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Abstract—In this paper, a user-based CPU verification scheme
is proposed for cloud cheating detection. In this scheme, a
predefined computational task is constructed for the cloud to
execute in our cheating detection process. Then we compare the
difference of the actual execution time (recorded by the user) and
the theoretical execution time, as to determine whether the cloud
is cheating or not. A time-lock puzzle is introduced to construct
the predefined computational task, so that the predefined com-
putational task is guaranteed to be executed by the cloud. Our
cheating detection process has a higher probability of detecting
cloud cheating if using a larger predefined computational task,
which in turn costs more time. Further analysis shows that, if
the total detection time is limited, it is better to detect cloud
cheating using small-scale and short-length cheating detecting
processes multiple times, as opposed to large-scale and long-
length processes a few times. Finally, the feasibility and validity
of the proposed scheme is shown in the evaluations.

Index Terms—Cloud computing, cheating, CPU verification,
time-lock puzzle.

I. INTRODUCTION

Scalability and metering are two popular features among
users of commercial cloud computing services, because they
allow users to reduce their operating costs [1–3]. A user
operating a video sharing service based on a commercial cloud
provider can, for instance, purchase fewer computing resources
during a period of low demand, while rapidly scaling to
more computing resources in times of high demand, resulting
in higher monetary savings. The cloud computing service
provider is able to provide this type of service by sharing
its hardware between multiple users. Through virtualization
technology, each client’s computation jobs are encapsulated
within a virtual machine (VM). The cloud provider is able to
have multiple VMs share the same hardware, and then migrate
the VMs to other physical machines when the current machine
is unable to provide the required amount of resources [4–6].
The user’s VM running the video sharing service from the
previous example could be sharing the same physical hardware
with several other users during his period of low demand.
This would require that the cloud provider migrate that VM
to a separated hardware when more computing resources are
required. Improving this migration process is an active area of
research [7, 8].

The cloud provider should provide the amount of computing
resources that a user has paid for. However, since the cloud
provider is both the entity providing the resources as well
as metering the service and billing the user, this opens up
the possibility that the cloud provider may not provide the
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computing resources that the user has bought. Certain types
of resources, such as storage space, can be easily verified by
the user. The user can simply attempt to upload a file of a
certain size and retrieve it later. However, other computing
resources, like CPU, are more difficult to verify. For instance,
instead of allocating 10 VMs to a physical machine to ensure
sufficient CPU times for all VMs, a malicious cloud allocates
15 VMs to that same machine, saving the operation costs of
an additional machine. This type of cheating may even occur
when the cloud is not malicious, due to errors in the VM
migration code or algorithm. In this paper, we consider the
problem of allowing users to verify that they actually receive
the CPU resources they have purchased.

Our proposed solution lets the user check the amount of
CPU resources by measuring the time it takes for the cloud to
complete a predefined computing task (PCT). Fig. 1 illustrates
the testing process. First, the user requires the cloud to execute
a PCT, which needs 1010 CPU instructions to complete. Then
the user records the actual executing time of the PCT, 20s,
for example. Meanwhile, according to the committed CPU
frequency, the user can theoretically predict the execution time
as 1010/1GHz = 10s. Since the actual execution time is much
longer than the theoretical execution time, the user can then
judge that the cloud is cheating. This process is called the
cheating detection process. This solution requires addressing
the following challenges.

• How can we guarantee that the PCT is indeed executed by
the cloud? As shown in Fig. 1, the cloud can predict the
execution time of 1010 CPU instructions, and then report
completion after 10s. Moreover, the cloud may simplify
the PCT to speed up the task execution.

• Since the user purchased the cloud for computation rather



than detection, the cloud may not be idle. How do we
deal with the cheating detection, when there is some
background programs assigned by the user?

• Obviously, larger PCT resists interference better and thus
has higher performance on detection, but in turn, costs
more time. If the total detection time is limited, should
we use small-scale PCT more times, or large-scale PCT
fewer times?

The remainder of the paper is organized as follows: in Sec-
tion II, we present the cheating problem mathematically, and
show the monitoring architecture. Then the cheating detection
process is described detailedly in Section III. Section IV shows
the analysis for the error control parameter. Evaluation is
shown in Section V. Finally, we conclude the paper in Section
VI.

