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Abstract—Online Social Networks (OSNs) have attracted
intensive attention for the reason that they provide users a
convenient platform to share ideas, post events, and disseminate
messages. Each OSN user commonly owns multiple social ap-
plications (Facebook, Google Plus and Twitter, etc.). They enjoy
disseminating messages within one particular social application
as well as forwarding interesting information to other social
applications. In OSNs, some time-insensitive messages (disaster
warnings, virus alerts, and search notices, etc.) are badly in
need of being disseminated to specific users or applications as
soon as possible. However, sudden message dissemination among
users is bound to put a significant burden on network resources.
Taking the dissemination cost into consideration, we propose
a lightweight Message Dissemination strategy for Minimizing
Delay in OSNs (MDMD), which first defines the user’s activeness
according to the switch habit, among different social applications.
Furthermore, depending on the activeness, an optimal user within
each social application is selected to assist in disseminating the
message. Simulation results show that, compared with other
dissemination strategies, MDMD achieves the lowest average
delay, and lower average hopcounts.

Keywords—OSNs, Social application, Lightweight, Minimizing
delay, Activeness.

I. INTRODUCTION

Online Social Networks (OSNs) [1] [2] have drawn great
attentions in recent years for the reason that they provide
various social applications, such as Facebook [3], Google Plus
[4], Twitter [5], Wechat [6], Microblog [7], etc. Users can
share humor, issue advertisements, make friends, and appoint
activities through a variety of social application platforms
[8]. They greatly enjoy disseminating interesting messages
within the current social application, as well as forwarding
the important messages among different social applications.

In this paper, we consider that there indeed exist some
time-insensitive messages, which need to be disseminated not
only within the current social application, but also to another
specific social application as soon as possible [9]. For instance,
disaster warning messages are bound to be disseminated to the
users around a disaster area with minimal delay; virus alerts are
necessarily notified to the gateway users as soon as possible;
search notices must be quickly delivered to Uber, a social
application used by taxi drivers. As far as we know, existing
state-of-the-art literatures are lacking research focusing on
minimizing message delivery delay among different social
applications [10].
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Fig. 1. An illustration in terms of message dissemination in Online Social
Networks. Each grid represents a kind of social application, each circle
represents a user, which could disseminate the message to any other user
in the same social application. The users considered in this paper are within
a social circle, which means that they are colleagues, classmates, or friends.
Therefore, they could form a connection with each other in the same social
application. Users switch among different social applications. It is necessary
for us to determine an optimal user to disseminate the message in each social
application for minimizing message dissemination delay.

In general, each OSN user owns multiple social appli-
cations. However, each user is merely active in one social
application at any given moment. As can be seen in Fig. 1,
Jack and Candy establish a connection through Twitter when
they arrive at the red grid at the same time. Conversely, they
could not establish a connection while in the different grids.
After a period of time, Jack and Candy meet each other
again in the Facebook social application. If Jack attempts to
disseminate a message to the specific social application, he
would like to choose an optimal user to help him forward the
message as soon as possible. Therefore, it is not difficult to
find that the switch habit among different social applications
plays an important role in terms of minimizing delay. The
active user which switches frequently is bound to assist in
disseminating messages, while the fallow user, which stays on
a social application for a long time, could not improve the
dissemination performance.

In order to minimize dissemination delay, the problem
changes into deciding an optimal user whose activeness is
highest. In this paper, we propose a lightweight message dis-
semination strategy for minimizing delay in OSNs, which first
defines user’s activeness according to the switch habit among
different social applications. Subsequently, a dissemination
strategy is decided on the basis of user’s activeness in order to
minimize the dissemination delay, which always chooses the
user with highest activeness to disseminate the message.



The main contributions of this paper are briefly summa-
rized as follows:

• We define the user’s activeness in OSNs according to
the switch habit among different social applications,
where a higher switching frequency means higher
activeness, and vice versa.

• According to the user’s activeness, a lightweight mes-
sage dissemination strategy for minimizing delay is
proposed in OSNs.

