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Abstract—Computing power network has emerged as an at-
tractive technology to tackle the increasing demand for compu-
tational resources in cloud networking. In this paper, we study
the problem of optimizing the formation of clusters of computing
servers/nodes and also the task scheduling considering the games
between the platform and computing nodes to maximize the plat-
form profit. We formulate this problem as an integer program-
ming problem. We propose a deep reinforcement-learning based
server clustering and auction-based task scheduling algorithm
working at different time scales to solve the problem. The deep
reinforcement learning-based server clustering algorithm works
at a large time scale to optimize the sizes and compositions of
different clusters based on temporal and spatial distribution of
the tasks and also their characteristics. The auction-based task
scheduling algorithm works at a small time scale to match the
tasks with the clusters while satisfying the QoS requirements of
tasks so as to maximize the profit of the platform. Extensive sim-
ulations are conducted to evaluate the performance of proposed
algorithm and the results show its high performance.

Index Terms—Computing power network, server clustering,
task scheduling

I. INTRODUCTION

The rapid development of artificial intelligence (AI) tech-
nology especially the large language models (LLMs) has led to
an increasing demand for computility [1]. However, computing
resources are expensive and limited, making it challenging
to support the explosive computation-intensive tasks with
various quality of service (QoS) requirements [2], [3]. As a
response to these challenges, the computing power network
(CPN) has emerged as a key technology in next-generation
networking that manages and allocates integrated network and
computing resources from different sources flexibly to satisfy
the increasing computation demands with improved system
resource utilization performance and also satisfactory quality
of services [4], [5].

In a large-scale CPN system, computing resources exhibit
different processing capabilities, different geographical loca-
tions, and also different computing costs. Meanwhile, the
computational capacity of a single computing node is often
insufficient for some Al tasks with large computational power
demands. In addition, the rapid development of high-speed
network technology makes it possible for task training and
inference over long distances. However, the latency caused
by the distances among computing nodes in a CPN leads to

difficulties in scheduling computing resources across the entire
system to meet the delay requirements of parallel computing.
As a result, optimized computing nodes clustering within given
latency circle to meet the requirements of large computational
tasks, and scheduling the tasks to clusters with different prices
to maximize the platform profit has been an active research
direction, which is the primary focus of our work in this paper.

In this paper, we study the problem of joint optimization of
computing node clustering and task scheduling considering the
games between the platform and the clusters for maximized
platform profit. We formulate this problem as an integer
programming, which is known to be NP-hard. To address
this issue, we propose a deep reinforcement learning based
server clustering and auction based task scheduling algorithm
working at different time scales. The deep reinforcement
learning (DRL) based server clustering algorithm works at
a large time scale to optimize the sizes and compositions of
different clusters based on the temporal and spatial distribution
of tasks and also their characteristics. The auction based task
scheduling algorithm works at a small time scale to match the
tasks with the clusters while satisfying the tasks’ QoS require-
ments so as to maximize the profit of the platform. Extensive
simulations are conducted to evaluate the performance of the
proposed algorithm and the results show its high performance.

The reminder of this paper is organized as follows. In Sec-
tion II, we briefly review the related work. In Section III, we
describe the framework of the system and related models and
formulate the problem under study. In Section IV, we present
the detailed design of the proposed algorithms. Comprehensive
simulations are conducted to evaluate performance in Section
V. In Section VI, we conclude this paper and give some
potential directions for future work.

II. RELATED WORK

In this section, we present a brief review of existing work
related to resource management as well as economic models
and pricing strategies in the area of CPNs.

