



### A Lightweight Message Dissemination Strategy for Minimizing Delay in Online Social Networks

#### En Wang<sup>1,2</sup>, Yongjian Yang<sup>1</sup>, Jie Wu<sup>2</sup>, Wei-Shih Yang<sup>3</sup> and Wenbin Liu<sup>4</sup>

1 Department of Computer Science and Technology, Jilin University, Changchun, China

2 Department of Computer and Information Sciences, Temple University, Philadelphia, USA

3 Department of Mathematics, Temple University, Philadelphia, USA

4 Department of Software Engineering, Jilin University, Changchun, China

wangen0310@126.com; yyj@jlu.edu.cn; jiewu@temple.edu; yang@temple.edu; nike\_lwb@126.com

- 1. Introduction
- 2. Model Description
- 3. Message Dissemination Strategy
- 4. Evaluation

## **1. Introduction**

### **1.1 Motivation**

- In Online Social Networks (OSNs), some time-insensitive messages (disaster warnings, virus alerts, and search notices, etc.) are badly in need of being disseminated to specific users or applications as soon as possible.
- Sudden message dissemination among users is bound to put a significant burden on network resources.
- A lightweight Message Dissemination strategy for Minimizing Delay in OSNs is required.

## **1. Introduction**

### **1.2 Problem**

 How to disseminate message in Online Social Networks. Each grid represents a kind of social application, each circle represents a user, which could disseminate the message to any other user in the same social application.



## **1. Introduction**

### **1.3 Contributions**

 We define the user's activeness in OSNs according to the switch habit among different social application

- According to the user's activeness, a lightweight message dissemination strategy for minimizing delay is proposed in OSNs
- We conduct extensive simulations based on the synthetic user's activeness.

- 1. Introduction
- 2. Model Description
- 3. Message Dissemination Strategy
- 4. Evaluation

## **2. Model Description**

### 2.1 Continuous-time Markov model

 We define the parameter of the exponential distribution obeyed by a user's residence time in each social application as user's activeness. According to a user's activeness, we achieve the expectation time for the first meeting between two users, which plays a major role in terms of making a message dissemination strategy, aiming to minimize delivery delay.

**Theorem** 1:  $\xi^X \sim exp(c_1), \ \xi^Y \sim exp(c_2), \ and \ then \ \xi \sim exp(c_1 + c_2).$ 

**Theorem 2:**  $\xi^X \sim exp(c_1), \ \xi^Y \sim exp(c_2), \ the \ earliest time for A and B to meet each other <math>(T = inf\{t \ge 0; X_t = Y_t\})$  satisfies:  $T \sim exp(\frac{c_1+c_2}{n-1}).$ 

## **2. Model Description**

### **2.2 Notations**

| Notation        | Explanation                                                                                 |
|-----------------|---------------------------------------------------------------------------------------------|
| n               | Total number of social applications (i.e., number of grids) in OSNs                         |
| e               | The set of different social applications, $e = \{e_1, e_2, \cdots, e_n\}$                   |
| $X_t$           | The user's state (social application being used) at time $t, X_t \in e$                     |
| $P_{ij}(t)$     | The probability that user's state of time 0 is $i$ , the state of time $t$ is $j$           |
| $	au_i$         | The random residence time for a user in social application $e_i$                            |
| $c_k$           | The parameter in exponential distribution of user $k$ 's residence times                    |
| T               | The earliest time for two users to meet each other                                          |
| $E_{ij}(T)$     | The expected earliest time for two users to meet each other,                                |
|                 | with the condition that their initial states are $i$ and $j$                                |
| ξ               | The first switch time (switch from one social application to another                        |
|                 | one) for any of the two users                                                               |
| l               | The total number of users                                                                   |
| $T_i$           | The first meeting time between user $i$ and user $l$ (destination user)                     |
| $\lambda_{l,i}$ | The parameter of $T_i$ 's exponential distribution, $\lambda_{l,i} = \frac{c_l + c_i}{n-1}$ |
| $T^{(l)}$       | The dissemination delay from the lowest priority user to                                    |
|                 | highest priority user for a <i>l</i> -users system                                          |
| $r_l$           | The expectation of $T^{(l)}$                                                                |

- 1. Introduction
- 2. Model Description
- 3. Message Dissemination Strategy
- 4. Evaluation

### 3. Message Dissemination Strategy

### 3.1 Strategy

**Theorem 3:**  $P(T_j < T_i, \forall i \neq j) = \frac{\lambda_{l,j}}{\lambda_{l,1} + \lambda_{l,2} \cdots + \lambda_{l,l-1}}.$ 

**Theorem 4:** 
$$E[T_j\chi_{T_j=\tau}] = \frac{\lambda_{l,j}}{(\lambda_{l,1}+\lambda_{l,2}\cdots+\lambda_{l,l-1})^2}.$$

**Theorem 5:**  $\lambda_{l,1} > \lambda_{l,2} > \cdots > \lambda_{l,l-1}$ , if we exchange any pair of priorities  $\lambda_{l,i}$  and  $\lambda_{l,j}$ , then the  $r_l$  will get bigger.

 When the user's activeness is time-constant, we achieve the optimal dissemination strategy, which disseminates the message to the user of highest activeness in the current social application, in order to minimize dissemination delay.

- 1. Introduction
- 2. Model Description
- 3. Scheduling and Drop Strategy
- 4. Evaluation

## 4. Evaluation

### **4.1 Two performance metrics**

• 1. Average delay, which is the average elapsed time of the successfully delivered messages.

• 2. Average hopcounts, which is the average forwarding number of the successfully delivered messages.

### 4. Evaluation

#### **4.2 Simulation Results**



### 4. Evaluation

#### **4.2 Simulation Results**



## **Future Work**

• Time-varying Activeness

Real Data



### **Thank You**