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Abstract—When applied in high-churn Internet environments, P2P systems face a dilemma: although most participants are too
unstable, a P2P system requires sufficient stable peers to provide satisfactory core services. Thus, determining how to leverage
unstable nodes seems to be the only choice. Our primary idea is to group unstable nodes together in order to form an adequate
number of stable service groups. Focusing on this topic, our main findings are three folds: 1) A general analytical model to
investigate the grouping process of P2P systems is established, in which the stability-scalability tradeoff problem is paid special
attention to; 2) We formalize the target of grouping as the Maximum Stability Grouping (MSG) problem. It proves to be not only
NP-hard, but also infeasible; therefore, we restrict it to a feasible Homogeneous MSG (H-MSG) problem and deduce its optimal
solution under the stochastic model; 3) We propose a homogeneous grouping strategy to fulfil the optimal solution. Comprehensive
simulations have been performed on generated data sets and real-world traces from a P2P storage system and a P2P streaming
system. Results show that our grouping strategy effectively captures the stability-scalability tradeoff: besides excellent stability, it
gains much higher stable service capacity, with acceptable loss in scalability.
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1 INTRODUCTION

Although P2P systems are famous for the accommoda-
tion and utilization of numerous unstable peers (called
dwarfs), their core services rely heavily on stable peers
(called giants), which have a large session time length
(stl). For example, KaZaa [1] and eDonkey [2] employ
stable superpeers for peer organizing, file indexing and
searching, and BitTorrent [3] selects stable peers as the
trackers. Besides, as a popular VoIP system, Skype [4]
continuously picks out stable super nodes from its users
to form the “backbone” of voice data streaming. Fur-
thermore, measurements [5] show that in P2P video
streaming systems, like PPLive [6], around 80% of the
data traffic is delivered through less than 10% of the
participants (mostly stable peers).

Previous studies [7]–[9] indicate that in real-world
P2P systems, most participants are quite unstable (e.g.,
PCs and PDAs with session time length < 60 minutes).
So we face a dilemma now: although most participants are
too unstable to serve as stable peers, a P2P system requires
sufficient stable peers to provide satisfactory core services.
Confronted with this dilemma, existing works can be
briefly classified into the following three categories.
(A detailed categorization is in Section 2 of the sup-
plementary file. And the background and more related
works can be found in Section 1 and Section 3 of the
supplementary file.)

1) GiantOnly. Besides its broad use in unstructured
P2P systems, the GiantOnly strategy is also em-
ployed in some DHT-based schemes, such as

OpenDHT [10], where only giants can play the
role of DHT nodes. Dwarfs are not allowed to
enter the DHT, but are instead treated as clients.

2) TotallyFlat. Despite their substantial difference in
overlay organization, Gnutella [11] and Chord
[12] both construct a Totally Flat world for their
participants. All peers are equal in function, no
matter whether they are giants or dwarfs.

3) StableNeighbor. Since stable peers are usually de-
ficient, some works try to detour this dilemma
by grabbing more Stable Neighbors for each peer.
Godfrey et al. [8] focus on the issue of selecting
a subset of the available node-set as relatively
stable neighbors to replace failed ones. Yeung
and Kowk [13] model the neighbor selection
process as a cooperative game so that peers form
stable coalitions with high possibilities.

The motivation of our work is based on the obser-
vation that in P2P systems, the capability of a single
dwarf is negligible, but due to their overwhelming
proportion, the dwarfs are still able to make signifi-
cant contributions with their combined efforts — that
is, combining several dwarfs to form a stable service
group so as to act like a giant. A stable service group
refers to a group of dwarfs/giants that cooperate to
provide stable core services for the whole system.
More importantly, the exploration of dwarf capability
seems to be the only choice when attempting to offer
satisfactory core services in high-churn scenarios with
few giants. This highlights three requirements on our
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target: 1) We cannot compromise scalability for stabil-
ity as GiantOnly; 2) We cannot compromise stability
for scalability as TotallyFlat; 3) We do not want to
play a zero-sum game as StableNeighbor, but try to
provide fundamental optimizations or guarantees for
the performance of core services.