• We conduct extensive simulations based on the syn-
thetic user’s activeness. The results show that, com-
pared with other dissemination strategies, MDMD
achieves the lowest average delay, and lower average
hopcounts.

The remainder of the paper is organized as follows. We
review the related work in Section II. The lightweight message
dissemination strategy for minimizing delay in OSNs (MD-
MD) is presented in Section III. In Section IV, we evaluate
the performance of MDMD through extensive simulations. We
conclude the paper in Section V. Some proofs are presented
in Appendix.

II. RELATED WORK

A. Maximizing Social Influence

Recently, an enormous amount of research has been de-
voted to selecting optimal users for message dissemination
in order to maximize social influence. Kleinberg and Kempe
et al. [1] prove that the optimization solution of selecting the
most influential nodes is an NP-hard problem according to the
analysis of several most widely-studied models in social net-
works. They are the first to provide a certifiable approximation
guarantee for efficient algorithms. Based on the above work of
Kleinberg, Chen et al. [11] show that computation complexity
could be, in time, linear to the size of the graphs as long as
network topologies are directed acyclic graphs (DAGs). Then
they propose a scalable influence maximization algorithm.

B. Controlling Network Burden

There are also plenty of research works focusing on reduc-
ing network burden through controlling key users, which are
network gateway or community bridge users. Vojnović et al.
[12] provide an analytical framework to evaluate the patching
system performance, which accommodates various overlays
utilizing the abstraction of a minimum broadcast curve, and
also provides a filtering of scans across subnets. Zhu et al.
[13] propose a counter-mechanism to restrict the flooding of
a mobile worm as early as possible by patching an optimal
gather of phones.

In this paper, we attempt to minimize the dissemination
delay in OSNs, while the network burden problem is also
considered. We prefer to make as few users as possible par-
ticipate in the dissemination process. Therefore, in each social
application, only one optimal user is selected to disseminate
messages. In conclusion, a lightweight message dissemination
strategy for minimizing delay is proposed in this paper.

III. THE LIGHTWEIGHT MESSAGE DISSEMINATION
STRATEGY FOR MINIMIZING DELAY IN OSNS

A. Assumptions

Consider the following OSN environment; there are l
users whose interests focus on n different social applications.
The users shift among different social applications, and the
residence time at each social application satisfies exponential
distribution. Different users’ residence times satisfy different
distributions, and the specific user’s residence times at different
social applications obey the same distribution. The message is
generated in the user with lowest activeness at an initial system
time; each kind of message has only one copy and a given
TTL, after which the message is no longer useful. Two users
in the same social application could disseminate messages to
each other. The main notations used in this paper are illustrated
in Table I.

B. Continuous-time Markov Model

1) Definition of activeness: In this section, we utilize two
specific users (A and B) to illustrate the continuous-time
markov model. First of all, for the user A, we use Xt to express
the state (social application being used) of user A at time t. It
is not difficult to find that Xt ∈ e = {e1, e2, · · · , en}. This is
due to the reason that, in the previous subsection, we assume
that the time spent in each state takes non-negative values and
obeys an exponential distribution. Therefore, we consider that
Xt satisfies the continuous-time markov chains.

We define Pij(t) as the probability that a user’s state of
time 0 is i, and a user’s state of time t is j, which is shown
as follows: Pij(t) = P (Xt = j|X0 = i). Without loss of
generality, we regard P (t) as the n ∗ n matrix composed
of Pij(t). We could generate the transition rate matrix P of
continuous-time markov chains (as shown in Eq. 1) through the
following formula: P = lim

t→0

P (t)−P (0)
t−0 = lim

t→0

P (t)−I
t , where

I is the unit matrix.

P =

 a11 a12 · · · a1n
...

...
...

...
· · · · · · · · · ann

 (1)

The characters of matrix P are listed as follows:

(1) aii < 0 (∀i),
n∑

j=1

aij = 0, aij ≥ 0 (∀i ̸= j).

