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Abstract—In this paper, we focus on the incentive mechanism design for a vehicle-based, nondeterministic crowdsensing system. In
this crowdsensing system, vehicles move along their trajectories and perform corresponding sensing tasks with different probabilities.
Each task may be performed by multiple vehicles jointly so as to ensure a high probability of success. Designing an incentive
mechanism for such a crowdsensing system is challenging since it contains a non-trivial set cover problem. To solve this problem, we
propose a truthful, reverse-auction-based incentive mechanism that includes an approximation algorithm to select winning bids with a
nearly minimum social cost and a payment algorithm to determine payments for all participants. Moreover, we extend the problem to a
more complex case in which the Quality of sensing Data (QoD) of each vehicle is taken into consideration. For this problem, we
propose a QoD-aware incentive mechanism, which consists of a QoD-aware winning-bid selection algorithm and a QoD-aware
payment determination algorithm. We prove that the proposed incentive mechanisms have truthfulness, individual rationality and
computational efficiency. Moreover, we analyze the approximation ratios of the winning-bid selection algorithms. The simulations,
based on a real vehicle trace, also demonstrate the significant performances of our incentive mechanisms.
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1 INTRODUCTION

IN recent years, vehicles have been equipped with more
and more components that can provide a better user

experience such as wireless network interfaces, event data
recorders, vehicular computers, etc. Vehicles that carry these
components can be considered programmable and powerful
mobile sensors which are able to communicate with the In-
ternet and with each another. Furthermore, they move along
roads day after day, and thus have the potential to collect
data and permit the enabling of numerous novel applica-
tions such as traffic management [2], mobile advertising
[3], [4], environment monitoring [5], [6], etc. All of these
applications can be formalized as outsourcing location-
based sensing tasks to mobile vehicles, which are also called
vehicle-based crowdsensing [7], [8]. Roughly speaking, vehicle-
based crowdsensing involves a platform that receives task
requests from platform users and dispatches sensing tasks
to mobile vehicles that are willing to serve.

Stimulating enough vehicles to participate in the crowd-
sensing is one of the most critical issues since it determines
whether the crowdsensing can provide adequate sensing
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quality. While performing sensing tasks, participants may
consume some resources, such as battery, storage, cpu, etc.,
and may even suffer threats to their privacy [9]–[11]. These
factors could discourage them from participating in crowd-
sensing unless they receive sufficient rewards to compensate
for the expenditures and the risks. Hence, an incentive
mechanism that determines which participants should be
recruited and how much reward should be paid to each
of them is necessary. However, what makes the incentive
mechanism design highly complicated is that a participant
might strategically claim a higher cost than the real one to
increase his/her payoff. Additionally, the mechanism also
needs to minimize the social cost (i.e., the total sensing cost)
and ensure the successful probability of performing tasks,
which all contribute to the challenge.

In this paper, we focus on the incentive mechanism
design for vehicle-based, nondeterministic crowdsensing.
Consider a typical vehicle-based, nondeterministic crowd-
sensing system like [8], which consists of a platform, several
platform users, and many mobile vehicles. The platform
receives the sensing tasks associated with some Places of
Interest (PoIs) from the platform users. The vehicles move
along streets and can communicate with the platform via
road-side infrastructures or cellular networks so that the
platform can select vehicles to perform the sensing tasks.
In general, these tasks are associated with different PoIs.
Vehicles might be selected to perform a task only when they
pass by the corresponding PoI, as illustrated in Fig. 1. Real
vehicular trace analysis has shown that the mobile trajectory
of each vehicle in real applications is nondeterministic [3],
[8], [12]–[14]. Therefore, it is a probabilistic event that each
vehicle will pass by a PoI and will perform the related task
(i.e., covers this task). Due to this nondeterminacy, the plat-
form user will require that the probability of each task being
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Fig. 1. An example of vehicle-based, nondeterministic crowdsensing:
four vehicles move on their possible trajectories, pass by several PoIs,
and collect sensing data during the time interval.

performed successfully is no less than a specified threshold
to guarantee the total sensing quality of the crowdsensing.
The platform, therefore, needs to stimulate enough vehicles
to participate in the crowdsensing by using an incentive
mechanism. This incentive mechanism should consider the
truthfulness, individual rationality, computational efficien-
cy, minimum social cost, and the constraints of vehicles’
possible mobile trajectories simultaneously.