In summation, the major question becomes: in a P2P
system with few giants and high churn, how can we group
dwarfs in order to achieve significantly optimized stability,
on the condition that the system scalability is guaranteed?

Our primary idea is to admit all nodes and group
homogeneous nodes together to form an adequate num-
ber of stable service groups (i.e., grouping dwarf with
dwarf, giant with giant; we defer explaining the reason
until Section 2.3). The inter- and intra-group connec-
tions are deployed distinctively, and the number of
groups is deliberately tuned to guarantee the system
scalability. Here, we use a simplified example depicted
in Table 1 to illustrate our idea. By assigning more
nodes to a dwarf group and fewer to a giant group,
the dwarf group can survive for a time period equal
to that of its giant counterpart, and thus we can get a
sufficient number of stable service groups.

TABLE 1
Giant group vs. dwarf group

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Giant group

n1 • • • • • • • •
n2 • • • • • • • • • •

Dwarf group
n3 • • • • •
n4 ↓ •
n5 • • •
n6 ↓ • • •
n7 ↓ ↑ ↓ • •
n8 • • • • ↓ ↑
n9 • • ↑
n10 ↓ • •
n11 • • •
Note: 1) The black dot for node ni at the j-th time slot
indicates that ni is online at that slot. 2) The vertical arrows
imply the sequential relay of dwarfs, e.g., at the 5-th slot,
n3 is about to leave, and n5 joins, thus the dwarf group
still survives. In accordance with our definition of group
stability, the dwarf group is stable throughout this period.

Our contributions are enumerated as follows:
• A general analytical model to investigate the

grouping process of P2P systems is established,
in which the stability-scalability tradeoff problem
is paid special attention to.

• We formalize the target of grouping as the Max-
imum Stability Grouping (MSG) problem. Consid-
ering the intractability and infeasibility of MSG,
we restrict it to a feasible Homogeneous Maximum
Stability Grouping (H-MSG) problem and prove
the optimal solution (it is also tractable) to H-
MSG under the stochastic model. Both literatures
and our measurements have indicated that the
stochastic model holds.

• We propose a homogeneous grouping strategy to
fulfil the optimal solution. Comprehensive simu-
lations have been performed on generated data
sets and real-world traces from a P2P storage
system (AmazingStore [14]) and a P2P stream-
ing system (CoolFish [15]). Results show that
our grouping strategy effectively captures the
stability-scalability tradeoff: Besides excellent sta-
bility, it gains much higher stable service capacity,
with acceptable loss in scalability.

A final note is that we strongly feel our grouping
model has its applicability in general distributed sys-
tems. In this model, most notations and the MSG/H-
MSG problem also exist in a distributed system with
heterogeneous members and high churn, and the opti-
mal solution under the stochastic model mainly holds.

2 GROUPING MODEL

2.1 Notations and Preliminaries
Consider a P2P system S with N nodes (each node
has a probability to be online in a given Period). We
want to group these N nodes into m disjoint groups:
G1, G2, · · · , Gm. T is the random variable of group
session time length (stl), and τk denotes Gk’s stl. We
use Ψ as the random variable of group stability. A
group Gk’s stability ψk is mostly determined by its
stl (τk). Basically, ψk = τk

Period . The basic property of a
group is that several nodes in this group can provide
continuous and stable service for a period, so we want
to make each ψk as high as possible. Period is usually
set to 24 hours for a practical system.