(2) The user holding the message at social application ei
waits for a random time τi, and then switches to ej with
the probability: qij =

aij

−aii
. The residence time satisfies

exponential distribution, and therefore, τi ∼ exp(−aii),
indicating that τi satisfies the exponential distribution with
parameter −aii.

(3) When the user holding the message stays in state i, it has
an equal probability of switching from the current state to
any other state, which means that the following equation
is satisfied: qij1 = qij2 (∀j1, j2 ̸= i).

(4) The discrete states of Xt are expressed as: X0, X1, · · · ,
Xt, which satisfy discrete-time markov chains.

(5) The larger the −aii is, the higher the user’s activeness
is. Similarly, the smaller the −aii is, the lower the user’s
activeness is.



TABLE I. MAIN NOTATIONS USED THROUGHOUT THE PAPER

Notation Explanation
n Total number of social applications (i.e., number of grids) in OSNs
e The set of different social applications, e = {e1, e2, · · · , en}
Xt The user’s state (social application being used) at time t, Xt ∈ e
Pij(t) The probability that user’s state of time 0 is i, the state of time t is j
τi The random residence time for a user in social application ei
ck The parameter in exponential distribution of user k’s residence times
T The earliest time for two users to meet each other
Eij(T ) The expected earliest time for two users to meet each other,

with the condition that their initial states are i and j
ξ The first switch time (switch from one social application to another

one) for any of the two users
l The total number of users
Ti The first meeting time between user i and user l (destination user)
λl,i The parameter of Ti’s exponential distribution, λl,i =

cl+ci
n−1

T (l) The dissemination delay from the lowest priority user to
highest priority user for a l-users system

rl The expectation of T (l)

In conclusion, each user has its corresponding transition
rate matrix, where the negative diagonal −aii represents its
activeness. Eq. 2 is a detailed example to further illustrate the
user’s activeness:

A =

( −2 1 1
1 −2 1
1 1 −2

)
, (2)

where n = 3 means that there are three social applications in
OSNs. aii = −2 indicates that the user’s activeness is 2, and
the expectation residence time satisfies: τi ∼ exp(2). In addi-
tion, the transition probability from state i to state j satisfies
the following equation: aij = 1/2 (∀i ̸= j). Therefore, for this
example, the user’s residence time in each social application
satisfies exponential distribution with parameter 2, and the user
has the probability of 1/2 to switch from the current social
application to any other one.

2) The expectation time for the first meeting of A and
B: It is worth noticing that the expectation meeting time
between user A and user B plays an important role for the
reason that the research focuses on minimizing dissemination
delay. Suppose that the state of user A at time t is Xt,
and the state of user B at time t is Yt. Simultaneously,
according to the derivation in the previous subsection, the
transition rate matrixes of user A and user B are shown in
Eqs. 3 and 4, respectively. Moreover, on the basis of the
character (1) of continuous-time markov chain’s transition rate
matrix, a and b are calculated through following two equations:
a = c1

n−1 , b = c2
n−1 . In addition, according to the character

(3) of the transition rate matrix, user A and user B have
the same probability 1

n−1 to switch from the current social
application to another one. Their expectation residence times
also satisfy exponential distributions with parameters c1 and
c2, respectively.

A =

 −c1 a a a
...

...
...

...
· · · · · · · · · −c1

 (3)

B =

 −c2 b b b
...

...
...

...
· · · · · · · · · −c2

 (4)

We define the earliest time for A and B to meet each
other as T = inf{t ≥ 0;Xt = Yt}, which means that the
minimal nonnegative value t satisfying Xt = Yt. Assume that
the initial states of users A and B are Xt = i and Yt = j,
respectively. We define the notation of condition probability
as: Eij(•) = E(•|X0 = i, Y0 = j), which indicates the
expectation of earliest time for A and B to meet each other
with the condition that Xt = i and Yt = j. It is not difficult to
find that our purpose changes into finding the value of Eij(T ).

As previously mentioned, the state of user A is Xt, and
the state of user B is Yt. We define ξX as the user A’s first
switching time from current social application to another one,
and ξY is the user B’s first switching time. We also define
ξ = min{ξX , ξY } as the minimal switching time between
user A and user B. According to the previous assumptions,
Theorem 1 is achieved as follows.