Currently, there have been many incentive mechanism-
s designed for crowdsensing/crowdsourcing [15]–[33]. In
[15], Yang et al. design two incentive mechanisms, CCM
and UCM, to maximize the utility of the crowdsourcer. They
build the incentive mechanisms based on Stackelberg game
and reverse auction, respectively. In [16], Zhao et al. propose
an online incentive mechanism to maximize the utility of the
crowdsourcer within a given budget. In [17], Wei et al. tend
to stimulate both workers and crowdsourcers to participate
in the dynamic mobile crowdsensing. They design a general
incentive mechanism framework based on double auction
to ensure the budget balance. In [24], Feng et al. design
a social cost efficient incentive mechanism, TRAC, for the
location-aware collaborative crowdsensing. In TRAC, each
mobile user can perform a few location-related tasks and
multiple users are stimulated to cooperatively perform a
group of tasks. However, all of these incentive mechanisms
only involve deterministic crowdsensing in which each user
is assumed to perform a task either with a probability of
100% or with a zero probability. In contrast, we focus on the
nondeterministic crowdsensing where tasks are performed
by each vehicle/user with different probabilities from zero
to 100%. Such a nondeterministic crowdsensing scenario is
more consistent with the real world. Nevertheless, it will
result in a non-integer set cover problem with non-linear
constraints. The aforementioned incentive mechanisms for
deterministic crowdsensing are not competent for this novel
nondeterministic crowdsensing.

In this paper, we design a truthful, reverse-auction-
based incentive mechanism to meet the requirements of our
scenario. Since our mechanism uses a similar process for
each platform user, we will only consider the scenario that
consists of a single platform user. First, the platform receives
the tasks, probability thresholds, and the time intervals
from the platform user. It then sends them to the vehicles
registered in the platform. After that, the vehicles reply
with bids that contain the tasks on their possible trajectories
and the corresponding costs. Next, the platform decides
which bids should be selected to minimize the social cost,
while ensuring that the joint probability of each task being
successfully performed is no less than the given threshold.
The platform also determines a payment for each bid in
order to guarantee that each vehicle will report the real

costs (i.e. the truthfulness) and that the payoff of each bid
is non-negative (i.e. the individual rationality). Finally, the
platform will notify the vehicles of their winning bids, pay
the vehicles after receiving sensing data from them, charge
the platform user for the payments, and send the platform
the sensing data. In summary, the incentive mechanism
mainly consists of a winning-bid selection algorithm and
a payment determination algorithm. Indeed, the designed
incentive mechanism can be applied in many fields in real
life, such as environment and noise monitoring [5], [6],
crowd labeling [19], [34], social networks [35] and so on.

We highlight the main contributions as follows:

• We design a reverse-auction-based incentive mecha-
nism for vehicle-based, nondeterministic crowdsens-
ing. To the best of our knowledge, this is the first
work on the crowdsensing incentive mechanism de-
sign that takes into consideration truthfulness, in-
dividual rationality, computational efficiency, social
cost efficiency, and the nondeterministic crowdsens-
ing scenario, where each task is performed with a
joint probability, simultaneously.

• We prove that the winning-bid selection problem
in our scenario is NP-hard since it leads to a non-
trivial set cover problem with non-linear constraints.
To solve the problem efficiently, we propose a nearly
optimal winning-bid selection algorithm and analyze
the approximation ratio.

• We propose an algorithm to determine the payments
for the winning bids and theoretically prove that
these payments can ensure the truthfulness and in-
dividual rationality of the mechanism.

• We extend the incentive mechanism design problem
to a case where the Quality of Data (QoD) is taken
into consideration. We propose a QoD-aware incen-
tive mechanism consisting of a QoD-aware winning-
bid selection algorithm and payment determination
algorithm. We prove that the QoD-aware incentive
mechanism is truthful and individually rational.
Moreover, we analyze the approximation ratio of the
QoD-aware winning-bid selection algorithm.

• We conduct extensive simulations on a real vehicle
trace to demonstrate the significant performances of
the proposed incentive mechanisms.

The rest of the paper is organized as follows. In Section 2,
we introduce the system model and the problem. Then, we
describe the detailed design of our mechanism and the relat-
ed extension in Sections 3 and 4, respectively. The theoretical
analysis and the evaluation of the incentive mechanisms are
presented in Sections 5 and 6, respectively. After reviewing
the related work in Section 7, we finally conclude the paper
in Section 8.