A group Gk’s service capability Ck is considered
as the time-weighted average of its members’ service
capabilities rather than the sum, because all the mem-
bers of Gk actually provide the same service func-
tions as one single node. Grouping several dwarfs
can just enhance their integrated stability, but can-
not increase their integrated service capability. For
example, four dwarfs in Fig. 1 are combined to form
one stable group. The group acts like a giant with
533GB storage and 683Kbps (or 300Kbps) bandwidth.
533 = 6

24 · 300 + 4
24 · 100 + 8

24 · 800 + 6
24 · 700, since

in each overlapped period only the dwarf with the
strongest capability online is in service. Gk’s band-
width is scenario-oriented: in a common scenario, it
is calculated like Gk’s storage; but in a bandwidth-
sensitive scenario, it is min{B1, B2, B3, B4} = 300Kbps,
e.g., if Gk acts as a “backbone” super node in Skype, it
can only report 300Kbps to the Skype system because
any temporary shortage in bandwidth would cause
voice streaming interruption. It should be noted that a
group’s service capability can be measured from differ-
ent metrics according to specific application scenarios,
e.g., bandwidth (in P2P media streaming systems),
CPU/memory (in P2P computing systems), storage (in
P2P storage systems), search efficiency (in general P2P
systems), and so on. Detailed discussion on Ck is in
Section 6.3 of the supplementary file.
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[0:00-8:00] [6:00-14:00] [12:00-20:00] [18:00-2:00]

Dwarf 1 Dwarf 2 Dwarf 3 Dwarf 4

[0:00-24:00]

Giant

stl

band-

width
500Kbps 300Kbps 1Mbps 700Kbps

683Kbps

or 300Kbps

storage 300GB 100GB 800GB 700GB 533GB

Fig. 1. A group of four dwarfs acts like a giant.

Table 2 is a reference of the basic notations used in
this paper. Each of them will be exhaustively explained
at their first appearance.

TABLE 2
Basic notations

Notation Definition
Period a given time period during which each node

has a probability to be online. For a practical
P2P system, Period is usually 24 hours.

N number of nodes (no matter whether online or
offline).

m number of groups.
Gk the k-th group.
T , τk T is the random variable of group session time

length (stl), and τk is a group Gk’s stl.
Ψ, ψk Ψ is the random variable of group stability, and

ψ1, ψ2, . . . , ψn are its sampling, i.e., ψk is the
value of Gk’s stability.

C, Ck C is the random variable of group service capa-
bility, and Ck is a group Gk’s service capability.

D(x) CDF of X .
st, or t a stable time slot, i.e., a slot when the system

has entered a stable state.
vt(i) PDF of the number of node arrivals (i) at the t-

th time slot. Node arrival means a node changes
its state from offline to online.

The scalability of a P2P system S depends on 1)
the number of groups m, and 2) the average service
capability of all groups. It is formulated as:

Scalability(S) = m · E(C) = m · C =
m∑

k=1

Ck. (1)

Obviously, Scalability(S) is maximized only when
m = N . In this extreme case, there exists no over-
lapped online time period among the members of a
group. In fact, in this case, each group is a single node,
so every node fully contributes its service capability to
the system.

The stability of a P2P system S is somehow more
complicated. Our grouping strategy makes the im-
provement in group stability seem like (in fact not) a
zero-sum game. The only way for one group to become
more stable is to grab some members from other
groups, which jeopardizes their stability. Therefore, we
need to equalize the stability levels across all groups to

Fig. 2. Two grouping schemes S1 and S2 for the same
participants.

maximize the overall stability from a system perspec-
tive (see Section 6.4 of the supplementary file for better
and easier understanding). As a result, if we define

Stability(S) = Ψ = 1
m

m∑
k=1

ψk, the simple example

depicted in Fig. 2 clearly indicates its irrationality. For
the same participants P1 - P7 with stability 0.1 - 0.7,
the two grouping schemes S1 and S2 both divide them
into m = 4 groups. Table 3 presents the stability of
S1 and S2 under the “Exclusive” and “Independent”
conditions, respectively. Here, “Exclusive” means the
members of a group are exclusive in session time,
while “Independent” means they are independent in
session time. For example, in the 3rd line of Table 3,
ψ1(S1) = 1− (1− 0.1) · (1− 0.7) = 0.73.

TABLE 3
Stability of S1 and S2 in Fig. 2.