Theorem 1: ξX ∼ exp(c1), ξY ∼ exp(c2), and then ξ ∼
exp(c1 + c2).

The proof of Theorem 1 is shown in Appendix A, where
we could achieve Eij(ξ) = 1

c1+c2
. The insight meaning of

Theorem 1 is shown as follows. The expectation of user A’s
first switching time is 1

c1
, and the expectation of user B’s first

switching time is 1
c2

. However, the minimal expectation of
switching time for either A or B is 1

c1+c2
, which is lower than

1
c1

and 1
c2

. This is natural and reasonable. Based on Theorem
1, Theorem 2 is further obtained.

Theorem 2: ξX ∼ exp(c1), ξY ∼ exp(c2), the earliest
time for A and B to meet each other (T = inf{t ≥ 0;Xt =
Yt}) satisfies: T ∼ exp( c1+c2

n−1 ).

The proof of Theorem 2 is shown in Appendix B. Theorem
2 shows the distribution of the expectation time for the first
meeting of A and B, which has insightful meanings as follows.
Due to the reason that T ∼ exp( c1+c2

n−1 ), Eij(T ) = n−1
c1+c2

.
There are three variables: c1, c2, and n. It is worth noticing
that a larger c1 or c2 leads to a shorter first meeting time of
A and B. In other words, a higher user activeness leads to an
earlier meeting time, which makes sense. In addition, a larger
n results in a longer first meeting time. That is to say, more
social applications result in a longer meeting time.

In conclusion, in this section, we define the parameter of
the exponential distribution obeyed by a user’s residence time
in each social application as user’s activeness. According to
a user’s activeness, we achieve the expectation time for the
first meeting between two users, which plays a major role in
terms of making a message dissemination strategy, aiming to
minimize delivery delay.

C. Time-constant Activeness

We consider the online social network with l users, whose
activeness (the parameter of exponential distribution regarding
residence time in each social application) are different and
time-constant. In other words, their priorities could be sorted
from low to high. Assume that the activeness of l users in
the network are c1, c2, · · · , cl, while their priorities satisfy
c1 > c2 > · · · > cl. Without loss of generality, the user with
lowest priority cl is assigned as message holder, meanwhile,
the destination user is considered with highest priority. There



is only one message holder in OSN at the same moment. The
purpose is to make a dissemination decision for message holder
in order to minimize delay.

T1, T2, T3, · · · , Tl−1 are used to represent the first meeting
times between user l and user 1, 2, 3, · · · , l− 1, respectively.
According to the Theorem 2, Ti ∼ exp( cl+ci

n−1 ) is achieved.
In order to simplify the expression regarding the parameter
of exponential distribution, we make the following symbolic
representations: λl,1 = cl+c1

n−1 , · · · , λl,l−1 = cl+cl−1

n−1 .

The following two theorems are listed in order to further
propose a message dissemination strategy for minimizing
delay, when the user’s activeness is time-constant.

Theorem 3: P (Tj < Ti, ∀i ̸= j) =
λl,j

λl,1+λl,2···+λl,l−1
.

Proof : consider the online social network with l users;
the activeness of user i is ci, and λl,i =

cl+ci
n−1 . The detailed

proof process of Theorem 3 is shown in Eq. 5.

P (Tj < Ti, ∀i ̸= j)

=

∫ ∞

0

· · ·
∫ ∞

0

χtj<ti,∀i ̸=j

l−1∏
i=1

(λl,ie
−λl,iti)dt1 · · · dtl−1

=

∫ ∞

0

λl,j

l−1∏
i=1

e−λl,itj dtj =
λl,j

λl,1 + λl,2 · · ·+ λl,l−1
(5)

Theorem 4: E[TjχTj=τ ] =
λl,j

(λl,1+λl,2···+λl,l−1)2
.

Proof : the proof process of Theorem 4 is similar to the
one in Theorem 3. Consider the OSN with l users as before,
the proof process of Theorem 4 is shown in Eq. 6.

