

Energy Efficient Phone-to-Phone Communication Based on WiFi Hotspots in PSN

En Wang^{1,2}, Yongjian Yang¹, and Jie Wu²

1 Dept. of Computer Science and Technology, Jilin University, Changchun, China

2 Dept. of Computer and Information Sciences, Temple University, Philadelphia, USA

wangen0310@126.com; yyj@jlu.edu.cn; jiewu@temple.edu

Outline

- 1. Introduction
- 2. Model Description
- 3. Communication Strategy
- 4. Evaluation
- 5. Future Work

1.1 Motivation

- Pocket Switched Networks (PSN)
 - Both human mobility and occasional connectivity to transfer messages among human-carried mobile devices
 - According to International Data Corporation (IDC), the number of smartphones will reach 982 million by 2015
- Limitation of WiFi ad hoc mode and WiFi Direct
- Phone-to-phone communications in the PSN without WiFi Aps
 - Hotspot mode
 - Client mode

1.2 Problem

• The phone-to-phone message dissemination process

 How to minimize wasted time and energy due to phones being in incompatible mode?

1.2 Problem

Hotspot Switch Decision

- Multiple messages: For each second, each node has the probability of $\alpha(t)$ to be in hotspot, and 1- $\alpha(t)$ to be in client
- Single message: For each second, each node with a message has the probability of *α(t)* to be in hotspot mode, and each node without a message has the probability of *β(t)*

1.2 Problem

A big picture

Y-Y: 1-1, 1-0, 0-1, 0-0 Y-N: 1-1, 1-0, 0-1, 0-0 N-N: 1-1, 1-0, 0-1, 0-0

maximize and minimize

Y: With Message, N: Without Message 1: Hotspot, 0: Client

1.3 Contributions

- The proposed EPCWH is intended to improve message dissemination, while minimizing total energy consumption
 - For multiple messages, the uniform policy is used for nodes with and without messages.
 - For a single message, non-uniform policies are used.
- Extensive simulations on the synthetic random-waypoint mobility
 - EPCWH achieves the best performance in terms of message dissemination and energy consumption.

Outline

- 1. Introduction
- 2. Model Description
- 3. Communication Strategy
- 4. Evaluation
- 5. Future Work

2. Model Description

- Two phones within each other's communication range can establish a connection iff one of them is in hotspot mode and the other in client mode.
- Intermeeting times tail off exponentially under many popular mobility patterns, including random walk, random waypoint, and random direction.

$$f(x) = \lambda e^{-\lambda x} \ (x \ge 0)$$

• Analysis on pairwise encounters, as opposed to optimizing communications within the clusters of more than two phones.

Outline

- 1. Introduction
- 2. Model Description
- 3. Communication Strategy
- 4. Evaluation
- 5. Future Work

3.1 Notations (multiple messages)

Notation	Meaning
N	The total number of phones in PSN
T	Initial time-to-live (TTL) for messages
$\alpha(t)$	The frequency of switching to hotspot for each phone at time t
P(t)	Probability of establishing a connection at time t
C	Energy consumption rate of hotspot mode (without loss of generality, $C = 1J/s$)
Ω	Maximum energy constraint to each phone

3.2 Phone-to-phone Communication of Multiple Messages

- When multiple messages coexist in PSN, we adopt a uniform switching strategy:
 - $\alpha(t)$ as the frequency of switching to the hotspot mode

• The probability of establishing a connection between two nodes within each other's communication range:

$$P(t) = 2\alpha(t)(1 - \alpha(t))$$

3.2 Phone-to-phone Communication of Multiple Messages

The problem changes to solve the following optimal equation

$$\begin{aligned} Maximize & \int_0^T 2\alpha(t)(1-\alpha(t)) \mathrm{d}t \\ s.t. & \int_0^T \alpha(t) \mathrm{d}t \leq \Omega \end{aligned}$$

• The maximum value of $2\alpha(t)(1 - \alpha(t))$ is obtained iff $\alpha(t)=1/2$. Hence, an optimal situation is shown as follows:

$$\begin{cases} \alpha(t) = 1/2, & \Omega \ge T/2 \\ \alpha(t) = \Omega/T, & \Omega < T/2 \end{cases}$$

3.3 Additional Notations (single message)

Notation	Meaning
$\beta(t)$	The frequency of switching to hotspot for the phone without the message at time t
m(t)	Number of the phones holding the message at time t
n(t)	Number of the phones without the message at time t, $(n(t) = N - m(t))$
E(I)	Mathematical expectation of intermeeting times
λ	Parameter in the exponential distribution of intermeeting times ($\lambda = 1/E(I)$)

3.4 Phone-to-phone Communication of Single Message

• Two cases that lead to the increase of *m(t)*, the number of nodes with the message

A phone holding the message in hotspot (client) mode encounters another phone without the message in client (hotspot) mode