ψ1 ψ2 ψ3 ψ4 Ψ Var(Ψ)
Exclu- S1 0.8 0.8 0.8 0.4 0.7 0.04
sive S2 0.7 0.6 0.6 0.9 0.7 0.02
Indep- S1 0.73 0.68 0.65 0.4 0.615 0.0216
endent S2 0.7 0.6 0.55 0.664 0.6285 0.0044

The above example demonstrates that Stability(S)
depends mainly on Var(Ψ), rather than Ψ. In essence,
what we want is an equalized system consisting of m
groups with similar stability, rather than a polarized
system where some groups are much more stable than
others. Therefore, we define Stability(S) as:

Stability(S) =
1

Var(Ψ)
=

m− 1
m∑

k=1

(ψk −Ψ)2
. (2)

Equations (1) and (2) put forward a scalability-
stability tradeoff problem [16] for any grouping strat-
egy. A small m leads to high stability because each
group is composed of more dwarfs in average, and
thus the stability is very high. However, a small m
represents poor scalability because too few groups
provide services. The discussion on a big m is alike.
Therefore, our next step is to decide a proper m.

2.2 Condition: Guaranteed Scalability
For a P2P system S, in Section 2.1 we have defined

Scalability(S) = m · C =
m∑

k=1

Ck. A group’s service
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capability Ck can be measured from different metrics
like bandwidth, CPU/memory, storage, search effi-
ciency, and so on. Without loss of generality, here we
use search efficiency as the metric of Ck since search
efficiency is usually regarded as the most important
(network-related) property of P2P systems. When each
node of S sends a search request, the total message
number with grouping must be no more than that
without grouping. This can be formulated as a spe-

cific case of Equation (1): Scalability(S) =
m∑

k=1

Ck =

m∑
k=1

(|Gk| · 1
Avg search msg# ) = N · 1

Avg search msg# .

Notably, we can still use bandwidth, CPU/memory,
storage, etc. as the metric of Ck, and the corresponding
discussion can be found in Section 6.3 of the supple-
mentary file. Whatever metric we choose, any grouping
strategy has its fundamental condition: it must guarantee
that its system scalability holds on the same level as the
original system without grouping.

As unstructured and DHT systems differ greatly in
operation mechanism, their scalability guarantees are
discussed separately below.

2.2.1 For unstructured systems

We take Gnutella as the representative of unstructured
P2P systems. Consider a Gnutella network S1 com-
posed of N nodes with the average node degree = d
and flooding search radius = TTL hops. If we group S1

into a new system S2, which is composed of m groups,
most edges in S1 would become inter-group edges in
S2, and the remaining edges in S1 would become intra-
group edges in S2. This can cause two problems: 1)
the average inter-group degree dG is too large, and
thus the groups of S2 are over-densely connected; 2)
the intra-group edges are too sparse, and thus a group
may be disconnected. Therefore, we randomly trim the
inter-group edges from S2 (make sure S2 is connected
all along) until dG is reduced close to d, so that S2 has
the same edge density as a common Gnutella network.
Besides, for each group of S2, we randomly add intra-
group edges until this group is connected. A demo of
the final state of S2 is shown in Fig. 3:

Fig. 3. A grouping demo of the unstructured P2P
system. The dotted blue arrow illustrates the message
flow of a search operation.

To guarantee the scalability of S2, we make

Scalability(S1) ≤ Scalability(S2),

that is N · 1
Avg search msg#1 ≤ N · 1

Avg search msg#2 ,

Avg search msg#2 ≤ Avg search msg#1. (3)

Suppose TTL’ is the inter-group flooding radius of
S2. Inside a group Gk, the number of messages is al-
most |Gk| because the intra-group flooding can usually
reach all members. So, Equation (3) is transformed to

dG
TTL′

· N
m

≤ dTTL. (4)

Since dG≈d, Equation (4) is approximately

m ≥ N

dTTL−TTL′ , or
N

m
≤ dTTL−TTL′

. (5)

In the Gnutella network, usually d lies in 3 – 5 and
TTL ≤ 7. TTL− TTL′ may be 1, 2, or 3.