E[TjχTj=τ ]=
∫ ∞

0

λl,jtj

l−1∏
i=1

e−λl,itj dtj

=

∫ ∞

0

λl,j

l−1∑
i=1

λl,j

l−1∑
i=1

λl,jtje

l−1∑
i=1

λl,jtj
dt1

=
λl,j

(λl,1 + λl,2 · · ·+ λl,l−1)2
(6)

The purpose is to formulate a dissemination strategy for
message holders in order to minimize dissemination delay. As
shown in Table I, the dissemination delay from the lowest
priority user to the highest priority user for a l-users system
is defined as T (l). Similarly, the dissemination delay for a j-
users system is T (j). The problem changes into calculating
the expectation of T (l), which is shown in Eq. 7, where the
calculation of E(T (l)) is divided into following two parts:
E[Tj ] and E(T (j)).

E(T (l)) =

l−1∑
j=1

{E[TjχTj=τ ] + P (Tj < Ti, ∀i ̸= j)E(T (j))}

(7)

In order to simplify symbolic representation, we define that
E(T (l)) = rl, E(T (j)) = rj . Then, when Eq. 8 is achieved,
Theorem 5 is further proposed.

rl =
l−1∑
j=1

[
λl,j

(λl,1+λl,2+ · · ·+λl,l−1)2
+

λl,j

λl,1+λl,2+ · · ·+λl,l−1
rj ]

=
1

λl,1+λl,2+ · · ·+λl,l−1
+

l−1∑
j=1

λl,jrj

λl,1+λl,2+ · · ·+λl,l−1
(8)

Theorem 5: λl,1 > λl,2 > · · · > λl,l−1, if we exchange
any pair of priorities λl,i and λl,j , then the rl will get bigger.

The proof of Theorem 5 is shown in Appendix C, which
illustrates that if we exchange any pair of initial priorities of
λ, the expectation of dissemination delay will be longer. In
other words, the best strategy for minimizing dissemination
delay is to disseminate the message according to the priority:
λl,1 > λl,2 > · · · > λl,l−1. Therefore, when the user’s
activeness is time-constant, we achieve the optimal dissemi-
nation strategy, which disseminates the message to the user of
highest activeness in the current social application, in order to
minimize dissemination delay.

IV. PERFORMANCE EVALUATION

A. Simulation Settings

To demonstrate the performance of the proposed MDMD, a
multi-paradigm numerical computing environment MATLAB
is employed in this paper. We carry out simulations with the
synthetic user’s activeness. Each user has a constant activeness,
which means that the activeness never changes. Each result
in the figure comes from the average value of 500 groups
of simulations. The simulation time is set as 2000s. While
a range of data is gathered from the simulations, on the
premise that the delivery ratio is guaranteed to be 100%
by the sufficient simulation time, we take the following two
performance metrics into consideration.

(1) Average delay, which is the average elapsed time of the
successfully delivered messages.

(2) Average hopcounts, which is the average forwarding num-
ber of the successfully delivered messages.

B. Simulation Results under Time-constant Activeness

We assign the time-constant activeness to each user. The
OSN environment composed of 10 users is considered. Their
priorities of the activeness are scheduled as follows: c1 = 1.0,
c2 = 0.9, c3 = 0.8, · · · , c9 = 0.2, c10 = 0.1. User 1
is regarded as the destination, and user 10 is assigned as
the initial message holder. In order to compare with other
dissemination strategies and prove the Theorem 5 through
simulations, three different dissemination priorities are tested,
and the simulation results are shown in Fig. 2. MDMD is
the optimal strategy proposed in this paper; FC (FirstContact)
is a random dissemination strategy, which disseminates the
message to a random encounter; EO (ExchangeOrder) is a
variation of MDMD, which randomly exchanges two users’
priorities from the original order.
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Fig. 2. Average delay and Average hopcounts as a function of number of
grids when the user’s activeness is time-constant.

