A Budgeted Framework to Model a Multi-round Competitive Influence Maximization Problem

Nadia Niknami, Jie Wu

Computer and Information Science Department Temple University

Outline

Models of influence

- Linear Threshold
- Independent Cascade

□ Influence maximization problem Algorithm

- Competitive Influence maximization problemOur Approach
- Experiments
 - Data and setting
 - Results

What is Social Influence?

- Social network plays a fundamental role as a medium for the spread of INFLUENCE among its members
 - Opinions, ideas, information, innovation...
- **Nodes**: Social actors (individuals or organizations)
- Links: Social relations
- Social influence occurs when one's opinions, emotions, or behaviors are affected by others, intentionally or unintentionally.
- Influential persons often have many friends.

Influential Persons

- Number of friends: Node degree
- Famous persons
- Betweenness centrality

 Direct Marketing takes the "word-of-mouth" effects to significantly increase profits

Influence Maximization Problem

- Influence spread of node set S: $\sigma(S)$
 - expected number of active nodes at the end of diffusion process, if set S is the initial active set.
- Problem Definition (by Kempe et al., 2003):

(Influence Maximization). Given a directed and edge-weighted social graph G = (V, E, p), a diffusion model m, and an integer $k \leq |V|$, find a set $S \subseteq V$, |S| = k, such that the expected influence spread $\sigma(S)$ is maximum.

Influence Maximization Problem

- Diffusion Model
 - Linear Threshold (LT)
 - A node has random threshold θ
 - A node becomes active when at least θ fraction of its neighbors are active
 - Independent Cascade (IC)
 - When node *v* becomes active, it has a single chance of activating each currently inactive neighbor *w*.
 - The activation attempt succeeds with probability p_{vw}

Competitive Influence Maximization

- First, parties identify the most influential nodes of the network.
- Then they compete over only these influential nodes by the amount of budget they allocate to each node.

Multi-round Diffusion

- In a multi-stage CIM problem, competitors need to select seed nodes simultaneously in each of the sequence stages.
- 1) Nod-Node influence competition
- 2) Link-Link influence competition
- 3) Node-Link influence competition

A Budgeted Framework to Model a Multi-round Competitive Influence Maximization Problem

- We integrate seed selection and budget allocation into the RL model.
- Selecting Seed Nodes and Propagation Model
- Most Reliable Influence Path (MRIP)
 - Fixed weight
 - Dynamic weight
- Reinforcement Learning

MRIP

$$v_1$$
 v_4
 v_2 v_3
 v_2 v_3
 v_2 v_3
 v_2 v_3
 v_3 v_3
 v_2 v_3
 v_3 v_3
 v_3 v_3
 v_3 v_3
 v_2 v_3
 v_3 v_3
 v_5 v_3
 v_5 v_5
 v_7 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v_7
 v

$$w'(u) = \sum_{\forall v \in V} R(v) imes w(u),$$

$$w'(v_1) = 3 * R(v_3) = 3$$

$$w'(v_2) = 2 * (R(v_1) + R(v_8)) = 1.2$$

$$w'(v_3) = 3 * (R(v_4) + R(v_5)) = 1.2$$

$$w'(v_4) = 0$$

$$w'(v_5) = 4 * R(v_6) = 0.48$$

$$w'(v_6) = 2 * R(v_9) = 0.048$$

$$w'(v_7) = 0$$

$$w'(v_8) = 3 * R(v_7) = 0.56$$

$$w'(v_9) = 0$$

Algorithm 2 Finding seed set by MRIP1:
$$S \leftarrow \varnothing$$
2: for all $u \in V$ do3: $w'(u) \leftarrow 0$ 4: for $u \in V$ do5: Construct \mathcal{T}_u via Alg. $[]$ 6: for each leaf v in reverse \mathcal{T}_u do7: $z \leftarrow parent(v)$ 8: while $v \neq u$ do9: Compute $w'(z) = w'(z) + R(v) \times w(z)$ 10: $v \leftarrow z$ 11: $z \leftarrow parent(v)$ 12: new seed \leftarrow arg $\max_{u \in V/S} w'(u)$ 13: $S \leftarrow S \cup \{new \ seed\}$ 14: $V_A \leftarrow$ Activated nodes by new seed node15: Constructing \mathcal{G}' with vertex set $V - V_A$ 16: Recalculate \mathcal{T} and w' in \mathcal{G}'