2 SYSTEM MODEL AND PROBLEM

2.1 System Model
We consider a vehicle-based, nondeterministic crowd-

sensing system which consists of a platform, several platfor-
m users, and many vehicles. The platform accepts sensing
requests from platform users who connect to the platform
via Internet and negotiates with the vehicles either via cel-
lular networks or road-side infrastructures [36]–[39], which
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are left up to their preference. The platform will pay the
rewards to vehicles after receiving data from them and will
charge the platform users for the payments.

The system might contain several platform users. Since
the sensing tasks for different platform users are distinct, the
submitted bids are also separate. Here, the bid submitted by
each vehicle indicates the cost of performing one platform
user’s sensing tasks, instead of the cost of performing all
platform users’ tasks on this trajectory. For the simplicity of
descriptions, we only consider one platform user, and we let the
platform conduct the same operations for other platform users in
the practical scenario. The platform user wants to collect data
(e.g., traffic congestion, noise pollution, air quality, etc.) from
m PoIs which are distributed in different streets. Hence, it
produces m PoI-related sensing tasks. These sensing tasks
are denoted as a task set S = {s1, s2, ..., sm} in which
si is the i-th task (1 ≤ i ≤ m). Since the sensing data is
time-sensitive, the platform user requires that the tasks are
performed within a time interval [t1, t2]. The sensing data
is meaningful only when the tasks are completed within the
time interval [t1, t2]. Without Loss Of Generality (WLOG),
we assume that t1 = 0 and t2 = D. Since each task
is performed with a probability in the nondeterministic
crowdsensing, the platform user demands that the proba-
bility of each task in S being successfully performed be no
less than a threshold η.

The vehicle-based, nondeterministic crowdsensing sys-
tem also includes n mobile vehicles, denoted as V =
{v1, v2, ..., vn}. These mobile vehicles move around differ-
ent streets so that they might cover and perform the sensing
tasks in S . In general, the mobile behaviors of vehicles are
uncertain. This characteristic has been captured by many
real vehicular traces [3], [8], [12]–[14], [38]. Based on this
observation, we assume that each vehicle has multiple pos-
sible trajectories and that each trajectory has a probability.
More specifically, vehicle vj has lj possible trajectories. Each
trajectory might cover a group of tasks. The tasks covered
by vehicle vj are denoted as {Sj

1, S
j
2, ..., S

j
lj
} in which Sj

k is
the set of tasks covered by the k-th trajectory (1 ≤ k ≤ lj).
Since the execution time of tasks is much smaller than
the driving time of vehicles and each vehicle can obtain
more extra income by performing more sensing tasks on
a trajectory, each vehicle is always willing to perform all
sensing tasks on its one driving trajectory. That is, the tasks
in Sj

k, covered by the same trajectory, will be performed as a
whole which means that either all of the tasks are performed
or none of them are. Moreover, the probability of tasks in
Sj
k being performed is the probability of the k-th trajectory,

denoted by qjk. When a vehicle performs sensing tasks, it
will consume battery, storage, cpu, and so on, which will
result in a cost. The cost of vj performing all tasks in Sj

k is
denoted by cjk.

In the above system, the vehicles are deemed as common
office workers. That is, the primary goal of the vehicles
is to drive to their destinations, and the secondary goal
is to perform some sensing tasks on their trajectories. All
vehicles may submit bids for their possible trajectories.
However, they select the trajectories according to the prac-
tical situation (e.g., traffic condition) at that time, instead of
selecting the trajectories that maximize their benefits. Here,

2. Bids 3. Winning bids 4. Data 

Vehicles

1. Sensing tasks

&time interval
5. Payment

Platform

Fig. 2. The interactions between the platform and vehicles.

we assume that the platform can derive the value of qjk
from vj ’s historic movement records. This assumption is
reasonable since the platform can trace the daily movements
of the vehicles, and therefore, the platform can derive the
trajectories and probabilities of vehicles. We also assume
that the time it takes each vehicle to perform a task can be
ignored since it is far less than that of the vehicle visiting a
PoI in magnitudes. Here, we only consider the tasks that
can be completed before D. If a trajectory covers some
extra tasks whose performing times are beyond D, we will
deem that these extra tasks cannot be performed by the
corresponding vehicle.