As can be seen in Fig. 2-(a), MDMD actually achieves the
lowest average delay compared with the other two dissemi-
nation strategies, which further proves Theorem 5. Therefore,
in order to minimize dissemination delay, the optimal solution
is to disseminate the message to the user with the highest
activeness. Fig. 2-(b) shows the changes in average hopcounts
over the number of grids from 36 to 196. The simulation
results show that MDMD achieves similar average hopcounts
compared with EO, while far lower than the average hopcounts
of FC.

V. CONCLUSION

In OSNs, each user usually owns multiple social appli-
cations, such as Facebook, Google Plus and Twitter, etc.
However, at the same moment, each user only could be active
at one social application. They enjoy disseminating messages
within the current social application, as well as forwarding
interesting information to other social applications. There are
some time-insensitive messages, which are in urgent need of
being disseminated to specific users or applications as soon
as possible. In order to solve the above problem, we propose
a lightweight Message Dissemination strategy for Minimizing
Delay in OSNs (MDMD), which first defines the user’s ac-
tiveness according to the switch habit among different social
applications. Furthermore, an optimal user with the highest
activeness is selected to assist in disseminating the message.
We conduct simulations in MATLAB with a synthetic user’s
activeness. Simulation results show that, compared with other
dissemination strategies, MDMD achieves lowest the average
delay, and lower average hopcounts.
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APPENDIX

A. Proof of Theorem 1

Due to the reason that ξ = min{ξX , ξY }, therefore, ξ > t
only when ξX > t and ξY > t. Furthermore, the derivation
result of Eq. 9 shows that ξ ∼ exp(c1 + c2).

P (ξ > t) = P (ξX > t ∩ ξY > t) = P (ξX > t)P (ξY > t)

= e−c1te−c2t = e−(c1+c2)t (9)

B. Proof of Theorem 2

Consider that X0 = i and Yo = j, ξ is the minimal
switching time between users A and B. Therefore, after the
switch of no matter A or B, the states of A and B change
from i and j to g and k, which is expressed as (i, j) → (g, k).
D is defined as the absorb state of A and B, which is shown
as: D = {(k, k), ek ∈ e}. When A and B enter the absorb
state, it illustrates that user A and user B meet each other
in the same social application. Moreover, it is not difficult
to find that (i, j) /∈ D. Otherwise, the expectation time for
the first meeting of A and B is 0. In addition, after the first
switch (i, j) → (g, k), if (g, k) ∈ D, then T = ξ. Otherwise,
(g, k) /∈ D, then user A and user B calculate the expectation
of the first meeting time, afresh with the initial states of g and
k. According to the above discussion, Eq. 10 is achieved.

Eij(T ) = Eij(ξ) +
∑

(g,k)/∈D

P ((i, j) → (g, k))Egk(T )

+
∑

(g,k)∈D

P ((i, j) → (g, k)) · 0 (10)



In order to simplify symbolic representation, we define α =
Eij(T ), for the reason that there is no difference among all
the social applications. Therefore, α = Eij(T ) = Egk(T ).
We also use the discrete-time combination state Zt to express
the states of A and B: Zt = (Xt + Yt), which means that
X0 = i, Y0 = j, then Z0 = (i, j). According to the Eq. 10
and Eij(ξ) =

1
c1+c2

, Eq. 11 is achieved. Furthermore, the final
equation in terms of α is shown in Eq. 12

α =
1

c1 + c2
+

∑
(g,k)/∈D

P (Z1 = (g, k)|Z0 = (i, j))α (11)

α =
1

c1 + c2

1

1−
∑

(g,k)/∈D

P (Z1 = (g, k)|Z0 = (i, j))
(12)

Next, we consider the Kronecker sum [14] Z of matrixes
A and B, which is the matrix sum defined by Eq. 13, where ⊕
is Kronecker sum operation [14], and ⊗ is Kronecker product
operation [15]. In order to calculate α, the matrix Z is used to
achieve the transition probability from (i, j) to (g, k) in terms
of the states of A and B.