2.2.2 For DHT systems
We take Chord as the representative of DHT systems.
Likewise, we group a Chord system S1 into the new
system S2, which is composed of m groups. Since the
members of a group share the same ID in DHT, for a
group Gk, we randomly choose the ID of one member
as the ID of Gk. The inter-group edges are organized
in the same way as Chord. As mentioned in Section
2.2.1, for each group of S2, we randomly add intra-
group edges until this group is connected.

Equation (3) still holds for the grouping of DHT
systems, but is formulated as

O(logm) +
N

m
≤ O(logN). (6)

Equation (6) is a transcendental equation, so we just
construct a feasible solution. Obviously, m ∈ O( N

logN )
is one feasible solution, because

O(logm) +
N

m
∈ O(log

N

logN
) +O(logN)

∈ O(logN)−O(log logN) +O(logN) ∈ O(logN).

In fact, m ∈ O( N
logN ) means the average group size

∈ O(logN).

2.3 Target: Maximum Stability Grouping Problem

We denote the set of nodes that will join in the
system during a sufficiently long period by S =
{n1, n2, . . . , nL}. Assume each node ni’s join time
ni.join and leave time ni.leave are priori knowledge
(Of course this assumption is impractical, and we will
address this problem later). The number of groups m
is determined in Section 2.2. Our target is formalized
as the following MSG problem:

Definition 1 (Maximum Stability Grouping Problem).
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Instance: A given m, and S = {n1, n2, . . . , nL}, where
each node ni’s join time ni.join and leave time ni.leave
are known.
Solution: A partition of S into m disjoint groups
G1, G2, . . . , Gm.

Measure to minimize: Var(Ψ) = 1
m−1

m∑
k=1

(ψk −Ψ)2.

Then, we can prove the following theorem (the proof
is in Section 4 of the supplementary file):

Theorem 1. With a non-trivial m ≥ 1, MSG is NP-hard.

Besides intractability (NP-hard), MSG is also in-
feasible in that it entails the priori knowledge (i.e.,
prediction) of each node’s join and leave time, which
is impractical in real P2P systems. Thereby, we look
into this issue from another perspective. Our approach
deploys homogeneity more restrictively so as to re-
duce MSG into a feasible optimization problem, i.e,
the Homogeneous Maximum Stability Grouping (H-MSG)
problem, where only the distributions of stl - D(.),
and number of arrivals - v.(.) need to be known. We
combine homogeneous nodes that have the same or similar
stls to form a group under the stochastic model, that is
to say, grouping dwarf with dwarf, giant with giant,
and supposing the peers’ churn (join, stl, etc.) mainly
follows a stochastic process.

We believe it is invariably impossible for each group
to involve one powerful giant because of its rarity
in most high-churn scenarios. In this sense, the idea
of grouping giants and dwarfs in a mixed way, is
greatly invalidated. Such an idea will also induce low
efficiency when the dramatic asymmetry in node ca-
pability is taken into account. For instance, bandwidth
asymmetry prevents giant bandwidth from being fully
leveraged when it communicates with dwarfs. And
due to huge diversity in CPU/memory or storage,
the departure of a giant may make it hard for the
remaining dwarfs to take over its duty. For instance,
no PC can take charge of a supercomputer in either
computing or storage capability, except when these
PCs cooperate in a quite specialized way. Besides, the
homogeneous grouping strategy is the most efficient in
bandwidth-sensitive scenarios (e.g., P2P media stream-
ing), which would be explained in Section 6.3 of the
supplementary file. Furthermore, the users (nodes) of
each ISP usually exhibit certain homogeneity, espe-
cially in bandwidth, so our homogeneous grouping
strategy has the potential to facilitate topology aware-
ness, as well. In a word, it is both reasonable and
efficient, at least in high-churn scenarios, to group
nodes homogeneous in terms of stls.