Significant existing research has been focused on optimizing
the allocation and scheduling of computational and network
resources in CPNs to meet certain performance and latency
requirements. In [6], the authors proposed a novel knowledge
graph representation for the architecture of a computing power



network which can automatically execute scheduled tasks
using a knowledge-driven approach based on the constructed
knowledge graph. In [7], the authors proposed a computation-
driven clustering strategy to optimize network bandwidth
resource and minimize waiting delays at the central server for
federated learning in CPN. In [8], the authors proposed an in-
network pooling framework using a DRL scheme to optimize
idle computing and caching resources in computing power
networks for 5G/6G applications. In [9], the authors proposed
a comprehensive evaluation model for assessing the matching
degree between supply and demand of computing power
network services based on multi-dimensional data. In [10],
the authors introduced a service intent-aware task schedul-
ing framework for CPNs, leveraging intent-based networking
principles to improve the task scheduling performance by
considering the underlying service intent of applications and
integrating resource orchestration and network control. In [11],
the authors proposed a framework enabling the adaptability
for computing-power users, the flexibility for networking, and
the profitability for computing-power providers by formulating
these three aspects into objective functions and employed the
greedy algorithm to address the optimization problems.

Research on economic models and pricing strategies fo-
cuses on efficient resource allocation and incentivizing the
provision of CPN services. In [12], the authors proposed a
secure and decentralized federated learning approach based
on blockchain, using a proof-of-accuracy consensus scheme
and an evolutionary game incentive scheme to enhance the
efficiency and security of federated learning in CPNs. In [13],
the authors proposed a digital twin transfer scheme based on
Shapley value and double auction scheme to provide efficient
computing services. In [14], the authors proposed an incen-
tive mechanism based on the Stackelberg game framework
and a joint optimization algorithm to improve CPNs’ energy
efficiency and performance. In [15], the authors proposed
a reputation-enhanced resource trading framework for CPN
integrated with blockchain technology, using a decentralized
reputation model and incentives to ensure dependable and
equitable computing services.

However, all above work optimizes the task scheduling
without considering the computing nodes clustering for serv-
ing large tasks with high processing requirement under reason-
able small intra-cluster latency. In this paper, we shall optimize
the formation of computing node clusters and the task schedul-
ing considering the gaming between the service platform and
computing clusters for maximized platform profit. The main
contribution of this paper is technical mechanism innovation
rather than in-depth economic analysis.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first describe the architecture of a CPN
system, and then introduce the computing model and utilities
of different parties in the system. Finally, we formulate the
problem under study.
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Fig. 1. The system architecture.
A. Network Model

Fig. 1 shows the CPN system under study in this paper,
which consists of a CPN platform, computing servers located
in different geographical locations with varying computational
capabilities, and various tasks from user side, which have
dynamic spatiotemporal characteristics and varying compu-
tational demands. Users subscribe computing services from
the platform on a paid basis and offload tasks to the servers
according to the platform’s scheduling decisions. The com-
puting servers (denoted by S) join the system to provide
resource and earn revenue via task processing. The platform
works to schedule the tasks to proper participating servers
while satisfying the tasks’ QoS requirements to maximize
its own profit. Consider some tasks might be too large for
a single computing node to handle on its own, and further
the tasks are not allowed to be split across distantly located
nodes for collaborative processing due to the computation
synchronization requirement among nodes for enabling such
collaborative processing. For this concern, the platform can
choose to form clusters of servers that are closely located
with low enough latency for meeting the synchronization
requirement of processing large tasks, thereby accommodating
more task requests and thus increased profits.

The system works at two time scales: Optimized cluster
formation at a large time scale (called cycle, denoted by ¢ € T)
and task scheduling a small time scale (called slot, denoted
by 6 € A). Tasks are allowed to be scheduled across slots.
A server i € S can be represented by a tuple (f;, L;), where
fi and L; represent the computing power and the location of
server 4, respectively. We use binary variable x; ; to indicate
whether servers ¢ and j belong to the same cluster where
z; ; = 1 means yes. A cluster can be denoted as C}, € C* where
Ct is the set of clusters in time cycle ¢. It is worth noting that
when all clusters have been formed, each independent node
having not joined any cluster is also treated as a cluster for
convenience. So we have > Cj = S. The set of tasks arrived
at time slot & is denoted by R°. Each task r,, € R? can be
represented as a tuple (l,,m,,7,,O,), where l,, represents
its computation workload, m,, denotes its data size, 7, refers
to its delay requirement, and O, refers to the location of task
Tn-



B. Computing Model

The total computing capacity of a cluster C} can be cal-
culated as fer = Ziecfc fi- Only for the clusters formed
by spatially close enough computing servers, the latency
among nodes in such clusters is negligible and the computing
synchronization requirement is respected in this case. As a
result, the size of a cluster can be limited by restricting the
maximum distance between servers in the cluster, which can
be denoted by Re:r = pnqlgg{t | Lp — Lgll, and Rer < Rinax,

1g€C},

where Rpax is the maximum distance threshold determined
by the computing synchronization requirement.