II. END USER CPU MONITORING

In this section, we firstly present the cloud cheating prob-
lems from different perspectives, including the mathemat-
ical definitions of cloud cheating and cheating detection,
assumptions of the cloud and the user, etc. Then, we show
the monitoring architecture: the components involved in the
cheating detection process, the interactions between the cloud
and the user, and the cheating determination.

A. Problem Formulation

We assume the committed CPU frequency of the cloud
brought by the user is CPUC , and the real CPU frequency
of the cloud is CPUR. Then the cloud cheating is defined as

CPUR < CPUC − ε (1)

where ε is a parameter for the error control. Another repre-
sentation of Eq. 1 is

ta > tt + δ (2)

where ta is the actual time of executing a task which needs
I total CPU instructions to complete, and tt is the theoretical
time of executing the same task. Ideally, ta=I/CPUR and
tt=I/CPUC , if the cloud CPU is idle. δ is the error control
parameter (similar to ε in Eq. 1). Considering that Eq. 2
is more closed to user experience than Eq. 1, our detection
algorithm uses Eq. 2 as the cheating definition. Naturally, the
cheating detection is defined as to detect the abnormal task
execution time. Note that, it is meaningless for the cloud
provider to slightly cheat the end user, and thus generally
ta − tt � δ if cheating happens.

Since the user bought the cloud for some computational
tasks rather than detections, we assume resources for detection
are limited: the whole running time of the detection program
should be less than D seconds (denoted as the detection
budget). The cloud is running some background programs,
the total CPU usage of which is stably x%. In addition, we
assume cloud is as smart as humans in doing any possible
anti-detection actions. For example, the cloud would present
committed CPU frequency, rather than its real CPU frequency,
in the OS. We also assume that the user has a reliable local
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PC with CPU frequency CPUL and a timer for the detection
assist. Small interferences such as network transmission delay
are neglected.

B. Monitoring Architecture

Since the cloud is able to do any anti-detection actions,
the cheating detection has to depend on reliable parameters
provided by the user. Among all these parameters, time is the
most convenient one, which is also convenient for the detection
objective. Therefore, we decided to construct a special PCT
in the user’s local PC for the cloud to execute, and to observe
the time difference between ta and tt in executing the PCT to
determine cheating.

The proposed cheating detection framework is depicted
in Fig. 2. In step 1, the user constructs the PCT (totally
T ∗CPUL CPU instructions) in the local PC. The PCT has
some random inputs for the initialization, and returns an output
(or say answer, denoted as aL) at the end of the program.
In step 2, the user starts the timer and require the cloud to
execute the PCT with the same inputs in the local PC. In
step 3, the cloud executes the PCT. In step 4, when the cloud
completes the PCT, it returns the output (denoted as aC) to
verify that the PCT has been executed. Meanwhile, the user
stops the timer to obtain the actual task execution time in the
cloud (denoted as ta). In addition, the cloud also returns the
parameters of its CPU usage percentage of the background
programs before running the PCT (denoted as x%). In step 5,
based on the amount of calculations of the PCT (T ∗CPUL
CPU instructions) and the parameters on the computational
resources of the cloud (x% and CPUC), the user can predict
the theoretical task execution time of the PCT (denoted as
tt). In step 6, the cheating determination is done based on
aL, aC , ta, tt, and the error control parameter δ. aL = aC
represents that the PCT is executed successfully in the cloud.



TABLE I
PARAMETERS INVOLVED IN THE ALGORITHMS

Variable Description
CPUL The CPU frequency of the local PC.
CPUC The committed CPU frequency of the cloud.
CPUR The real CPU frequency of the cloud.
p, q Two large random prime numbers.
n Calculated by n = pq.
φ(n) Calculated by φ(n) = (p− 1)(q − 1).
b A large random number which is relatively prime to n,

gcd(b, n) = 1.
S The number of computing b = b2mod n per second

in local PC using 100% CPU.
T A time parameter in seconds, which is used to control

the amount of calculation of the PCT (totally T ∗CPUL

CPU instructions).
M Calculated by M = TS. Computing b2mod n for M

times takes T ∗CPUL CPU instructions, which cost T
seconds for execution in local PC using 100% CPU.

aL Calculated by aL = b2
M
mod n in the local PC.

aC Calculated by aC = b2
M
mod n in the cloud.

x% The background program CPU usage in the cloud,
before running the cheating detection program.

y% The background program CPU usage in the cloud, when
running the cheating detection program.

z% The cheating detection program CPU usage in the cloud.
ta The actual time duration of running the cheating detec-

tion program in the cloud.
tt The theoretical time duration of running the cheating

detection program in the cloud.
δ Error control parameter, used for determining cheating.
I Cheating definition parameter. If the actual time of

executing I CPU instructions > the theoretical time +
the error control parameter, the cloud is cheating.

