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Abstract—In real Internet of Things (IoT) environments,
IoT devices vary widely in data types and needs. IoT devices
participating in Personalized Federated Learning (PFL) all
have their own unique data characteristics, but there exist
some similarities. Previous work enhances Personalized Lo-
cal Models (PLMs)’ performance by clustering IoT devices’
PLM while ignoring dimensionality and communication volume,
resulting in lower Global Model (GM) accuracy and PLMs’
performance. To this end, we propose a Personalized Federated
Learning method based on Model Head Clustering (FedMHC).
Specifically, FedMHC groups IoT devices with similar data
characteristics and distributes different GMs to different device
groups. FedMHC allows each IoT device to obtain a GM that
best fits its local data characteristics and guides PLM training.
FedMHC only clusters model head parameters on the server
side. Thus, the edge server only needs to transmit the head
parameters and a single shared feature extractor parameters
during communication with IoT devices. The improvement
can effectively address the issues of dimensionality and high
communication volume. Experiments on CIFAR-100, Tiny-
ImageNet, and AG News datasets demonstrate that FedMHC
enhances the model accuracy by 1.79% and 5.9% in pathological
heterogeneous scenarios, and by 1.43%, 0.92%, and 0.94%
in practical heterogeneous scenarios, compared to the top-
performing methods among 9 baselines.

Index Terms—Personalized federated learning, data hetero-
geneity, model clustering

I. INTRODUCTION

In real Internet of Things (IoT) environments, the in-
creasing number and functional requirements of IoT devices
can lead to rising data heterogeneity [1]. Additionally, the
continuous increase in model dimensions raises communica-
tion pressure, thereby reducing the communication efficiency
of Personalized Federated Learning (PFL). Previous work
improves the performance of Personalized Local Models
(PLMs) by clustering the PLM of IoT devices. However, the
above methods cannot adequately address the issues of di-
mensionality and high communication volume in clustering,
resulting in poor accuracy of PLM. As shown in Challenge
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Fig. 1. Challenges of Data Heterogeneity and Dimensionality Catastrophe
in Personalized Federated Learning.

1 of Fig.1, most existing model clustering methods directly
cluster all local Model Parameters (MPs). High-dimensional
MPs are impacted by the Curse of Dimensionality (CoD),
diminishing intra-group compactness and inter-group separa-
bility. Unstable or inaccurate clustering outcomes may result
from such issues. Furthermore, as shown in Challenge 2
of Fig.1, unstable or inaccurate clustering results decrease
the accuracy of PLM. Therefore, mitigating the impact of
data heterogeneity in PFL while reducing CoD and improv-
ing communication efficiency remains a challenge. Existing
studies address the mentioned issues by employing Improved
model clustering strategies.

In PFL, the heterogeneity of IoT devices’ local data can
impact model efficiency. Yurochkin et al. [2] propose a PFL
framework that adjusts to variations in IoT device num-
bers and distributions using Bayesian nonparametric cluster-
ing methods. However, the CoD results in poor clustering
outcomes when directly clustering high-dimensional MPs.
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FedSplit [3] mitigates the impact of high-dimensional MPs
by grouping IoT devices for localized model training and
then merging the results. Nevertheless, FedSplit may result
in substantial performance disparities among IoT devices. In
conclusion, developing a novel approach capable of achieving
IoT devices model personalization, overcoming the CoD, and
enhancing communication efficiency remains a challenge.

To this end, we propose a method called Personalized Fed-
erated Learning Based on Model Head Clustering (FedMHC).
FedMHC focuses on clustering the head parameters of the
model and reduces parameter dimensions during clustering,
mitigates dimensionality problems, and effectively decreases
communication volume. During the PLM training, a regular-
izer [4] is used to train the PLM for each IoT device individ-
ually, preventing overfitting and reducing the gap between
the PLM and the group’s GM. In summary, FedMHC can
enhance the personalization of IoT device models, effectively
mitigate CoD, and improve communication efficiency. The
main contributions are summarized as follows.

• We propose a Personalized Federated Learning method
based on Model Head Clustering (FedMHC), which clusters
only the head MPs on the edge server to overcome the CoD
and high communication volume issues.