Tasks processing at each cluster works in a first-in-first-out
manner. The computing delay /"7 of a task r,, processed by
cluster C! can be calculated as

tproc _ ln (1)
b=
" fe

Since each cluster C. has a service queue with certain
unprocessed workload L,, ;, before task r,, arrives, which can
be obtained by counting the currently unexecuted tasks. the
queueing delay of task r,, is

t
k

wat Ln k
tn.kt = = (2)
’ fer

The transmission delay ¢£74™* is computed as:
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where the first term on the right side denotes the transmission
delay,with vs representing the bandwidth of the link s for
the corresponding network path P, j; from task 7, to cluster
Ci. The second term is for the propagation delay, where d
is the length of link s, and V; stands for the propagation
speed, which may vary depending on the medium (e.g., fiber
optic, copper). The delay of a task includes communication
delay, queueing delay, and computing delay. Therefore, the
total delay of task r,, offloaded to cluster C! is computed as
follows.

bk =t R+ R “
C. Utility of Different Parties

The utility of platform: The platform provides computing
services to users and charges a certain fee. The fee p, for
processing task r,, can be calculated as [16]:

P =p(1+ )0, (5)
n

where p represents the basic unit price and p is a coefficient.
The platform has to pay the server clusters with assigned
tasks for processing. We use binary variable y, ; to denote
the scheduling decision of task r,. If y,, ; = 1, it indicates
that task 7, is allocated to cluster C}, for processing. The
corresponding payment to the cluster C}, for processing of task

ry is denoted by gct ,,. The utility of the platform can then
be computed as:

Ue=2 2.

SEA P, ERS

Pn — Z Yn.kgein |- (6)

ciec

The utility of a user: Users subscribe the task computing
service from the platform and obtain the task result after a task
is completed. It is worth noting that if computing resources
cannot meet a task’s delay requirement, the user will abandon
the task offloading. The value of a task r,, is represented by
v,. Therefore, the utility of a user for the offloading of task
Ty 18

Un = Z (yn,kvn - pn) . (7)

ciec

The utility of a cluster: A task scheduled to a cluster will be
decomposed onto all the servers in the cluster in proportion to
the computing power of each server node. As a result, the cost
of cluster k for processing task r,, includes the total cost of all
the servers in the cluster i € C}, including energy consumption
cost and computing resource occupation cost.

lni
Cn,k = Z (5eln,if1‘2+5t f7 )7 ®)

iect !

where [,, ; represents the load assigned to server ¢ and [, =
Ziec; ln,i. €c and € are the economic costs per unit energy
consumption and time, respectively. Therefore, the utility of a
cluster k is thus

U =3 3" v (scpn = cn) l;’“", ©)

SEA P, ERS

and thus the utility of a server ¢ € Cj is U; =
In,i In,i
> sen Zrnené yn,k(gc;;,nﬁ — (eelni f7 + 5t7))-

D. Problem Formulation

In this paper, the objective is to maximize the total profit
of the CPN platform, which equals the total income charged
from the users for providing task offloading services minus the
payment made to the computing servers for task processing,
while satisfying the delay requirements of tasks and rationality
of all parties. In addition, only the severs should within the
distance constraint can be formed in to a cluster. Accordingly,
the CPN platform profit maximization problem is formulated
as P1.

In P1, constraint (10a) ensures that a task can only be
assigned to one cluster. Constraint (10b) ensures that only
those tasks whose delay requirements can be satisfied will
be assigned. Constraint (10c) limits the size of a cluster.
Constraints (10d) and constraint (10e) indicate that the op-
timization variables are 0-1 integer variables. Constraint (10f)
ensures the rationality of all parties. The above problem is an
integer programming problem, which is NP-hard. Due to the
huge and complex optimization space due to the large amount
of tasks with spatiotemporal dynamics and heterogeneous



resources, in the next section, we shall propose a DRL-
based server Clustering Algorithm and an auction-based Task
scheduling algorithm (DCAT) to address this problem.