D The time budget of the cheating detection process.
Tmin Calculated by Tmin = I/CPUL, the lower bound of

parameter T .
Tmax Calculated by Tmax = D/(1+x%)∗CPUC/CPUL,

the upper bound of parameter T .

ta > tt + δ determines that the cloud is cheating. In the next
section, more details about the detection process are shown,
including the construction of the PCT, the calculation of tt,
and the cheating determination.

III. MONITORING ALGORITHMS

In this section, we show the details of the monitoring
algorithms. First, we introduce the PCT and its characteristics.
Second, we present the method for theoretical task execution
time calculation. Third, we discuss cheating determination and
error control. Finally, the algorithm on the whole is shown. All
parameters involved are shown in Table I.

A. Predefined Computational Task

The amount of calculation of the PCT is T ∗CPUL CPU
instructions in total (note T ∗CPUL>I to satisfy the cheating
definition in Eq. 2). This task is executed on both the cloud and
the local PC. To ensure that the cloud runs the PCT, the PCT
should return an answer (aC as the answer from the cloud,
and aL as the answer from the local PC). If aC=aL, the PCT
is executed successfully in the cloud.

Since we compare the actual and theoretical time duration
of the task execution to determine cheating, the PCT should

Algorithm 1 Constructing The PCT in The Local PC
Input: Parameter T ;
Output: Parameter b, M , n for the PCT in the cloud;

Parameter aL for the cheating determination;

1: Close all background programs in the local PC;
2: Generate two large random prime numbers p and q;
3: Calculate n = pq;
4: Generate a large random number b that gcd(b, n) = 1;
5: Set S = 0;
6: while loop time < 1 second do
7: b = b2mod n;
8: S = S + 1;
9: Calculate M = ST ;

10: Calculate aL = b2
M

mod n efficiently by Eq. 3;
11: Return b, M , n, and aL;

Algorithm 2 Executing The PCT in The Cloud
Input: Parameter b, M , n;
Output: Parameter x% for calculating tt;

Parameter aC for the cheating determination;

1: Get background program CPU usage x%;
2: for count = 1 to M do
3: b = b2mod n;
4: Set aC = b;
5: Return x% and aC ;

not be simplified. For example, if the PCT is to repeat a=a+1
1, 000 times (uses a=0 for initialization and returns a=1, 000),
the cloud could replace this task with a=a+1, 000 once, which
simplifies the task. A time-lock puzzle is introduced to the
PCT to solve this problem, which can be viewed as an
application of the random-access property of the Blum-Blum-
Shub b2mod n pseudo-random number generator [9–11].

Theorem 1 (Time-Lock Puzzle Theorem): Assume a large
number b is relatively prime to a large composite number n,
without factoring n; the quickest method to solve b2

M

mod n
(M is an arbitrary natural number) is to loop b=b2mod n for
M times (returns b as the outcome).

The Time-Lock Puzzle Theorem is proven in [12–14]. If
factoring n takes too much time, then calculating b2

M

mod n
cannot be simplified. If n satisfies n = pq, where p and q
are two random prime numbers that are large enough, then
factoring n to solve b2

M

mod n is unnecessary. However, if p
and q are known, a = b2

M

mod n can be efficiently calculated
by

φ(n) = (p− 1)(q − 1)

e = 2Mmod φ(n)

a = bemod n (3)

Therefore, calculating b2
M

mod n is employed as the PCT,
which takes T ∗CPUL CPU instructions if p and q are un-
known. The process of constructing the PCT in the local PC



is shown in Algorithm 1 (step 1 in Fig. 2), and the process
of executing the PCT in the cloud is shown in Algorithm 2
(step 3 in Fig. 2). Note that steps 2 and 4 are used to measure
the execution time of Algorithm 2 in the cloud. In the next
subsection, we will discuss how to calculate tt, which is step
5 in Fig. 2.