• On the IoT device side, FedMHC employs a regular-
izer to train each PLM independently, thereby reducing the
disparity between the PLM and the GM.

• Experiments on CIFAR-100, Tiny-ImageNet, and AG
News datasets show that FedMHC improves test accuracy
by 1.79% and 5.9% in pathological heterogeneous scenarios
[5], [6], and by 1.43%, 0.92%, and 0.94% in practical
heterogeneous scenarios, compared to the top-performing
methods among 9 baselines.

II. RELATED WORK

A. Model Clustering in Personalized Federated Learning

Clustering strategy. Model clustering in PFL groups
similar models to improve overall model performance and
efficiency. IFCA [7] and FedSEM [8] both employ the K-
means clustering algorithm on MPs at the edge server to build
K GMs. Grouping IoT devices reduces the influence of intra-
group data heterogeneity, thereby enhancing the precision
of intra-group models. However, due to the CoD, directly
clustering high-dimensional MPs results in subpar clustering
outcomes for both IFCA and FedSEM.

Utilization of clustering results. Following clustering,
pFedCAM [9] makes GMs from all groups at the IoT device
side to obtain PMs, further refining PMs using clustering
results, yielding higher testing accuracy. However, this ap-
proach necessitates the edge server to distribute all GMs to
each participating IoT device, leading to elevated communi-
cation costs and diminished federated training efficiency.

B. Alleviating The Curse of Dimensionality

Dimensionality reduction. To address the CoD in PFL
and improve communication efficiency, FedAC [10] inte-
grates global and local knowledge by introducing low-rank

Fig. 2. Clustering of FedMHC Head Parameters and PLM Training.

cosine model similarity measurement for online clustering
adjustment, facilitating real-time optimization of the cluster-
ing structure. However, handling large-scale heterogeneous
datasets remains challenging.

Feature selection improvement. Conducting feature se-
lection prior to clustering to eliminate irrelevant or redun-
dant features can help mitigate the CoD. FedSDG-FS [11]
reduces the feature count processed in vertical PFL models
via efficient feature selection methods, thereby ameliorating
the complexity and dimensionality issues arising from high-
dimensional data. However, this method may necessitate
intricate encryption operations and entail additional commu-
nication overhead.

In brief, PFL methods with model clustering boost accu-
racy but still face challenges such as dimensionality issues
and high communication overhead due to data heterogeneity.
Overcoming these hurdles is our primary goal.

III. SYSTEM MODEL

A. Model Overview

As shown in Fig.2, the system model consists of N IoT
devices and an edge server. The system clusters only the head
MPs, reducing parameter dimensionality during clustering
to mitigate the CoD and decrease communication overhead.
During PLM training, regularizers individually train PLMs
for each IoT device, narrowing the gap between PLMs and
the GM of their respective groups. Specifically, FedMHC
employs the K-means algorithm on the server side to cluster
head MPs, thereby constructing multiple GMs to guide the
training of PLMs on IoT devices. In a heterogeneous data
environment, the K-means clustering algorithm groups IoT
devices into M distinct groups, with similar data distributions
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within each group. The goal is to minimize intra-group
distances and optimize IoT device grouping, as defined by

min
1

K

M∑
m=1

K∑
i=1

rmi Dist(hi, Hm), (1)

rmi =

{
1, if hi ∈ Cm

0, otherwise
, (2)

where K denotes the number of IoT devices participating in
training at a particular iteration, M represents the number of
groups after clustering, Hm(m ∈ [0,M ]) denotes the aggre-
gated head MPs of the m group, and Dist(·, ·) represents the
distance function, hi represents the head parameters of the
local model uploaded by IoT device i to the edge server,rmi
indicates whether IoT device i belongs to the m group after
clustering and Cm represents the set of all head MPs of the
m group after clustering.

Drawing inspiration from pFedMe [12], a regularization
term is incorporated into the PLM training process updates to
restrict parameter updates. Consequently, the PFL’s objective
for each IoT device is to minimize the disparity between the
PFL and GM, which is defined as

min fi(θi) + λr(θi, wi), (3)

where θi represents the PLM parameters on IoT device i,
fi(·) is the loss function, λ is a regularization hyperparameter,
and r(·, ·) represents the regularizer. wi forms the GM, in-
cluding the aggregated head MPs of the group on IoT device
i and the Shared Feature Extractor Parameters (SFEPs).