Plimax 3% > | pa— D Unklein (10)
T teT s€Ar,eRS ctec
s.t. Z Yk = 1,¥r, € R (10a)
crect
Y Ynatii! <o,V € RO (10b)
Ciect
ma, |Ly, — Lglly < Ruax, VCf, € C (10c)
’ k
Yni € {0,1},¥r, € RO,CL € C* (10d)
z;;€{0,1},Vi,j €S (10e)

U.>0,U,>0,U; >0,¥r, e R°,i € Cl eC!
(101)

IV. PROPOSED DCAT ALGORITHM

In this section, we propose the DCAT algorithm to maxi-
mize the platform profit by optimizing the decision of cluster
formation and task scheduling. DCAT works at two different
time scales considering the system efficiency. At the large time
scale, DCAT first makes the clustering decision including the
sizes of formed clusters as well as their member nodes based
on the learning of the spatiotemporal distribution of tasks
and also their characteristics. At the small time scale, DCAT
schedules the tasks arrived at a time slot to proper clusters by
auctions while considering their delay requirements. In this
section, we first model the Markov decision process of the
clustering based profit maximization problem, and then pro-
pose the deep reinforcement learning-based method to solve
the clustering problem and design auction-based method to
solve the scheduling problem. Finally, the detailed procedure
of the DCAT algorithm is presented.

A. Markov Decision Process

A Markov decision process is composed of a quintuple
(S, A, R, P,£), where S is the state set, A is the action set,
R is the reward function, P is the state transition function!,
and ¢ is the discount factor. The Markov decision process is
modeled as follows.

o State Set S: The CPN needs to determine which servers
for cluster formations based on the computing power
of each server and the spatial and temporal distribution
of task arrivals and servers. Therefore, the status set is
defined as the computing power of each server, the task
arrival rate of each area, and the task workload, data size,
as well as deadline, that is, S = (s;) = (A, I, m, T).

o Action Set A: The action set is the clustering decision of
CPN, that is, A £ (a;) = (z).

ISince this is a model-free process, there is no closed-form expression for
the probability transfer function.

o Reward Function R(st,at): The reward
function is the objective function of the
platform profit maximization problem, that is,

R(sta at) = ZéeA Zrnené (pn - ZC?EC yn,kgc}CJL)~

B. A2C-based Server Clustering Algorithm

To solve the platform profit maximization problem effec-
tively, DCAT adopts reinforcement learning method based on
Advantage Actor Critic (A2C). The actor network of A2C is
used to learn the clustering strategy 7(s) of the platform, and
the critic network is used to learn the value function V. (s;)
that is the expected return under the action of policy 7 starting
from state s; and can be calculated by

Vﬂ—(St) = ]E[’I"t+1 + €Tt+2 + £2Tt+3 + ... ‘St]. (11)

Qr(st, az) is the agent starting from state s, first executing
action a;, and then following the expected return of strategy
m and can be calculated by

Qﬂ—(st, at) = E[T’t+1 =+ 57"15+2 =+ 527"t+3 4+ ... |St, at]. (12)

The policy gradient method used in the A2C algorithm is
as follows.

VoJ (9) = Eﬂ'@ [Vg log 7y (57 CL) Qw (Sv a)] s

where Vy.J (0) represents the policy gradient and g (s,a)
represents the probability of choosing a in state s. For the
value function update of the Critic network, we can use the
TD error 1 to calculate the error between the current state-
action value and the next moment state-action value.

