A Lightweight Message Dissemination Strategy for Minimizing Delay in Online Social Networks

En Wang1,2, Yongjian Yang1, Jie Wu2, Wei-Shih Yang3 and Wenbin Liu4

1 Department of Computer Science and Technology, Jilin University, Changchun, China
2 Department of Computer and Information Sciences, Temple University, Philadelphia, USA
3 Department of Mathematics, Temple University, Philadelphia, USA
4 Department of Software Engineering, Jilin University, Changchun, China

wangen0310@126.com; yyj@jlu.edu.cn; jiewu@temple.edu; yang@temple.edu; nike_lwb@126.com
Outline

• 1. Introduction
• 2. Model Description
• 3. Message Dissemination Strategy
• 4. Evaluation
1. Introduction

1.1 Motivation

• In Online Social Networks (OSNs), some time-insensitive messages (disaster warnings, virus alerts, and search notices, etc.) are badly in need of being disseminated to specific users or applications as soon as possible.

• Sudden message dissemination among users is bound to put a significant burden on network resources.

• A lightweight Message Dissemination strategy for Minimizing Delay in OSNs is required.
1. Introduction

1.2 Problem

• How to disseminate message in Online Social Networks. Each grid represents a kind of social application, each circle represents a user, which could disseminate the message to any other user in the same social application.
1. Introduction

1.3 Contributions

• We define the user’s activeness in OSNs according to the switch habit among different social application

• According to the user’s activeness, a lightweight message dissemination strategy for minimizing delay is proposed in OSNs

• We conduct extensive simulations based on the synthetic user’s activeness.
Outline

• 1. Introduction

• 2. Model Description

• 3. Message Dissemination Strategy

• 4. Evaluation
2. Model Description

2.1 Continuous-time Markov model

- We define the parameter of the exponential distribution obeyed by a user’s residence time in each social application as user’s activeness. According to a user’s activeness, we achieve the expectation time for the first meeting between two users, which plays a major role in terms of making a message dissemination strategy, aiming to minimize delivery delay.

\textbf{Theorem 1:} \(\xi^X \sim \exp(c_1), \xi^Y \sim \exp(c_2), \) and then \(\xi \sim \exp(c_1 + c_2). \)

\textbf{Theorem 2:} \(\xi^X \sim \exp(c_1) \) and \(\xi^Y \sim \exp(c_2) \), the earliest time for A and B to meet each other \((T = \inf\{t \geq 0; X_t = Y_t\}) \) satisfies: \(T \sim \exp(\frac{c_1 + c_2}{n-1}). \)
2. Model Description

2.2 Notations

<table>
<thead>
<tr>
<th>Notation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Total number of social applications (i.e., number of grids) in OSNs</td>
</tr>
<tr>
<td>e</td>
<td>The set of different social applications, $e = {e_1, e_2, \cdots, e_n}$</td>
</tr>
<tr>
<td>X_t</td>
<td>The user’s state (social application being used) at time t, $X_t \in e$</td>
</tr>
<tr>
<td>$P_{i,j}(t)$</td>
<td>The probability that user’s state of time 0 is i, the state of time t is j</td>
</tr>
<tr>
<td>τ_i</td>
<td>The random residence time for a user in social application e_i</td>
</tr>
<tr>
<td>c_k</td>
<td>The parameter in exponential distribution of user k’s residence times</td>
</tr>
<tr>
<td>T</td>
<td>The earliest time for two users to meet each other</td>
</tr>
<tr>
<td>$E_{i,j}(T)$</td>
<td>The expected earliest time for two users to meet each other, with the condition that their initial states are i and j</td>
</tr>
<tr>
<td>ξ</td>
<td>The first switch time (switch from one social application to another one) for any of the two users</td>
</tr>
<tr>
<td>l</td>
<td>The total number of users</td>
</tr>
<tr>
<td>T_i</td>
<td>The first meeting time between user i and user l (destination user)</td>
</tr>
<tr>
<td>$\lambda_{l,i}$</td>
<td>The parameter of T_i’s exponential distribution, $\lambda_{l,i} = \frac{c_l + c_i}{n-1}$</td>
</tr>
<tr>
<td>$T^{(l)}$</td>
<td>The dissemination delay from the lowest priority user to highest priority user for a l-users system</td>
</tr>
<tr>
<td>r_l</td>
<td>The expectation of $T^{(l)}$</td>
</tr>
</tbody>
</table>
Outline

• 1. Introduction
• 2. Model Description
• 3. Message Dissemination Strategy
• 4. Evaluation
3. Message Dissemination Strategy

3.1 Strategy

Theorem 3: \(P(T_j < T_i, \forall i \neq j) = \frac{\lambda_{l,j}}{\lambda_{l,1} + \lambda_{l,2} + \cdots + \lambda_{l,l-1}}. \)

Theorem 4: \(E[T_j \chi_{T_j = \tau}] = \frac{\lambda_{l,j}}{(\lambda_{l,1} + \lambda_{l,2} + \cdots + \lambda_{l,l-1})^2}. \)

Theorem 5: \(\lambda_{l,1} > \lambda_{l,2} > \cdots > \lambda_{l,l-1}, \) if we exchange any pair of priorities \(\lambda_{l,i} \) and \(\lambda_{l,j} \), then the \(r_l \) will get bigger.

- When the user’s activeness is time-constant, we achieve the optimal dissemination strategy, which disseminates the message to the user of highest activeness in the current social application, in order to minimize dissemination delay.
Outline

• 1. Introduction

• 2. Model Description

• 3. Scheduling and Drop Strategy

• 4. Evaluation
4. Evaluation

4.1 Two performance metrics

- 1. **Average delay**, which is the average elapsed time of the successfully delivered messages.

- 2. **Average hopcounts**, which is the average forwarding number of the successfully delivered messages.
4. Evaluation

4.2 Simulation Results

(a) Average delay
4. Evaluation

4.2 Simulation Results

(b) Average hopcounts
Future Work

• **Time-varying Activeness**

• **Real Data**
Thank You