B. Theoretical Task Execution Time

Assume x%, y%, and z%, respectively, present the back-
ground program CPU usage in the cloud before running the
cheating detection program, the background program CPU
usage in the cloud when running the cheating detection pro-
gram, and the cheating detection program CPU usage in the
cloud. We further assume that the background programs and
the detection program have stable CPU usage, which does not
change over time.

Obviously y% + z% = 100%. However, the relationship
between x% and y% is not simply x% = y%. If running
the background programs alone, it takes x% CPU usage. If
running the detection program alone, it takes 100% CPU
usage. As far as we know, in most OS, when running the
background programs and the detection program together, they
share the CPU proportionally to the CPU usage that they take
when running alone. Consequently,

y% =
x%

x%+ 100%
(4)

z% =
100%

x%+ 100%
(5)

Since the amount of calculation of the PCT is T ∗CPUL
CPU instructions in total, if x% = 0%, and the user obtained
CPUC , executing T ∗CPUL CPU instructions in the cloud
should take T ∗CPUL/CPUC seconds. Thus,

tt = T ∗ CPUL
CPUC

(6)

Taking the influence of the background programs into account
(x% 6= 0%), we have

tt = T ∗ CPUL
CPUC ∗ z%

= T ∗ (1 + x%) ∗ CPUL
CPUC

(7)

In Eq. 7, tt is obtained, which is step 5 in Fig. 2. In the next
subsection, how to determine cheating is shown as step 6 in
Fig. 2.

C. Cheating Determination

To determine whether the cloud is cheating or not, the first
step is to check that, the PCT is executed correctly in the cloud.
If the PCT is executed successfully, we should have aC = aL,
since aC and aL are the answers to the same PCT. Then we
use Eq. 2 to judge cheating: if ta > tt+δ, the cloud is judged
to be cheating; if ta ≤ tt + δ, the cloud is not cheating. The
cheating determination process has been shown in Algorithm
3.

Algorithm 3 Cheating Determination
Input: Parameter aC , aL, ta, tt, and δ;
Output: Whether the cloud is cheating or not;

1: if aC 6= aL then
2: Return cheating;
3: else
4: if ta > tt + δ then
5: Return cheating;
6: else
7: Return no-cheat;

Algorithm 4 The Whole Cheating Detection Process
Input: Parameter T , D, x%, CPUL, CPUC ;
Output: Whether the cloud is cheating or not;

1: Calculate Tmax = D/(1 + x%) ∗ CPUC/CPUL;
2: for count = 1 to bTmax/T c do
3: Use Algorithm 1 to construct the PCT in the local PC;
4: Start timer;
5: Use Algorithm 2 to execute the PCT in the cloud;
6: Stop timer to get the ta;
7: Calculate tt = T ∗ (1 + x%) ∗ CPUL/CPUC ;
8: if Algorithm 3 judges the cloud to be cheating then
9: Return cheating;

10: Return no-cheat;

However, how to determine the error control parameter
δ remains to be a major challenge. Ideally, if there is no
interference, δ could be set to 0, and tt should be strictly equal
to ta. But the interferences indeed exist. Since tt is calculated
by T , x%, CPUL and CPUC (where δ is the error control
parameter), δ may be related to the same four parameters.
How to set δ is further discussed in Section IV, Error Control
Parameter.

D. The Whole Algorithm

The former three subsections introduce the cheating detec-
tion process based on Fig. 2, which is predicted to take tt
seconds. However, as stated in Section II subsection A, we
have at most D seconds for a cheating detection processs,
which requires tt < D. According to Eq. 7,

T <
1

1 + x%
∗ CPUC
CPUL

∗D = Tmax (8)

Note that if T � Tmax (tt � D), then the remaining time is
wasted. A better method is to recursively run the cheating
detection process until all D seconds are used up (totally
bTmax/T c times). Once the cloud is detected as cheating,
then we judge the cloud to be cheating. For example, if
T = 0.1∗Tmax, then we run the cheating detection process in
Fig. 2 10 times: only if the cheating detection processes return
no-cheat all 10 times, the cloud is judged to be no-cheat. In
summary, the whole algorithm is presented in Algorithm 4. In
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Fig. 3. Estimating ta to submit normal distribution (T = 60 and CPUL = CPUR)

addition, the lower bound of the T is given by the definition
of cheating in Eq. 2:

T >
I

CPUL
= Tmin (9)

Obviously, the value of T has great influence on the perfor-
mance of the cheating detection algorithm, since bTmax/T c
determines the loop times. Intuitively, a larger T brings less
loops for the cheating detection process, while each loop has
higher accuracy. The value of T , along with the error control
parameter, is further discussed in the next section.