13)

V=741 + EQu(St41, ary1) — Qu(St, ar). (14)

The formula for updating the actor network based on the
Q value function is 0 = 0 + aVglog mg(st, ar)Quw (s, at),
and the formula for updating the @ function approximator
network is w = w+ SV ,Quw (St, at). The detailed procedure
is shown in Algorithm 1. First, initialize the parameters of
the value network Q. (s¢,a;) and policy network 7y (s, alf)
of deep reinforcement learning (line 1). Then enter the main
training process. In each round of training, the policy network
outputs a clustering strategy a; based on the state observation
results (line 3). During the execution of the clustering strategy
(from line 4 to line 8), at each small time scale, Algorithm 2
is executed to assign tasks to a cluster (line 6). The agent then
receives a reward rf,n based on the task assignment result.
When the large time scale ends, the state of the system at the
next time s;y; and the total reward r; during this round of
time will be observed (line 9). Then the network parameters
are updated according to the returned value (from line 10 to
line 12).

C. Auction-based Task Assignment Algorithm

After server clustering is completed, an effective mechanism
is needed to enable tasks to be assigned to proper clusters
while satisfying the rationalities of all parties. For this purpose,
we design a task allocation mechanism based on a progressive



Algorithm 1: A2C-based Server Clustering Algorithm.

Algorithm 2: REA Algorithm.

1 Initialize @ function approximator Q. (s, a), initialize policy
approximator 7o (s, a|0);

2 fort=012,... do

3 Sampling clustering strategy a: ~ mo(s¢, a:|6) and make

a: satisfy the constraints, and then execute it;

4 for 6 = 0,1,2,... do

5 for rask r, € R® do
6 Algorithm 2 is executed to assign the task to a
certain cluster and reward rfm is returned;
end
8 end
9 Calculate 7, = ) 5 ZmLER‘Sr'fyn and observe s¢41;
10 0 Te41 + YQu(St41,at41) — Qu(St, ar);

11 w4 W+ BOVwQuw(St,at);

12 0 < 0+ aVglogmg(st, at)Qu(st, ar);
13 t+—1t+1;

14 end

offer reduction strategy. In this strategy, the CPN platform acts
as the decision-maker, and each cluster is a potential service
provider. The platform initially offers the task r,, at a starting
price p;@ = p,. The offer price is then progressively reduced
at each step, with the k-th offer being p;k) = vpglk_l), where
v is the reduction coefficient and 0 < v < 1. The process
continues until the price reaches a level where a single cluster
is willing to accept the task.

Whenever the CPN platform makes an offer, each cluster
determines whether it is willing to process the task at that
price. If a cluster finds the offer acceptable, it remains in
the selection process; otherwise, it exits. The task is then
assigned to the cluster that accepts the offer when it is the only
remaining participant. We call this strategy as Reduced-Price
Equilibrium Allocation (REA) strategy. The detailed procedure
is shown in Algorithm 2. First, set the number of iterations
k to zero and give an initial bid pg (line 1). Then generate
a candidate set C((Ik’t) according to the constraints (line 2). In
each round of bidding (from line 3 to line 15), first determine
whether the task allocation fails (line 5) or is successful (line
9). If the exit condition is not triggered, the bid will be lowered
(line 13) and a new round of bidding pslk) — yp;“) will be
carried out.

In order to analyze whether REA satisfies incentive compat-
ibility, we first give the definition of incentive compatibility.

Definition 1 (Incentive Compatibility, IC): IC requires that
each participant (i.e., cluster) can obtain the maximum utility
(reward) when honestly reporting its actual ability or willing-
ness to accept the task, and will not obtain higher benefits by
misrepresenting or withdrawing from the auction.

For REA strategy, we give the following theorem.

Theorem 1: REA satisfies IC.

Proof of Theorem I: The cost for each cluster C}. to process
task 7, is ¢y, which is internal information private to the
cluster. pSP is the bid for the current task, which decreases
gradually in REA. The profit of the cluster after accepting the
task is the current bid minus the cost of processing the task.

Input: Cluster set Ct, task r,, current workload of each
server, the bid reduction coefficient ~.
Output: The income after task assignment.