To solve the H-MSG problem, as shown in Fig. 4,
the stl axis is divided into m intervals, i.e., [y0, y1),
[y1, y2), . . ., [ym−1, ym), where y0 = 0 and ym = +∞,
and the nodes whose stls are in the same interval are
destined to the same group. The target is to minimize
Var(Ψ). This solution seems to somehow jeopardize
system stability by prohibiting any overlap of different

stl ranges, but it should be reasonable, as mentioned
above. The detailed design of our proposed grouping
strategy is described in Section 6 of the supplementary
file. And the distributed algorithm can be found in
Section 9 of the supplementary file.

Fig. 4. Demo of the H-MSG problem.

2.4 Optimal Solution under the Stochastic Model
In this subsection, we first indicate that D(.) and v.(.)
approximately follow a stochastic process though both
literatures and our measurements, and then address
the optimal solution of H-MSG.

2.4.1 Stochastic Model
It is widely assumed in literature that node arrival
(v.(.)) is a memoryless and stochastic process: often
a Poisson process [17]. Additionally, it is confirmed in
[16] and [18] that the distribution of node stl (D(.))
exhibits a predictable stochastic pattern: often, but not
always, a Zipf-like pattern [7], [9]. Generally, it is possi-
ble to figure out an approximate stochastic distribution
of D(.) and v.(.) by monitoring node session history,
although such information for a single node is hard
to model. Below, we will show how to achieve this by
taking the AmazingStore trace as an example. A brief
description of the AmazingStore trace is in Section 7.2
of the supplementary file.

Fig. 5 and Fig. 6 illustrate that both the numbers
of online users and joining users in AmazingStore
exhibit obvious periodical distribution. Users behave
very similarly at the same time every day. Although it
is difficult to summarize Fig. 6 with a formula, we can
easily approximate the stochastic distribution of v.(.)
through sampling and interpolation in Fig. 6.
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Fig. 5. Number of online
users in AmazingStore.
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Fig. 6. Number of joining
users in AmazingStore.

The session time pattern of all users in Amaz-
ingStore in three months is depicted in Fig. 7. This
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long-tail pattern deviates greatly from the well-known
Zipf-like (or says power-law) distribution. Instead,
the stretched exponential (SE) distribution [19] fits
the session time pattern well. Thereby, the stochastic
distribution of D(.) is obtained.
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Fig. 7. Session time pat-
tern of all users in Amaz-
ingStore in three months.
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Fig. 8. Stretched Expo-
nential distribution fits the
session time pattern well.

Now we are sure that the session time of a node
can be predicted by monitoring node session history.
However, in an open P2P environment, such infor-
mation for a single node is hard to get although the
session time distribution of all nodes can be easily
got. Then the problem is: how to estimate the session
time of a node when it joins the system? As a matter
of fact, it is impossible to accurately estimate such
information when a new node joins, because we know
nothing about it. Our solution is to estimate the session
time of a new node as the average session time of
existing nodes. As time goes, the information of a new
node would be learnt, and then we can allocate it
into a more proper group. Refer to Section 10 of the
supplementary file for the performance evaluation.

2.4.2 Optimal Solution of H-MSG
To facilitate the analysis, we sample a slot st large
enough so that the system size (i.e., the number of
nodes online) is relatively stable (e.g., it slightly fluc-
tuates around an estimated value) at that time. Then,
the stability of a group Gk at slot st is

ψk = 1− P(ϕk(st)), (7)

where ϕk(st) denotes the event that Gk is empty at the
st-th slot.

Theorem 2 indicates that the H-MSG problem is
actually a feasible optimization problem, so long as
D(.) and v.(.) follow a stochastic model.

Theorem 2. ψk is the function of yk−1 and yk.

The proof is in Section 5 of the supplementary file.

Following Equations (2), (7), and Theorem 2, we can
obtain Corollary 1:

Corollary 1. The H-MSG problem can be reduced to a
feasible optimization problem where y1, y2, . . . , ym−1 need
to be determined to minimize Var(Ψ), so long as D(.) and
v.(.) follow a stochastic model.

