink and its sojourn time at different locations within the
WSN such that maximum network lifetime is achieved. Their
model prolongs the lifetime of a 256-node WSN up to almost
five fold in comparison to a WSN with a static sink.

VII. CONCLUSION

In this paper, we have proposed TRACK, a novel sink
mobility model based on the Connected Dominating Set
(CDS) property of a network graph. We have also extended
TRACK and proposed M-TRACK based on multi-level CDS.
M-TRACK further enhances the performance of the network
by optimizing the path-length of the sink trajectory by trading
a slightly large fraction of sensor energy. We have presented
algorithms for our models and confirmed the validity of both
TRACK and M-TRACK through simulation and analysis. In
our future work, we would like to apply the CDS property of
a network graph to solve more problems in WSNs. We would
also like to investigate the scan-based method for developing

the Hamiltonian Circuit. However, this method comes at an
additional cost since geographical locations are essential for
the functioning of the scan-based method. Another investiga-
tion on our agenda for future work is employing the property
of triangle-inequality for optimizing the sink trajectory path-
length along the minimum spanning tree.

REFERENCES

[1] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to
Algorithms, McGraw-Hill.

[2] R. G. Gallager, P. A. Humblet, and P. M. Spira. A distributed algorithm
for minimum-weight spanning trees. ACM Transactions on Programming
Languages and Systems, vol. 5, no. 1, pp. 66-77, 1983.

[3] Q. Li and D. Rus. Sending messages to mobile users in disconnected
ad-hoc wireless networks. In the Proceedings of ACM MobiCom, August
2000.

[4] M. Grossglauser and D. Tse. Mobility increases the capacity of ad hoc
wireless networks. In the Proceedings of IEEE/ACM Transactions on
Networking, vol. 10, no. 4, pp. 477486, 2002.

[5] S. R. Gandham, M. Dawande, R. Prakash, and S. Venkatesan. Energy
Efficient Schemes for Wireless Sensor Networks with Multiple Mobile
Base Stations. In the Proceedings of IEEE GLOBECOM, December 2003.

[6] R. C. Shah, S. Roy, S. Jain, and W. Brunette. Data MULEs: Modeling
a Three-tier Architecture for Sparse Sensor Networks. In the Proceedings
of IEEE SNPA, 2003.

[7] F. Dai and J.Wu. An Extended Localized Algorithm for Connected Dom-
inating Set Formation in Ad Hoc Wireless Networks. IEEE Transactions
on Parallel and Distributed Systems, October 2004.

[8] A. Kansal, A. Somasundara, D. Jea, M. Srivastava, and D. Estrin.
Intelligent fluid infrastructure for embedded networks. In the Proceedings
of MobiSys, 2004.

[9] E.I. Oyman and C. Ersoy. Multiple sink network design problem in
large scale wireless sensor networks. In the Proceedings of IEEE ICC,
June 2004.

[10] D. Jea, A. Somasundara, M. Srivastava. Multiple Controlled Mobile
Elements (Data Mules) for Data Collection in Sensor Networks. In the
Proceedings of IEEE/ACM DCOSS, June 2005.

[11] Z. M. Wang, S. Basagni, E. Melachrinoudis, C. Petrioli. Exploiting Sink
Mobility for Maximizing Sensor Networks Lifetime. In the Proceedings
of HICSS, 2005

[12] N. Ahmed, S. S. Kanhere, and S. Jha. The Holes Problem in Wireless
Sensor Networks: A Survey. In ACM SIGMOBILE Mobile Computing and
Communications Review, Vol. 1, No. 2, April 2005.

[13] J. Luo and J.-P. Hubaux. Joint Mobility and Routing for Lifetime
Elongation in Wireless Sensor Networks. In the Proceedings of IEEE
INFOCOM, 2005.

[14] I. Chatzigiannakis, A. Kinalis, and S. Nikoletseas. Sink Mobility Proto-
cols for Data Collection in Wireless Sensor Networks. In the Proceedings
of ACM MobiWac, October 2006.