1 k<« 0, p%k) — Dn;

2 According to the cluster set C* and the running status and
workload of each server, candidates that meet the
offloading task conditions are obtained and a candidate set
C(gk,t) is formed;

3 while £ < K do

4 if C{* = () then

5 Task r,’s assignment failed;

6 return 0;

7 end

s | if |CFY| =1 then

9 Assign task 7, to the server C! € cin,

10 return p, — pw;

11 end

12 k+—k+1;

13 P AplY,

14 The clusters that will continue to participate in the
auction form a new candidate set C((lk’t);

15 end

In REA, the bids pSLk) are gradually reduced until only one
cluster accepts the task. The goal of a cluster is to decide
whether to accept the task by evaluating its utility function.
Assume that the cost reported by C}, is ¢, i (i.e., a false cost).
Then there are three cases:

e Case 1 (Cp i < Cp,k): When p%k) > Cn,k, the cluster may

accept the task, but because its actual cost c,, j, is higher, it
may eventually lead to negative utility U; (p;’“), cnk) < 0.
This means that the cluster will lose money after accept-
ing the task.

e Case 2 (Cp i > Cp,k): Since pgf) will gradually decrease,
it is possible that another cluster accepts the task be-
cause of its lower cost, and Cj loses the opportunity
to accept the task. In this way, the utility of cluster C;
is zero, although it could have obtained positive utility
U; (pSLk ), ¢n,k) > 0 by honestly reporting the actual cost.

o Case 3 (Cp,k = Cpn,k): When p%k) > Cp,k, the cluster ac-
cepts the task and obtains positive utility U; (p%k), Cnk) >
0. If p%k) < Cp,k, the cluster exits the auction with zero
utility but avoids potential negative utility.

Through the above analysis, we can conclude that under the
REA mechanism, it is the optimal strategy for cluster C; to
honestly report its true cost g.: ,,, because false reporting of
costs will lead to negative utility or missed profit opportunities.
Therefore, the REA strategy is incentive-compatible, and each
cluster has no motivation to manipulate or falsely report its
capabilities or costs. l

Through Theorem 1, we know that REA strategy ensures
the fairness and efficiency of the system in the task allocation
process, and also provides theoretical support for the effective
allocation of tasks.

min, oty ,1Cn,p—ming ot Cp,
Theorem 2: If v > 1 — pecthg{Cnr aec q},
o




Algorithm 3: Procedure of DCAT Algorithm.

1 Train the initial model according to Algorithm 1 and deploy
at the platform;

2 fort =0,1.2,... do

3 Obtain the clustering decision & based on the

observation according to Algorithm 1;

4 for 6 = 0,1,2,... do

5 | Execute Algorithm 2 for task scheduling.

6 end

7 end

then the task will be assigned and the difference be-
tween the bid and the minimum cost is no greater than
ming,cee\ g {Cn,p — Mingect Cn g}

Proof of Theorem 2: Assume that C! contains N clusters,
and the task processing cost of each cluster i € C' is ¢, ;.
Let the server with the lowest cost be 1, that is, ¢, 1 =
mingect {¢n,q} and let ¢, 5 be the cost of the second-lowest-
cost server, that is, ¢, 2 = min,ecce\g {Cnp}-

According to the algorithm description, the REA algorithm
starts with an initial price of p5L0 ) = pn and decreases the
price by ~ in each iteration, that is, pﬁ{‘” = 'yp%k_l), where
0 <~ < 1. So, we have

P =) > pl = p) > > pt) —pY. 1)
That is,

PO (L —7) > > pF) (1 =) =4 pl0) —4F+1p0) (16)

Assume that at step k, ~F pS{”
7k+1p£10) > ¢p,1, We can ensure the task will be assigned. So,

we can get

< cp,2, then as long as we make

(0) _ k+1

Cn,? - Cn,l > ,Ykpn 0 (O)

PO > Ak p( (17)

—Cnp,1-
. min cty\ {c",pfmin ot c”,q}
Thatis y > 1— —F= L —F9c &
P

cost is no greater than min,ece\q {Cn,p — Mingect €p q}. The
theorem is proved. H

Theorem 2 shows that as long as a suitable bid reduction
coefficient -y is selected, it can be guaranteed that the task will
be assigned, and the difference between the assigned income
and the minimum cost also has a certain upper limit.