IV. ERROR CONTROL PARAMETER

In this section, we discuss the error control parameter δ
in Eq. 2, where we use ta > tt + δ to determine cheating.
Due to some small interferences (for example, some OS burst
processes), the actual task execution time ta varies. Though
ideally ta = tt if the user obtains the committed CPU in the
cloud, in practice, ta is only approximated to tt. Therefore, it is
necessary to model the distribution of ta to determine the value
of error control parameter δ, which is presented in the first
subsection. Based on the value of δ, we then discuss the value
of T to see which scheme is better (since the total detection
time is limited to budget D): a small-scale and short-length
cheating detecting process for more times, or a large-scale and
long-length cheating detecting process for fewer times.

A. Model

Due to the interference, the ta randomly varies, which
is modeled to submit normal distribution (µ, σ). µ is the
expectation of ta, and σ is the standard deviation of ta.
Since the 99% confidence interval of the normal distribution is
[µ−3σ, µ+3σ], we employ tt to estimate µ and δ = 3σ as the
error control parameter (if ta > tt+δ, the cloud is judged to be
cheating). It is reasonable to assume that ta submits to normal
distribution, as shown in Fig. 3. In the experiments shown in
Fig. 3, there are T ∗CPUL = 1.5 ∗ 1011 CPU instructions in
total assigned as the the amount of calculations of the PCT. We
collected 20 sampling points of ta in each test, the distribution
of which is called, sampling distribution (for convenience, ta
is recorded in seconds). The maximum likelihood estimate

(MLE) is employed to estimate the distribution of these
sampling points, the distribution of which is called, estimated
normal distribution. The experiments in Fig. 3 proves the
feasibility of estimating ta to submit normal distribution. In
addition, the detailed test environment is described in Section
V subsection A.

Then we need to estimate the value of µ and σ, if no cheat-
ing happens. Obviously, µ can be estimated to be tt (replace
CPUC in Eq. 7 with CPUR if the cloud is cheating), and the
next step is to estimate σ. Intuitively, σ should be related to
parameter M , x% and CPUR: M is the input of Algorithm
2, which determines the extent of the PCT’s calculations to be
computing b2mod n for M times; x% and CPUR describes
the computational capabilities of the cloud. Therefore, σ
can be written as σ(M,x%, CPUR). Note that, computing
b2mod n for M times needs T ∗CPUL CPU instructions
in total, thus σ is rewritten to be σ(T ∗CPUL, x%, CPUR).
Fig. 4 shows the relationship between σ and these parameters
(the σ is calculated through MLE). It can be seen that σ is
almost linearly proportional to T ∗CPUL, while σ is almost
uncorrelated to parameter x% and CPUR. Thus, the fitting
curve of σ is

σ =
T

60
∗ CPUL

2.5
=
T ∗ CPUL

150
(10)

where the unit of T is s, and the unit of CPUL is GHz. The
reason why σ is uncorrelated to parameters x% and CPUR
is that, these two parameters lead to very small fluctuations
of ta, which can be relatively neglected. The amount of
calculations by the PCT is the main point. The fluctuation of
ta brought by T ∗CPUL derives from the inaccurate parameter
S in Algorithm 2. Fortunately, the parameter S could be
pre-measured by the cheating detection software developer
to further improve the accuracy. Note that, the coefficient
1/150 in Eq. 10 is not changeless among different machines.
However, the tendency keeps that σ is linearly proportional to
T ∗CPUL, and is uncorrelated to x% and CPUR. Based on
Eq. 10, we further discuss how to set parameter T in the next
subsection.
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B. Analysis

In the former subsection, we modeled ta to submit normal
distribution (µ, σ) due to the interferences. µ equals tt if no
cheating happens, and σ is fitted as Eq. 4. In a single cheating
detection process, we employ condition ta > tt+3σ to judge
cloud cheating. If the cloud is cheating, CPUR 6= CPUC , the
probability to successfully detect cheating is

P =

∫ ∞
tt+3σ

1√
2πσ

e−
(t−µ)2

2σ2 dt =
1

2
erfc(

tt + 3σ − µ√
2σ

) (11)

where

µ = T ∗ (1 + x%) ∗ CPUL
CPUR

and σ =
T ∗ CPUL

150
(12)