B. Problem Statement

During the training process, local training based on private
datasets from IoT devices encourages the PLM to fit its
private data distribution as closely as possible. At the same
time, a regularizer restricts the updates to the PLM to
ensure it does not deviate excessively from the GM, thereby
transferring the GMs’ knowledge to the PLM. Therefore, The
overarching objective of FedMHC can be framed as a two-
layer optimization problem, optimized through alternating
updates on the IoT device and the edge server. Specifically,
update wi and θi using local data on each IoT device. On
the edge server, cluster and update the head MPs Hm

min
1

K

K∑
i=1

{Fi(θi) := fi(θi) + λr(θi, wi)}

s.t. min
1

K

M∑
m=1

K∑
i=1

rmi Dist(hi, Hm).

(4)

IV. HEAD PARAMETERS CLUSTERING

A. Head Parameters Selection and Blending Mechanism

Each IoT device’s model consists of SFEPs and head
MPs. The SFEPs transform raw data from a high-dimensional
space to a lower-dimensional space, extracting key features.
Each IoT device calculates local updates (e.g., gradients)

based on the global representation and sends them back
to the edge server. The server aggregates these updates to
refine the global representation. Each IoT device computes a
personalized low-dimensional classifier, referred to as the IoT
device’s head parameters, to adapt to the unique labels of its
local data. IoT devices use the global feature representation
as input and train their head model by minimizing the local
loss function. This process is typically completed locally on
the IoT device side.

The objective is to perform E iterations, the IoT devices
receive global SFEPs ϕt and a set of head MPs H =
{ H1, H2, ...,HM } from the edge server during the local
model update stage. We propose a loss-based method for
group identification, assigning IoT devices to the m-th group
based on each model’s average loss. m is calculated by

m = arg min
j∈[0,M ]

fi(ϕ
t, Hj), (5)

where m represents that IoT device belongs to the m-th
group, i is the IoT device’s identifier, and fi(·) is the loss
function. Global MPs wt are constructed by combining the
head MPs Hm from the relevant group on the IoT device
with the global SFEPs ϕt, represented by

wt = {ϕt, Hm}, (6)

using the global MPs wt to replace the local MPs wt
i , serves

as the initial parameters for the local model in round t of
federated communication. The IoT device then updates the
local model using its local data, expressed as

wt
i = wt, (7)

wt
i = wt

i − η∇fi(w
t
i), (8)

where ∇fi(·) is the stochastic gradient of IoT device i in
communication round t and η is the local learning rate.
Finally, the IoT device uploads wt

i to the edge server.

B. Regularization Adjustment

Inspired by pFedMe [12], a novel loss function is em-
ployed to update the PLM. This function comprises a super-
vised learning loss and a regularizer that constrains the model
updates, ensuring they do not deviate excessively from the
GM. Consequently, the goal of personalized learning in each
IoT device is to minimize the gap between the PLM and the
GM. During the t-th round of federated communication, the
loss function for PLM training is given by

Fi(θ
t
i) = fi(θ

t
i) +

λ

2
∥θti − wt∥, (9)

where θti is the PLM parameters of IoT device i. Before
training, the parameters from the previous round are used as
the initial parameters for the current round, calculated as

θti = θt
′

i , (10)

where t′ indicates that the last time client i participated in
federated training was during the t′-th round of federated
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Algorithm 1: FedMHC
Input: wt

i , θ
t
i , η, Hm, ϕt, T , E, N , K, M , t.

Output: {θT+1
1 , θT+1

2 , ...θT+1
N }.