The above optimization problem can be calcu-
lated with the Matlab (version R2001a) nonlinear
constrained optimization solver fmincon(.) and some
other related solvers. Its computation complexity is
polynomial for two reasons: Firstly, for the infinite
summations

∑+∞
i=0 (· · · ), the upper bound +∞ is in fact

a limited (usually small) integer because the number of
node arrivals in a time slot is limited. It is impossible
that infinite nodes arrive at the P2P system in a
time slot. Instead, usually at any time slot, there is
at most one node joining in a group Gk. Secondly,
fmincon(.) is implemented as a numerical algorithm
with user-configured precision and number of itera-
tions in Matlab, and thus its computation complexity
is also polynomial. To sum up, we have the following
conclusion:

Corollary 2. The optimal solution to the H-MSG problem
under the stochastic model is both feasible and tractable.

3 PERFORMANCE EVALUATION

3.1 Environment Setup
Three data sets, including one generated data set and
two real-world system traces, as described in Section
7 of the supplementary file, are used to evaluate the
performance of our proposed grouping strategy.

3.2 Metrics
We evaluate our grouping strategy and the related
works mainly from two aspects: stability and scala-
bility. Churn rate is defined to measure stability. And
we evaluate scalability from two orthogonal perspec-
tives: search efficiency and system storage capacity. Ad-
ditionally, we use system stable storage to measure the
scalability of P2P storage systems (like AmazingStore),
and system stable bandwidth to measure the scalability
of bandwidth-sensitive P2P streaming systems (like
CoolFish). Furthermore, we measure the maintenance
overhead of related systems, using the generated data
set. Finally, we evaluate the load balance situation of our
proposed grouping strategy, using the AmazingStore
trace. All the abovementioned metrics are elaborated
on in Section 7.4 of the supplementary file.

3.3 Results on Generated Data Set
We first generate a demo data set with N = 200 nodes
to illustrate how our grouping strategy works, with
m = N

logN = 26. As shown in Fig. 9 and Fig. 10,
in accordance with their stl intervals, all groups are
sorted in ascending order and indexed accordingly
(ID). Just as expected, the curve of the number of
nodes in each group is skewed, which means that a
dwarf group has to involve more nodes than its giant
counterpart to maintain a comparable stability.

Then, we generate a data set with N = 1000 nodes
and m = 100 groups. Fig. 11 demonstrates that,
as we expected, TotallyFlat (Chord/Gnutella) is far
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more dynamic than Grouping. Out of our expectation,
GiantOnly is also more dynamic than Grouping. Why
do giants have more churns than our dwarf groups?
The reason lies in that choosing m = 100 giants from
N = 1000 nodes is too difficult when the node stl
follows the exponential distribution (refer to Section
7.1 of the supplementary file). In fact, among the
100 “giants”, most are not as stable as their dwarf-
group counterparts, thus leading to our unexpected
observation.
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Fig. 11. Evolution of
churn rate.

0 2000 4000 6000 8000 10000
0

2

4

6

8

10

12
x 10

4

Simulation time (second)

S
ys

te
m

 s
to

ra
ge

 c
ap

ac
ity

 

 

Grouping
GiantOnly
Chord/Gnutella

Fig. 12. Evolution of sys-
tem storage capacity.

To contrast Grouping with Gnutella, Chord, and
GiantOnly in search efficiency, we assume the target
file locates on each group member uniformly. Let each
node/group send a search query and record the aver-
age routing message number in Fig. 13. For Gnutella
and Grouping-Gnutella, the bars show the message
hop (TTL), while the tagged numbers in the error
bars show the message number involved in a flooding
search. For Chord, Grouping-Chord, and GiantOnly,
the routing hop denotes the search message cost. They
are consistent with our evaluations in Section 6.2 of the
supplementary file.
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Fig. 13. Search efficiency comparison.

Fig. 12 explicates that Grouping’s system storage
capacity is perceivably greater than that of GiantOnly

by almost three times. Nevertheless, it is still less than
that of Gnutella/Chord by about 20%, which is the
compensation that Grouping has to pay.