Simplifying Eq. 11, we have

P =
1

2
erfc[

3+150(1+x%)(1/CPUC−1/CPUR)√
2

] (13)

The theoretical successful detection rate of a single cheating
detection process has been shown in Eq. 13. If x% = 0% and
CPUC = 2.5GHz, the theoretical successful cheating detec-
tion probability would be P = 100% if CPUR = 2.2GHz,
P = 98.7% if CPUR = 2.3GHz, and P = 30.9% if
CPUR = 2.4GHz. If the cloud is not cheating (CPUR =
CPUC = 2.5GHz), the probability of erroneous judgement
is P = 0.1%. Note that P is uncorrelated to parameter T and
CPUL. Based on Eq. 13, the total probability of successful
cheating detection using time budget D is

Pd = 1− (1− P )n

n = bTmax
T
c = b 1

1 + x%
∗ CPUC
CPUL

∗ D
T
c (14)

Note that Pd is increased with decreasing T , and thus we have
the following position:

Position 1 (Time Assignment Position): Based on our error
control model, it has a higher probability of detecting cloud
cheating using small-scale and short-length cheating detecting
processes multiple times, as opposed to using large-scale and
long-length cheating detecting processes a few times.

However, our model assumes that there is no other interfer-
ences (for example, network transmission delay), which would

lead to errors when T is too small. Another point is that
T has its lower bound given by Eq. 9. So, we suggest to
set T = Tmin. In the consideration of that, the background
programs generally occupy CPU erratically; we suggest to
run the cheating detection process when the cloud is idle
(x = 0%).

V. EVALUATION

In this section, the evaluation tests are conducted to check
the feasibility and accuracy of the proposed cheating detection
method. First, the evaluation system setup is introduced. Then
the memory-intensive test is conducted to check whether or
not the cheating detection process occupies lots of memory.
Finally, the evaluation results are shown.

A. System Setup

Our evaluation environment is based on Oracle VM Virtu-
alBox, version 4.1.22. The local PC is a laptop with CPU
frequency 2.5GHz (CPUL = 2.5GHz). The cloud is a
virtual machine assigned by the VirtualBox, which is running
on another laptop with 4 core of CPU frequency 2.5GHz
(CPUC = 2.5GHz for convenience). The CPU frequency
of the virtual machine can be adjusted through settings in
the VirtualBox, by limiting the percentage of time that the
virtual CPU is allowed to use of the real CPU, from 40% to
100%. Thus, CPUR can be set from 1.0GHz to 2.5GHz. The
program is written in C++ with the usage of the GNU multiple
precision arithmetic library (gmp library version 5.1.0). The
detection program is executed in the OS of Ubuntu, version
12.04.

It is reasonable to test our algorithms on the VirtualBox
software [15], since it presents the virtualization technology,
which is operating in the cloud system. However, there might
be some differences between the VirtualBox-based VMs and
the real cloud VMs. During the test, the network service is not
closed, since this is more similar to the real situation. The OS
has some burst processes, for example, checking for updates
through the network. In addition, the background programs are
made by alternating the endless addition loops and the thread
sleep function.
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Fig. 5. The theoretical and practical successful cheating detection rate of a cheating detection process
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(b) T = 60s
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Fig. 6. The theoretical and practical successful cheating detection rate of cyclic cheating detection processes with the same total detection budget D

TABLE II
MEMORY-INTENSIVE TEST RESULTS

Memory tt µ of ta σ of ta
512MB 60 62.4 8.27
640MB 60 60.5 1.29
2GB 60 60.2 1.20

B. Memory-Intensive Test

Before conducting further tests, it is necessary to test
whether the proposed method is memory-intensive or not [16].
Here memory intensive means that the cheating detection
process frequently occupies RAM, and insufficient free RAM
would lead to aborted detection. The memory configuration
is able to be modified in the VirtualBox. Three tests are
conducted for RAM = 512MB, RAM = 640MB and
RAM = 2GB, with the parameter T = 60s, x = 0%,
CPUR = CPUC = CPUL = 2.5GHz. When RAM =
512MB, the memory is not even enough for supporting the
OS, and the programs react slowly, since they need to wait for
the usage of the insufficient memory. When RAM = 640MB,
the memory is enough for the OS, and there is very limited
free memory. When RAM = 2GB, there are enough memory
for all the programs. µ and σ are calculated by MLE through
10 samples.