1 for t = 1, 2, . . . , T do
2 IoT device:
3 Define S ⊆ {1, 2, . . . , N}
4 foreach IoT device i ∈ S in parallel do
5 Download model header parameter set

{H1, H2, ...HM}
6 Download feature extraction parameters ϕt

7 m = argminj∈[1,M ] fi(ϕ
t, Hj)

8 wt
i = {ϕt, Hm}

9 for e = 1, 2, . . . , E do
10 wt

i = wt
i − η∇fi(w

t
i)

11 Fi(θ
t
i) = fi(θ

t
i) +

λ
2 ∥θ

t
i − wt

i∥
12 θti = θti − η∇Fi(θ

t
i)

13 end
14 Upload wt

k to Server
15 end
16 Server:
17 wt

i = {ϕt
i, h

t
i}

18 Cluster {ht
1, h

t
2, ...h

t
K} into C1, C2, ...CM

19 update rmi =

{
1, if ht

i ∈ Cm

0, otherwise.
20 for m = 1, 2, . . . ,M do
21 Hm = 1

|Cm|
∑K

i=1 r
m
i ht

i

22 ϕt+1 = 1
K

∑K
i=1 ϕ

t
i

23 end
24 Share {ϕt+1, H1, H2, · · ·HM} with IoT devices
25 end
26 return {θT+1

1 , θT+1
2 , ...θT+1

N }

communication. The IoT device then performs multiple local
iterations to update the PLM based on local data

θti = θti − η∇Fi(θ
t
i), (11)

where Fi(·) is a loss function incorporating an L2 norm
regularizer. PLM can use the regularizer to control the
distance between the PLM and its corresponding GM.

C. Header Parameters Clustering Mechanism
The edge server receives the local MPs wt

i from the IoT
devices. Presently, the prevailing approach involves the direct
aggregation of these MPs across the network. Inspired by
FedRep [13], local MPs wt

i are partitioned into two parts

wt
i = {ϕt

i, h
t
i}, (12)

where ϕt
i is the SFEPs and ht

i is the head MPs. Using the
K-means algorithm to cluster the local model’s header pa-
rameters. Then, update rmi , and perform federated averaging
on the header parameters within each group, we can get

Hm =
1

|Cm|

K∑
i=1

rmi ht
i, (13)

where, |Cm| denotes the count of model header parameters in
the m-th group post-clustering. To minimize communication
overhead, direct federated aggregation is conducted solely
on the feature extraction segment of all local models. When
distributing MPs, only a single feature extraction parameter
and the header parameters of M models are transmitted. The
feature extraction segment aggregation is computed as

ϕt+1 =
1

K

K∑
i=1

ϕt
i. (14)

Then, the edge server chooses K IoT devices for the
subsequent round of federated training. Simultaneously, the
edge server dispatches the set of model header parameters
{ H1, H2, ...,HM } and the parameters of the feature ex-
traction component ϕt+1 to the selected IoT devices.

D. Algorithm Workflow

Fig.2 illustrates the training process of FedMHC during
the t-th communication round. In each communication round,
FedMHC undergoes three key training stages. The workflow
of FedMHC is outlined in Algorithm 1. The computational
complexity per round is dominated by O(N ·E·d) for the IoT
devices and O(M ·K +K·d·M) for the edge server.

1) Update local model. Each IoT device receives the SFEPs
ϕt and the set of head MPs H = { H1, H2, ...,HM } from
the edge server, then uses these parameters to instantiate
multiple models and select the one with the minimum loss
on local data as the GM wt. The local model wt

i is initialized
with wt and updated using the local data. After training, IoT
devices upload the local MPs wt

i to the edge server.
2) Update personalized parameters in local models. Each

IoT device contains local MPs wt
i and personalized MPs

θti . After determining the GM parameters wt, update the
personalized MPs θti using a regularizer. This mechanism
effectively diminishes the discrepancy between the PLM θti
and the GM wt, thus facilitating the transfer of knowledge
from the GM to the PLM, helping prevent local overfitting.