Algorithm 3 Computing \mathcal{T}_u

Require: $\mathcal{G}(V, E, P)$, source node u1: $A = \{u\}, R(u) = 1$ 2: while $A \neq V$ do 3: Find node $v \in N(A)$ and $v \in V - A$ such that 4: $R'(v) = \max_{(s,v):s \in A, v \in V - A} R(s) \times p(s, v)$ 5: R(v) = R'(v)6: $A = A \cup \{v\}$ 7: Set s as the parent of v in spanning tree \mathcal{T}_u 8: return \mathcal{T}_u

Most Reliable Influence Path (MRIP)

v_2

 v_2, v_8

 v_2, v_8, v_7

 v_2, v_8, v_7, v_1

 v_2, v_8, v_7, v_1, v_3

 $v_2, v_8, v_7, v_1, v_3, v_5$

 $v_2, v_8, v_7, v_1, v_3, v_5, v_6$

 $v_2, v_8, v_7, v_1, v_3, v_5, v_6, v_4$

 $v_2, v_8, v_7, v_1, v_3, v_5, v_6, v_4, v_9$

Α	N(A)	$\mathbf{R}(\mathbf{s})^* \mathbf{p}(\mathbf{s},\mathbf{v})$	R (v)
$\{v_2\}$	v_1	1 * 0.2 = 0.2	$R(v_8)$
		1*0.4=0.4	
$\{v_2, v_8\}$	v_1	1 * 0.2 = 0.2	$R(v_7)$
	v_5	0.4 * 0.1 = 0.04	
	v_7	0.4*0.7=0.28	
$\{v_2,v_8,v_7\}$	v_1	1*0.2=0.2	$R(v_1)$
	v_5	0.4 * 0.1 = 0.04	
$\{v_2, v_8, v_7, v_1\}$	v_1	0.4 * 0.1 = 0.04	$R(v_3)$
	v_5	0.2*0.5=1	
		0.2 * 0.4 = 0.08	
$\{v_2, v_8, v_7, v_1, v_3\}$	v_1	0.4 * 0.1 = 0.04	$R(v_5)$
	v_5	0.2 * 0.4 = 0.08	
		1 * 0.1 = 0.1	
		1*0.3=0.3	
$\{v_2, v_8, v_7, v_1, v_3, v_5\}$	v_4	1 * 0.1 = 0.1	$R(v_6)$
	v_6	0.3*0.4=0.12	
$\{v_2,v_8,v_7,v_1,v_3,v_5,v_6\}$	v_4	1*0.1=0.1	$R(v_4)$
	v_9	0.12 * 0.2 = 0.024	
$\{v_2, v_8, v_7, v_1, v_3, v_5, v_6, v_4\}$	v_9	$0.12 \times 0.2 = 0.024$	$R(v_9)$

Reinforcement Learning

- In RL, the agent keeps interacting with the environment to find the optimal policy π to maximize his expected accumulated rewards
- State

Action

Reinforcement Learning

State

- 1) Number of inactive nodes
- 2) Summation of degrees of all inactive nodes
- 3) Maximum degree among all inactive nodes
- 4) Summation of the weight of the edges for which both vertices are inactive
- 5) Summation of the inactive out-edge weight for nodes which are the neighbors of player I
- 6) Maximum sum of the inactive out-edge weight of a node among all nodes
- 7) Ratio of budgets
- 8) Weight of nodes in case of reachability

Action:

- (1) Selecting a new seed node and
- (2) feeding a node in case of tie.

Experiment

1)Evaluation on Budget Setting

2) Evaluation Based on Different Topologies3) Evaluation on Edge-weight Setting

- Case 1: uniform probabilities p on each edge
- Case 2: weight of the edges in the range of [0.1, 0.4] and [0.4, 0.7]. In addition, the weight for edges are randomly sampled from the normal distribution of U (0, 0.2) and U (0, 1).

4) Evaluation on Different Competing Strategies:

Centrality Competing Strategy

STORM Weight Centrality Voting MRIP Centrality MRIP Random Voting STOP

Centrality Random STORM Weight MRIP Voting Competing Strategy

Competing Strategy

Nadia.niknami@temple.edu