To compare Grouping with Gnutella, Chord, and
GiantOnly as to maintenance overhead, we let the
maintenance period be equal to the churn unit time
(100 seconds). Their respective maintenance overheads
are illustrated in Fig. 14. Gnutella and Chord only
have inter-group overhead, where one node can be
seen as one group. Obviously, Gnutella bears much
more maintenance overhead than others. The inter-
group overhead exceeds the intra-group overhead
in Grouping-Gnutella, but the case is just opposite
in Grouping-Chord. GiantOnly has less intra-group
overhead, because each group member only sends its
state to the group leader (a giant) in a period. The
inter-group maintenance mechanism of GiantOnly is
assumed to be TTL-flooding. Section 6.1 of the sup-
plementary file contains the corresponding theoretical
analysis.
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Fig. 14. Maintenance overhead comparison.

3.4 Results on AmazingStore Trace
As mentioned in Section 7.2 of the supplementary
file, 4854 AmazingStore nodes are grouped into 396
groups, with the average group stability Ψ ≈ 0.6.
Ψ ≈ 0.6 appears less than enough, but in fact is
satisfactory when considering that all AmazingStore
users come from China colleges. College students and
teachers usually live a regular life, for example, being
active from 8:00 – 22:00 and asleep from 23:00 – 7:00.
AmazingStore always has much fewer users at night
than in daytime, which can be proved from our real-
time user log page [20].

Seen from Fig. 15 and Fig. 16, after grouping, both
the churn rate and churn ratio of AmazingStore have
greatly decreased. Even the highest churn ratio of
AmazingStore-grouping is smaller than the lowest
churn ratio of AmazingStore.

Fig. 17 shows that the system storage capacity of
AmazingStore-grouping is less than that of Amazing-
Store, especially at the “hot” hours. During the other
non-hot hours, they perform alike. As a P2P storage
system, what is more important for AmazingStore
is the stable storage capacity in Fig. 18. We change
the stability (Ψ) requirement to compare their stable
storage capacities. Accordingly, when we choose a
higher stability requirement, the number of groups m
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Fig. 15. Churn rates of
AmazingStore.
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Fig. 16. Churn ratios of
AmazingStore.

should be reduced. In all the four cases, AmazingStore
possesses less than 30GB stable storage, which is much
lower than that of AmazingStore-grouping.
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Fig. 17. System stor-
age capacities of Amaz-
ingStore.
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Fig. 18. Stable stor-
age capacities of Amaz-
ingStore.

3.5 Results on CoolFish Trace
Since the CoolFish trace is divided into 9 sub-traces
and each sub-trace is processed individually, we only
depict the churn rates (in Fig. 19) and churn ratios (in
Fig. 20) of the sub-trace on Apr. 13. The other 8 sub-
traces are generally similar. In Fig. 20, there exist two
exceptional churn times when no group is online. This
mainly results from our server code updates.
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Fig. 19. Churn rates of
CoolFish.
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Fig. 20. Churn ratios of
CoolFish.

System stable bandwidth is critical to P2P stream-
ing systems because of their sensitivity to bandwidth
vibration. Fig. 21 compares the system stable band-
widths of CoolFish and CoolFish-grouping each day.
Here, “stable” means a group/node can provide stable
bandwidth in more than 60% of time per day. Since
CoolFish has few users at night, 60% is close to the
ratio of daytime over a whole day. Clearly, the system
stable bandwidth of CoolFish is trivial compared to
that of CoolFish-grouping.
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Fig. 21. Stable bandwidth capacities of CoolFish.

3.6 Results Summarization
Refer to Section 7.5 of the supplementary file.

4 CONCLUSION

Motivated by the dilemma of stable peers in P2P
systems, in this paper we investigate how to group
unstable nodes together in order to form sufficient
stable service groups. A general grouping model is
established and a homogeneous grouping strategy is
proposed to acquire optimal stability with guaranteed
scalability. Simulations on generated data sets and
real-world traces reveal that our grouping strategy
derives a better stability-scalability tradeoff: besides
excellent stability, it gains much higher stable service
capacity, with acceptable loss in scalability.
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