3) Cluster local model head parameters. The edge server
receives local MPs wt

i from IoT devices, segments them into
SFEPs ϕt

i and head MPs ht
i, and clusters the latter using the

K-means. After determining the group assignment rmi for
each IoT device, federated averaging is applied to all head
MPs within the same group, resulting in a new collection of
head MPs H . The edge server executes federated averaging
on the SFEPs of all local models to derive ϕt+1.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

Experimental Environment.
• Hardware Environment. We employ a simulated IoT

environment to experimentally verify the accuracy of PLMs
under heterogeneous data conditions. The federated learning
system consists of an edge server with an Intel Xeon Platinum
8369B CPU, operating at 2.4 GHz with 8 cores and 16GB
of RAM, and twenty IoT devices. These IoT devices are
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represented by Docker nodes across various workstations,
each powered by an Intel i5-12500H CPU at 2.5 GHz with
4 cores and 4GB of RAM. While the dataset characteristics
of each Docker node vary, some similarities persist.

• Models. For CIFAR-100, a 4-layer CNN with two
convolutional and two fully connected layers is used. A
similar 4-layer CNN and a ResNet-18 model are applied to
Tiny-ImageNet. For text classification with the AG News, the
FastText model with an input layer, a fully connected hidden
layer, and a fully connected output layer are utilized.

• Hyperparameter Settings. In this experiment, the clus-
tering method sets the number of cluster centers M to 4.
For all three datasets, set batchsize = 10, and IoT device
participation rate ρ = 1. For real-world heterogeneous data:
set Dirichlet distribution parameters β = 0.1. For CIFAR-
100: T = 500, η = 0.005. For Tiny-ImageNet: T = 500,
η = 0.005. For AG News: T = 2000, η = 0.1.

Datasets. The experiment utilized the CIFAR-100 [14],
Tiny-ImageNet [15] and the AG News datasets [16], simu-
lating both actual and pathological heterogeneous scenarios.

Baselines. We implemented baselines, including FedAvg
[17], FedProx [18], Per-FedAvg [19], CPFL [20], IFCA [7],
FedSEM [8], pFedCAM [9], pFedMe [12] and FedRep [13].

Metrics. FedMHC is evaluated using these metrics.
• Personalized Model Average Accuracy (PMAA). Aver-

age test accuracy of all IoT device-side PLMs, indicating
overall performance.

• Average model parameter distance. Compute the Eu-
clidean distance between all model parameters within
each group and the centroids of the clusters. Sum these
distances and then divide by the number of IoT devices.

• Clustering Iteration Rounds. K-means iterations for
clustering head MPs per communication round.

B. Experimental Results Analysis

Verage Accuracy. Table I displays the PMAA for
FedMHC and baseline methods across CIFAR-100, Tiny-
ImageNet, and AG News datasets. TINY signifies the use
of a 4-layer CNN model on Tiny-ImageNet, while TINY*
indicates a ResNet-18 model on Tiny-ImageNet.

In both practical and pathological heterogeneous data
scenarios, FedMHC outperforms other benchmark methods.
However, the performance gain of FedMHC is less pro-
nounced in practical heterogeneous data setups compared
to pathological ones. This is primarily due to the long-tail
data distribution among IoT devices in practical scenarios,
exacerbating data distribution differences within clusters. On
the AG News dataset, FedMHC maintains the highest test
accuracy, indicating its effectiveness across different tasks.

Number of Clusters. Experiments on CIFAR-100 and
Tiny-ImageNet datasets are conducted to assess FedMHC’s
performance and its resilience to varying group numbers
M . Specifically, when M = 1, there’s a single unclustered
group, making FedMHC behave like pFedMe. Conversely,
when M = N , each group accommodates only one IoT
device, relying solely on local data for training. To prevent

TABLE I
AVERAGE ACCURACY UNDER PRACTICAL HETEROGENEOUS SCENARIOS

AND PATHOLOGICAL HETEROGENEOUS SCENARIOS PMAA

Methods Practical % Pathological %
CIFAR-100 TINY TINY* AG News CIFAR-100 TINY

FedAvg 31.89 19.46 19.45 79.57 25.98 14.20
FedProx 31.99 19.37 19.27 79.35 25.94 13.85

Per-Fedavg 44.28 25.07 21.81 93.27 56.80 28.06
FedRep 52.39 37.27 39.95 96.28 67.56 40.85
pFedMe 47.34 26.93 33.44 91.41 58.20 27.71
CPFL 40.25 24.53 24.37 93.15 45.90 21.55