2.2 Reverse-Auction-Based Incentive Mechanism
In the vehicle-based, nondeterministic crowdsensing

system, the platform adopts a reverse-auction-based incen-
tive mechanism to select participants and to determine the
payments for them after receiving the request from the plat-
form user. Since the tasks on a trajectory will be performed
together, the mechanism is actually based on a reverse
and combinatorial auction. The whole incentive mechanism
mainly includes five rounds of interactions between the
platform and vehicles, as illustrated in Fig. 2:

1) The platform announces all PoI-related sensing
tasks in S as well as D to the vehicles in V after
receiving from the platform user.

2) Each vehicle vj will reply to the platform with
a set of bids, each of which is a tasks-bid pair
βj
k=(Sj

k, b
j
k), in which Sj

k is the set of tasks covered
by vj ’s k-th trajectory and bjk is the cost claimed by
vj for performing all tasks in Sj

k. Here, the βj
k is

valid only when vj moves along the k-th trajectory
and performs the tasks in βj

k (Note that, due to the
nondeterminacy of vj ’s mobile behaviors, it cannot
guarantee that the claimed tasks in βj

k will be per-
formed indeed).

3) After receiving replies from all vehicles in V , the
platform selects a set of winning bids, denoted by Φ,
from the received bids, denoted by Γ, to guarantee
that all tasks in S are performed with a probability
no less than a specified threshold η. A bid βj

k ∈ Φ
indicates that vj will be selected to perform the
tasks in Sj

k. After determining Φ, the platform will
notify the vehicles of the corresponding winning
bids. Also, the platform will determine the payment
pjk for each bid βj

k in Φ.
4) After receiving the winning bids, vehicle vj will

perform the tasks in each winning bid βj
k until D,

when vj moves along the k-th trajectory. Moreover,
vj will send the results back to the platform after it
completes all tasks in Sj

k.



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. , NO. , 2018 4

5) The platform will pay vehicle vj with the money pjk
for the bid βj

k after receiving the results of Sj
k.

Note that the payment should be fair and the payoff of a
bid βj

k, which is defined as pjk−c
j
k, should be reasonable to

attract more vehicles. However, the platform only knows
the claimed cost bjk instead of the real cost cjk that vj
spends on performing Sj

k. In fact, cjk is known to nobody
except vj itself. vj may strategically manipulate bjk to get a
higher payoff. Such strategic manipulation might force the
platform and the platform user to pay extra money. Thus,
the whole mechanism needs to ensure that each vehicle will
not manipulate its bids, i.e., the truthfulness.

2.3 Problem
In this subsection, we formalize the incentive mechanism

design problem for the above vehicle-based, nondetermin-
istic crowdsensing system. The mechanism design problem
mainly consists of two subproblems: the winning-bid selec-
tion problem and the payment determination problem.

The optimization objective of the winning-bid selection
problem is to minimize social cost which is defined as the
sum of the winning bids’ real costs. The metric of social
cost indicates the total costs of the whole system performing
sensing tasks, which is also widely concerned in other works
[12], [24], [40]. Additionally, the winning-bid selection prob-
lem needs to meet the constraint that the joint probability
of each task being successfully performed by the related
vehicles is no less than the threshold η (0<η < 1). For this
constraint, we denote the joint probability of a task si being
performed successfully as ρΦi and calculate it as follows:

ρΦi = 1−
∏

βj
k∈Φ∧si∈Sj

k
(1− qjk).

The Minimum-social-Cost winning-Bid Selection (MCB-
S) problem is formalized as follows:

min C(Φ) =
∑

βj
k∈Φ

cjk (1)

s.t. Φ ⊆ Γ, (2)

ρΦi ≥ η, 1 ≤ i ≤ m (3)
Here, (3) implies that the successful performing probability

of each task is no less than the threshold. Additionally, we
assume that there always exists at least one feasible solution
for this problem. This assumption is reasonable since we can
add more vehicles to V until the problem is solvable.

Second, the payment determination problem is to com-
pute payments for winning bids. The payments should en-
sure that the vehicles are willing to participate in the crowd-
sensing and that they will not manipulate their claimed
costs. Thus, the payment computation needs to make the
whole incentive mechanism satisfy the following properties:

• Individual Rationality. Individual rationality indi-
cates that each winner should be paid with a value
no less than its real cost, which implies that each
winner’s payoff is not negative. Due to the non-
negative payoff, each winner is willing to participate
in the crowdsensing.