, and the minimum

D. Procedure of DCAT Algorithm

The procedure of DCAT is shown in Algorithm 3. DCAT
works at two different time scales considering the system
efficiency. At the large time scale (from line 2 to line 7), DCAT
calls Algorithm 1 to form and update computing server clusters
based on the spatial and temporal distribution of servers and
task arrivals. At the small time scale (from line 4 to line
6), DCAT calls Algorithm 2 to schedule the tasks to most
profitable clusters based on the output of Algorithm 1. In
return, Algorithm 1 observes the results of Algorithm 2 for
optimized clustering decisions.

TABLE I
PARAMETER SETTINGS.

Parm Values Unit Parm Values Unit
|S| 20+i10, 7 € [0,4] - fi [200, 300] GHz
In [500, 900] G mn 20 Mb
Tn [2, 3] s Rmax | 100+i50,i € [0, 4] km
Vs [100, 500] Mb/s P,k [1, 24] -
\% 3x 108 m/s m 2 -
p 10 - o7 0.8 -
€c 1028 - €t 20 -
A 20, 30, 40, 50 - 13 0.99 -

V. PERFORMANCE EVALUATION
A. Simulation Setup

We implemented the proposed algorithm using PyTorch 2.1
and CUDA 12.1, leveraging gym [17] as the environment
framework. The server locations and task arrival patterns fol-
low the dataset [18] with computing resources data published
by Huawei Group , and we have made adjustments to meet the
system’s requirements for parameter completeness and internal
consistency. The main parameter settings are shown in Table I.
For comparison purpose, for the server clustering problem, the
following baseline algorithms are simulated:

« Random Alg. (Rand): Servers are randomly divided
into clusters, and each cluster satisfies the constraints.
(This baseline is used to illustrate the results of no
optimization.)

o K-Means based Alg. (KM): The number of clusters 7 is
given in advance, and the K-Means algorithm is executed
for clustering according to the geographic locations of
the servers and delete illegal connections between servers
according to the constraints. (This baseline is used to
illustrate the results of optimization based on geographic
location information only.)

For the task allocation problem, the following baseline
algorithm is simulated.

e One-off Bid REA (OB-REA): The CPN platform only
bids once and then assigns the task to a random cluster
in the set of qualified candidates. (This baseline is used
to illustrate the impact of multiple bids and one-off bid
on results.)

Therefore, DCAT will be compared with DCAT-OB-REA,
Rand-REA, Rand-OB-REA, KM-REA, and KM-OB-REA.

B. Convergence

First, we verified the convergence of the proposed algorithm
DCAT. We show the change in reward value with training
in Fig. 2. As can be seen from Fig. 2, the reward gradually
increases as training proceeds. Until approximately after the
600" epoch of training, the reward value fluctuates around
a certain value. This shows that the proposed algorithm has
learned a stable strategy and can converge.
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Fig. 2. Convergence of reward value during training.
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Fig. 3. Impact of number of servers on the profit and offloading rate.

C. Impact of Number of Servers

Here, we compare the performance of different algorithms
as the number of servers changes. We increase the number of
servers while keeping the task arrival rate fixed. The platform
profit and the task offloading rate are shown in Fig. 3(a) and
Fig. 3(b), respectively. In these two figures, it can be seen
that as the number of servers increases, both the platform
profit and task offloading rate increase. As the number of
servers increases, the computing resources in the network also
increase, making it possible to offload more tasks. However,
since DCAT can not only achieve higher profit by approaching
the bidder’s private rational bid through a multiple bidding
mechanism, but also cluster servers through a profit-aware
mechanism to further increase profit. At the same time, the
performance of the proposed algorithm is better than the
baseline algorithms. For platform profit, DCAT can be 17.51%
higher than the best baseline algorithm KM-REA. For task
offloading rate, DCAT can be 20.47% higher than the best
baseline algorithm KM-OB-REA.