FedSEM (M=4) 41.07 25.03 23.58 94.58 56.03 25.01
IFCA (M=4) 43.16 32.73 34.83 94.77 56.42 40.77

pFedCAM (M=4) 46.17 35.66 34.57 95.16 64.12 41.22
FedMHC (M=4) 53.82 38.19 40.42 97.22 69.35 47.52

overfitting, M is capped at N/2. Experiments on FedMHC
with M ranging from 1 to N/2 are conducted. Comparing
test accuracy across different M values helps identify the
optimal balance between personalization and generalization
in FedMHC. As shown in Fig.3(a,b), FedMHC outperforms
baseline methods in test accuracy on both datasets. All
methods perform best with M = 4, the default parameter
used in the experiments.

Cluster Results. This section evaluates clustering efficacy
by assessing the average distance between MPs. Smaller
distances indicate tighter cohesion within a group, implying
superior clustering outcomes. We conduct experiments on the
CIFAR-100 dataset, comparing the results of FedMHC with
CPFL, FedSEM, IFCA, and pFedCAM over 200 communica-
tion rounds. Fig.3(c) shows the fluctuation in the average dis-
tance between MPs of FedMHC and other clustering methods
across training rounds. As training progresses, the average
distance of MPs of FedMHC gradually decreases, indicating
strong intra-group cohesion and effective clustering. Other
methods using entire MPs for clustering tend to have higher
average distances than FedMHC.

Additionally, the K-means algorithm has a certain compu-
tational overhead. We observe the iteration rounds used by the
K-means algorithm for clustering in FedMHC and FedSEM
during each communication round. Fewer iterations indicate
reduced computational resources consumed. Specifically, ex-
periments are conducted on the CIFAR-100. Fig.3(d) shows
that in the initial training stages, FedSEM and clustering all
MPs yield unstable results and also require more iterations.
Conversely, FedMHC and clustering-only head MPs converge
faster with fewer iterations.

Communication Cost. We evaluate FedMHC’s commu-
nication efficiency by comparing the communication volume
per IoT device for various methods on CIFAR-100 and Tiny-
ImageNet datasets. Table II shows that FedAvg has the lowest
communication cost, and FedMHC’s communication cost is
not significantly higher than FedAvg’s. However, FedMHC’s
test accuracy is much higher than FedAvg’s, being 2.23 times
that of FedAvg. Furthermore, FedMHC’s communication cost
is much lower than that of FedSEM, IFCA, and pFedCAM,
which is around 40% of their costs. FedMHC incurs minimal
communication costs while achieving superior test accuracy
compared to other clustering methods.
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Fig. 3. The test accuracy of FedMHC and other clustering methods at different numbers of clusters on CIFAR-100 and Tiny-ImageNet (a, b), the variation
in average model parameter distance (c), and the change in iteration rounds using K-means clustering (d).

TABLE II
THE COMMUNICATION VOLUME PER SINGLE IOT DEVICE IN A SINGLE

ROUND (MB)

Methods CIFAR-100 Tiny-ImageNet

CNN ResNet-18 CNN ResNet-18

FedAvg 7.06 85.66 43.44 86.06
FedSEM (M=4) 17.65 214.15 108.6 215.15

IFCA (M=4) 17.65 214.15 108.6 215.15
pFedCAM (M=4) 17.65 214.15 108.6 215.15
FedMHC (M=4) 7.66 86.26 44.61 87.23

VI. CONCLUSIONS

In pathological heterogeneous scenarios, model clustering
in PFL improves accuracy but still faces dimensionality and
communication overhead issues. To this end, we propose
FedMHC, which clusters only the head MPs on the edge
server. During PLM training, a regularizer prevents overfit-
ting, aligning PLMs with their respective group’s GMs. The
edge server transmits only head MPs and SFEPs, thereby
reducing communication volume. Results on CIFAR-100,
Tiny-ImageNet, and AG News datasets show FedMHC im-
proves test accuracy by 1.79% and 5.9% in pathological
heterogeneous scenarios, and by 1.43%, 0.92%, and 0.94%
in practical heterogeneous scenarios, compared to best base-
lines. In summary, FedMHC effectively mitigates CoD and
reduces communication pressure.
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