• Truthfulness. Truthfulness means that no bidder can
improve his or her payoff by submitting different
costs from the true values. According to Myerson’s
Theorem [41], a mechanism is truthful if and only if:

TABLE 1
Frequently used notations

Notations Description
S,V the sets of tasks and vehicles, respectively.
i, j, k the indexes for tasks, vehicles and trajecto-

ries, respectively.
Sj
k the set of tasks covered by vj ’s k-th trajectory.

qjk the probability of vj ’s k-th trajectory.
cjk the real cost that vj spends on performing Sj

k.
bjk the claimed cost (i.e., bid) for vj on Sj

k.
βj
k the bid of vj , containing Sj

k and bjk.
pjk the payment for the bid βj

k.
Γ, Γ−β

j
k

the set of bids received by the platform, and
the set of bids except βj

k.
Φ, Φ′ the set of winning bids selected from Γ and

Γ−β
j
k

, respectively.

ρΦi the joint probability of si being successfully
performed based on the winning bid set Φ.

η the threshold of the joint probability.

the winner selection rule is monotone and each winner is
paid with a critical value. The monotonicity indicates
that if vj wins the bid βj

k when it claims a cost bjk
for performing Sj

k, it will still win the bid when
claiming a smaller cost b̂jk (≤ bjk). The critical value
is the maximum bid value for a bid to win.

Additionally, the frequently used notations in this paper
are summarized in Table 1.

3 DESIGN OF INCENTIVE MECHANISM
In this section, we propose a reverse-auction-based in-

centive mechanism consisting of solutions to the MCBS
problem and the payment determination problem. We first
analyze the NP-hardness of the MCBS problem, and then
propose an approximation algorithm to resolve MCBS ef-
ficiently. Next, we propose another algorithm to compute
the payments for all winning bids, which will induce the
vehicles to report their costs truthfully.

3.1 NP-Hardness of MCBS
First, we analyze the complexity of the MCBS problem

and derive the following theorem.
Theorem 1. The MCBS problem is NP-hard.

Proof: To prove the NP-hardness of the MCBS problem,
we first prove that a special case of MCBS, where the
probabilities of all trajectories are same (i.e., qjk = η for
∀j ∈ [1, n] and k ∈ [1, lj ]), is NP-hard. Since the constraint
(3) can always be met, the special MCBS problem is actually
to select a set of bids with least social cost to cover S .
Now, we introduce a well-known NP-hard problem, i.e.,
minimum weighted set cover (MWSC) problem. Given a
set of elements S = {s1, · · · , si, · · · , sm} and the collection
of some subsets Γ= {S1, · · · , Sj , · · · , Sn} in which Sj ⊆S
for ∀j ∈ [1, n] and Sj has a weight cj , find a least weight
collection Φ of subsets from Γ such that Φ covers all ele-
ments in S . By mapping Sj and cj in MWSC to Sj

k and
cjk in the special case of MCBS, respectively, we reduce the
MWSC problem to the special MCBS problem in constant
time. Obviously, the MWSC problem is actually equivalent
to the special case of MCBS. Therefore, the special MCBS
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problem is NP-hard. Further, the general MCBS problem is
at least NP-hard and the theorem holds. �

Here, we emphasize that the MCBS problem is actually
a non-trivial set cover problem. This is because the objective
function of this problem is not an integer function. Fur-
thermore, the constraint of this problem is a group of non-
linear real functions. Owing to these two characteristics, the
set cover approximation algorithms in [12], [15], [24], [42]
cannot be utilized directly to solve the MCBS problem.

3.2 Winning-Bid Selection Algorithm
Since the MCBS problem is NP-hard, we propose a

winning-bid selection approximation algorithm to solve it.
Here, we first assume that all vehicles report their costs truthful-
ly, i.e., bjk = cjk. We will prove that this truthful assumption
is reasonable and correct in the next section.

The approximation algorithm is based on a utility func-
tion and the marginal contributions of all bids in Γ. The
utility function U(Φ) is the sum of the probabilities that all
tasks in S are successfully performed with when selecting
all bids in Φ, defined as follows:

U(Φ) ,
m∑
i=1

min{ρΦi , η}. (4)

The marginal contribution function of a bid βj
k ∈ Γ−Φ is the

increased utility after adding βj
k into Φ, defined as follows:

Uβj
k
(Φ) , U(Φ ∪ {βj

k})− U(Φ)

=
∑

si∈Sj
k

(min{ρΦ∪{βj
k}

i , η} −min{ρΦi , η}). (5)

The approximation algorithm mainly contains an iter-
ative bid selection process. In each round of iteration, we
greedily select the bid whose Marginal contribution Per Cost
(MPC) is the maximal to expand the winning set until the
utility of the whole winning set reaches the maximum value.
The detailed algorithm is presented in Algorithm 1. At the
beginning, the winning-bid set Φ is initialized as ∅ in Step
1. From Step 2 to Step 7, the greedy strategy, based on the
utility function and the marginal contribution function, is
adopted to select the winning bids in Step 3.