The results show that the expansion of computing resources
is an important and efficient solution to improve the prof-
itability of the platform. Therefore, it is of great significance
for the service providers of CPN to incentive more third-
party computing resources to join the platform. The design of
incentive mechanisms in CPN is indeed a significant area of
technological research and can be furter studied. In practical
implementation, economic models, game theory, blockchain
technology, and other methods can be used to design incentive
mechanisms to achieve these goals.
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D. Impact of the Size of Cluster

Here, we evaluate the impact of cluster size on the platform
profit and task offloading rate. The results are shown in
Fig. 4(a) and Fig. 4(b), respectively. In these two figures, we
can see that as the cluster size increases, both the platform
profit and task offloading rate increase. At the same time,
the performance of the proposed algorithm is better than the
baseline algorithms. As the size of the cluster increases, the
ability to handle tasks also increases, so the more tasks that can
be offloaded, the greater the benefit. For the platform profit,
DCAT can be 33.69% higher than the best baseline algorithm
KM-REA. For task offloading rate, DCAT can be 19.47%
higher than the best baseline algorithm KM-OB-REA. This
is because as the cluster scale expands, the task processing
capabilities of the platform are significantly enhanced, which
leads to a double improvement in load-bearing rate and
revenue.

The results show that the improvement of the cluster scale
can significantly improve the overall operating capabilities and
profitability of the platform, and the expansion of the cluster
scale is a key factor in improving the overall performance of
the platform. Therefore, it is important to continue to develop
high-speed transmission technology in industries to reduce
transmission delay and bring the innovation of the CPN.

E. Impact of Task Arrival Rate

We compared the performance of different algorithms under
different workload by changing the task arrival rate. The
results are shown in Fig. 5(a) and Fig. 5(b), respectively, where



it can be seen that as task arrival rate increases, the platform
profit and task offloading rate will decrease. It is also seen
that the performance of the proposed algorithm is better than
the baseline algorithms. It can be seen that REA can enable
the two parties to interact multiple times and thus approach
the optimal value of the implicit bid, which can obtain higher
platform benefits compared to one bid. Moreover, compared
with the geography-based clustering mechanism, the profit-
aware clustering mechanism enables service providers to make
clustering decisions based on their own profits, thereby further
improving profit on the basis of improving the task offloading
rate. For platform profit, DCAT can be 19.09% higher than
the best baseline algorithm KM-REA. For task offloading rate,
DCAT can be 14.06% higher than the best baseline algorithm
KM-OB-REA.

As the task arrival rate increases, the platform’s revenue and
task load rate will show a downward trend. This is because
a higher task arrival rate will put greater pressure on the
platform’s computing resources, resulting in an inability to
undertake all tasks. The DCAT algorithm combines the two
key links of task allocation and cluster formation to maintain
good performance under different task arrival rates.

VI. CONCLUSION

In this paper, we focused on a novel scenario where the
insufficiency of single-point computing can be compensated
by forming clusters of computing nodes that satisfy latency re-
quirements to meet the demands of high-computation-intensive
applications in a computing power network. In this scenario,
we studied the problem of joint optimization of cluster for-
mation and task scheduling for maximized platform profit.
We formulated this problem as an integer programming. We
proposed a deep reinforcement learning based server clustering
and auction-based task scheduling algorithm to solve the
problem. Extensive simulation results demonstrate the high
efficiency of the proposed algorithm as compared with baseline
algorithms.

Based on the findings and discussions presented in this
paper, several promising future directions can be proposed to
further advance this research area and explore its potential
applications more comprehensively. Firstly, introducing an
additional layer of game theory within each cluster could
significantly enhance the dynamics of resource allocation and
competition for task processing. This would allow individual
nodes or entities to strategically compete for tasks based on
their computational capabilities and profit motives, leading to
a more efficient and economically driven system. Secondly,
incorporating blockchain technology into the trading process
would provide a robust framework for ensuring the integrity
and immutability of transactions. Blockchain’s decentralized
nature and cryptographic security features make it an ideal
solution for establishing trust among participating nodes. Fi-
nally, there is a need for further research to develop a more
accurate and comprehensive model for assessing the hetero-
geneity of computational resources. Heterogeneous computing
involves utilizing diverse types of processors and architectures

to optimize performance and efficiency. A refined model that
takes into account the specific characteristics and capabilities
of different computing nodes would enable a more precise
measurement of their contributions to task processing.
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