The test results are shown in Table II. It can be seen that,

even though memory is very limited (RAM = 512MB),
the cheating detection process works. The ta does not vary
significantly away from tt, though σ is abnormal. When there
is only a little free memory (RAM = 640MB), the cheating
detection process works as fine as when there is enough free
memory (RAM = 2GB). Therefore, the proposed cheating
detection process is not memory-intensive. Even a little free
memory can ensure the operation of the cheating detection
process.

C. Cheating Detection Rate

In this subsection, we observe the probability of the suc-
cessful cheating detection of the proposed method. The cloud
cheating is simulated by the CPU frequency modification
of the VirtualBox-based VM. For example, if we want to
simulate a dishonest cloud with the real CPU frequency
CPUR = 1.0GHz, we set the CPU frequency of the VM
on the VirtualBox to be 1.0GHz. The CPU frequency of
the VirtualBox based VM is modified through limiting the
percentage of time that the virtual CPU is allowed to use
of the real CPU, from 40% to 100%. Therefore, we use
CPUC = CPUL = 2.5GHz in this test, and modify the
CPU frequency of the VirtualBox-based VM from 1.0GHz to
2.5GHz, as to simulate cloud cheating (CPUR varies from
1.0GHz to 2.5GHz). In addition, we set x% = 0% (the
simulated cloud is idle) and Tmin = 10s.



The theoretical (derived in Eq. 13) and practical successful
cheating detection rate of a cheating detection process has
been shown in Fig. 5. A higher detection probability means
that the cheating is more likely to be detected (the higher
the better). It can be seen that, a single cheating detection
process has 100% probability of discovering the cheating if
CPUR < 90% ∗ CPUC = 2.25GHz, and it is able to
detect cheating if CPUR < 2.4GHz. In the consideration
of CPUC = 2.5GHz, it can be concluded that the proposed
method works well. In addition, note that the theoretical suc-
cessful cheating detection rate is not correlated to the amount
of PCT’s total calculations (T ∗CPUL CPU instructions). But
in practice, a larger PCT indeed brings slightly better detection
probability. This gap results from the model of σ.

The theoretical (derived in Eq. 14) and practical successful
cheating detection rates of cyclic cheating detection processes,
with the same total detection budget D, has been shown in
Fig. 6. A higher detection probability means that the cheating
is more likely to be detected in the detection budget D (the
higher the better). Compared to the single cheating detection
process in Fig. 5, the whole cheating detection rate is improved
by using a larger detection time budget D. When D = 200s,
the cheating of CPUR < 2.3GHz is surely detected. Here,
a large amount of calculation of of PCT’s total calculations
(T ∗CPUL CPU instructions), has a negative influence on
the cheating detection rate. As presented in Position 1, both
actually and theoretically, it has has a higher probability of
detecting cloud cheating using small-scale and short-length
cheating detecting process many times, as opposed to a few
uses of large-scale and long-length processes. Another point
is that, through enlarging the total time budget of the cheating
detection process (parameter D), Pd can be improved to 100%
if the corresponding P > 0. Theoretically, the cheating can be
surely detected if CPUR < CPUC . However, in practice,
slight differences between CPUR and CPUC leads to unsuc-
cessful detection (Pd = 0). Fortunately, it is meaningless to
point out slight differences between CPUR and CPUC , since
CPUR � CPUC if cheating happens.

VI. CONCLUSION

In this paper, a cheating detection method is proposed to
detect whether the cloud is cheating or not. The method is
based on task execution time comparison: a predefined com-
putational task is constructed for the cloud to execute; since
the amount of calculation of the task is known, the theoretical
execution time of the task can be computed as tt; meanwhile,
the actual execution time of the task is ta; if ta > tt + δ, the
cloud is judged to be cheating, where δ is an error control
parameter. The predefined computational task is based on
time-lock puzzles, so that the task cannot be simplified by
the cloud to reduce the amount of calculations. Then, further
analysis shows that, based on our model, it has a higher
probability of detecting cloud cheating using small-scale and
short-length cheating detecting processes more frequently than
using large-scale and long-lenth cheating detecting processes
less frequently. Finally, the evaluation shows that the cheating

detection process is not memory intensive, and is applicable
to real-world cloud cheating detection.
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