Z = A
⊕
B = A

⊗
I + I

⊗
B = (A

⊗
I + I

⊗
B)(i,j)(g,k)

= AigSjk + SigBjk (13)

The problem changes into solving the matrix Z, where Sjk

is defined as Sjk =

{
1 j = k

0 k ̸= k
. Similarly, Sig =

{
1 i = g

0 i ̸= g
.

The following four cases are considered in order to calculate
matrix Z.

• Case 1: if (g, k) = (i, j), then Z = Aig + Bjk =
−(c1 + c2)

• Case 2: if (g, k) ̸= (i, j) and j = k, i ̸= g, then
Z = Aig = c1

n−1

• Case 3: if (g, k) ̸= (i, j) and j ̸= k, i = g, then
Z = Bjk = c2

n−1

• Case 4: other situations, Z = 0

Based on the above four cases, Eq. 14 is obtained. The
value of α is further calculated through Eq. 15.

∑
(g,k)/∈D

P (Z1 = (g, k)|Z0 = (i, j))

=
(n− 2)c1
n− 1

1

c1 + c2
+

(n− 2)c2
n− 1

1

c1 + c2

=
n− 2

n− 1
(14)

α = (n− 1)
1

c1 + c2
(15)

Combining Eq. 10 and Strong Markov property [16], we
get the following equation:

Eij(e
−sT )=Eij(e

−sξ)
∑

(g,k)/∈D

P ((i, j) → (g, k))Egk(e
−sT )+

Eij(e
−sξ)

∑
(g,k)∈D

P ((i, j) → (g, k)). (16)

Where Eij(e
−sξ) satisfies Eq. 17.

Eij(e
−sξ) =

∫ ∞

0

e−st(c1 + c2)e
−(c1+c2)tdt

=
c1 + c2

c1 + c2 + s
(17)

In order to simplify symbolic representation, we define that
β = Eij(e

−sT ). Combining β = Eij(e
−sT ) and Eq. 16, we

get the equation of β as Eq. 18

β =
c1 + c2

c1 + c2 + s
[(1− 1

n− 1
)β +

1

n− 1
] (18)

Next, through solving Eq. 18, we obtain the final expression
of β, which is shown in Eq. 19. Therefore, T ∼ exp( c1+c2

n−1 ) is
achieved through a method similar to that of Eq. 17. Theorem
2 is proved.

β =
c1+c2
n−1

c1+c2
n−1 + s

(19)

C. Proof of Theorem 5

First of all, we attempt to prove following result: rk >
rk−1, ∀ k ∈ (1, 2, 3 · · · , l). It is known that rk represents the
delivery delay for a message from ck to c1, and c1 > c2 >
· · · > ck. There exist two situations according to the difference
of the first dissemination step. First situation: the first step,
where the message is disseminated to ck−1, assuming that the
time of the first step is t′, and the second step, the message is
disseminated from ck−1 to c1, and the delay is rk−1. Therefore,
the total delay from ck to c1 in the first situation is rk = rk−1+
t′ > rk−1. The second situation: in the first step, the message
is not disseminated to ck−1, therefore, the system is assumed
to be a rk−1 system, where c1 > c2 > · · · > ck−2 > ck. Due
to the reason that ck−1 > ck, the activeness level for user k−1
is higher than that of user k. Therefore rk > rk−1 can also
be achieved in the second situation. In conclusion, rk > rk−1,
∀ k ∈ (1, 2, 3 · · · , l). Based on the above proof, we get the
conclusion that r1 < r2 < r3 < · · · < rl, and the rl satisfies:

rl =
1

λl,1+λl,2+ · · ·+λl,l−1
+

l−1∑
j=1

λl,jrj

λl,1+λl,2+ · · ·+λl,l−1
(20)

if we exchange λl,i and λl,j , the variation of rl is
(λl,irj +λl,jri)− (λl,jrj +λl,iri) = (rj − ri)(λl,i−λl,j) > 0

Therefore, λl,1 > λl,2 > · · · > λl,l−1 is actually the
optimal priority order, and we get the conclusion that: Theorem
5 is proved.