• Therefore, the derivative of *m*(*t*) is expressed as

$$\frac{\mathrm{d}m(t)}{\mathrm{d}t} = \lambda [m(t)\alpha(t)n(t)(1-\beta(t)) + m(t)(1-\alpha(t))n(t)\beta(t)]$$
$$= \lambda m(t)n(t)[\alpha(t) + \beta(t) - 2\alpha(t)\beta(t)]$$

3.4 Phone-to-phone Communication of Single Message

Probability of establishing a connection *P(t)*, when a phone with message encounters another phone without message

$$P(t) = \alpha(t)(1 - \beta(t)) + \beta(t)(1 - \alpha(t))$$

= $\alpha(t) + \beta(t) - 2\alpha(t)\beta(t)$

• m(T) could be calculated as follows:

$$m(T) = \frac{N}{(N-1)e^{-N\lambda \int_0^T P(t)dt} + 1}$$

where m(t) and $\int_0^T P(t) dt$ have a positive correlation

3.4 Phone-to-phone Communication of Single Message

• Connection probability distribution *P(t)*

3.4 Phone-to-phone Communication of Single Message

• The optimal solution: at each time t, $\alpha(t)$ and $\beta(t)$ satisfy $\alpha(t)=1$, $\beta(t)=0$ or $\alpha(t)=0$, $\beta(t)=1$, shown in the following example:

Y-Y: 1-1, 1-0, 0-1, 0-0 Y-N: 1-1, 1-0, 0-1, 0-0 N-N: 1-1, 1-0, 0-1, 0-0

Y: Yes, N: No 1: Hotspot, 0: Client

 Because m(t) increases along with t, in order to minimize the total energy consumption, a better solution is shown as follows:

3.4 Phone-to-phone Communication of Single Message

 When the energy is sufficient, the total energy consumption is achieved as follows:

$$\begin{aligned} \Omega_{sum} &= \int_0^T (m(t)\alpha(t) + n(t)\beta(t)) dt \\ &= \int_0^{T'} m(t) dt + \int_{T'}^T n(t) dt \\ &= NT' + \frac{2\ln[(N-1)e^{-N\lambda T'} + 1]}{\lambda} \end{aligned}$$

• To minimize Ω_{sum} , the optimal switching time is *T*', which is the time satisfying m(T')=N/2.

$$T' = \frac{\ln(N-1)}{N\lambda}$$

3.4 Phone-to-phone Communication of Single Message

• Under different constraint conditions, the optimal switching time, $T' = \frac{\ln(N-1)}{N\lambda}$, can be achieved as follows:

Constraint Condition		Optimal Switching Time
$\Omega \geq \tfrac{T}{2}$	Case 1: $\Omega \ge T'$ and $\Omega \ge T - T'$	$T_1' = T_2' = T'$
	Case 2: $\Omega < T'$ and $\Omega \ge T - T'$	$T_1' = T_2' = \Omega$
	Case 3: $\Omega \ge T'$ and $\Omega < T - T'$	$T_1' = T_2' = T - \Omega$
$\Omega < \tfrac{T}{2}$	Case 4: $\Omega < T'$ and $\Omega < T - T'$	$T_1' = \Omega$ and $T_2' = T - \Omega$
	Case 5: $\Omega < T'$ and $\Omega \ge T - T'$	$T_1' = \Omega$ and $T_2' = T'$
	Case 6: $\Omega \ge T'$ and $\Omega < T - T'$	$T_1' = T'$ and $T_2' = T - \Omega$

3.4 Phone-to-phone Communication of Single Message

T'

Т

T'

0

T-Ω

Т

0

T

T'T-Ω

0

Outline

- 1. Introduction
- 2. Model Description
- 3. Communication Strategy
- 4. Evaluation
- 5. Future Work

4.1 Simulation Parameters (random-waypoint)

Parameter	Value
Simulation time	10,000s
Simulation area	4,500m×3,400m
Number of nodes	100
Transmission range	30m
TTL	10,000s
Interval time of message generation	100s
Hotspot energy consumption rate	1J/s
$\alpha(t)$	$0, 0.1, 0.2, \cdots, 0.9, 1$
Energy constraint	1,000J, 2,000J, · · · , 5,000J

4.2 Enough Energy (multiple messages)

• EPCWH ($\alpha(t) = 1/2$) achieves the best performance in terms of delivery ratio and average delay

4.3 Not Enough Energy (multiple message)

• EPCWH ($\alpha(t) = \Omega/T$) achieves the best performance in terms of delivery ratio (Ω =1000, $\alpha(t)$ =0.1 ... Ω =5000, $\alpha(t)$ =0.5)

4.4 Enough Energy (single message)

• EPCWH obtains the lowest energy consumption only when T' = 2600s. Because *N*=100, and $\lambda = 1/56500$, therefore, the simulation result precisely meets the theoretical result

Outline

- 1. Introduction
- 2. Model Description
- 3. Communication Strategy
- 4. Evaluation
- 5. Future Work

5. Future Work

- Other replication-based routing schemes
 - Spray-and-wait, delegation forwarding, etc.
- Real network environment

Thank You