Here, we point out that although the basic formalism
of our algorithm looks similar to the traditional set cover
approximation algorithms (e.g., [15], [24]), our algorithm
is intrinsically different from them. In general, the greedy
criterion of the traditional algorithms is directly the value
of the optimization objective defined in the problem. In
contrast, our greedy criterion is the special utility function
that we build for MCBS. This utility function not only con-
tains the optimization objective of the MCBS problem, but
also takes the non-linear constraint (3) into consideration.
Furthermore, unlike existing algorithms that only deal with
the integer set cover problems, our algorithm can solve
the set cover problem with a real optimization objective
function, such as MCBS.

The correctness of Algorithm 1 is supported by the
following theorem.

Theorem 2. Algorithm 1 can always produce a feasible
solution if MCBS is solvable.

Proof: If MCBS is solvable, selecting all bids in Γ will
meet the constraints of MCBS. That is to say, Γ is at least a

Algorithm 1 Winning-Bid Selection Algorithm

Input: Γ,m, η, {qjk|S
j
k ∈ Γ} before D

Output: winning bid set Φ, social cost C(Φ)
1: Φ← ∅, U(Φ)← 0, C(Φ)← 0
2: while U(Φ) < mη do

3: Select a bid βj
k from Γ− Φ to maximize

U
β
j
k

(Φ)

bjk
4: U(Φ)← U(Φ) + Uβj

k
(Φ)

5: Φ← Φ ∪ {βj
k}

6: C(Φ)← C(Φ) + bjk
7: return Φ, C(Φ)

feasible solution, i.e., ρΓi ≥ η for ∀si ∈ S , and U(Γ) = mη.
Hence, Algorithm 1 will terminate for sure, either before or
when all bids in Γ are added into Φ. When Algorithm 1
terminates, U(Φ) =mη, indicating that min{ρΦi , η}= η for
∀si ∈ S . Then, ρΦi ≥ η for ∀si ∈ S , meeting the constraint
(3). Therefore, Algorithm 1 produces a feasible solution for
MCBS after it terminates, and the theorem holds. �

3.3 Payment Determination Algorithm
Besides the MCBS problem, the incentive mechanism

also needs to solve the payment determination problem,
i.e., it must decide how much to pay for each bid that is
selected by Algorithm 1 while ensuring that the mechanism
is truthful and individually rational.

To guarantee the truthfulness of the mechanism, the pay-
ment pjk for a winning bid βj

k should depend on other bids
in Γ instead of βj

k itself. Therefore we first remove βj
k from Γ

to get a new bid set, denoted by Γ−βj
k

. Based on Γ−βj
k

, we re-
select a new winning-bid set that is denoted by Φ′. Assume
that in the q-th round of iteration of this new selection, Φ′

q is
the winning set, and the winning bid βj′

k′ ∈ Φ′
q . If βj

k wants
to win in the q-th round, the related cost must be no more
than the value bj

′

k′ · Uβj
k
(Φ′

q−1)/Uβj′
k′
(Φ′

q−1). Otherwise, the

MPC of βj
k will not be the maximal. We therefore determine

pjk based on this critical value. To guarantee the individual
rationality, the payment pjk must be no less than the real cost
cjk. Hence, we set pjk as the maximum critical value:

pjk = max{
Uβj

k
(Φ′

q−1)

U
βj′
k′
(Φ′

q−1)
· bj

′

k′ |q = 1, 2, ...}. (6)

The detailed process is presented in Algorithm 2. The
algorithm traverses all bids in Γ to decide the payment for
each bid in Step 1. In Step 2, we initialize the payment pjk for
βj
k as 0 and the new winning set Φ′ as ∅. If βj

k is a winning
bid in Step 3, we expand Φ′ according to the greedy strategy
that is also used in Algorithm 1, and we set the payment as
the maximal critical value in Steps 4-9. Note that we use an
equivalent expression instead of (6) in Step 8.

3.4 A Walk-Through Example
To better understand the two algorithms in our incentive

mechanism, we use an example in Fig. 3 to show the
processes of Algorithm 1 and Algorithm 2. In the example,
m = 4, η = 0.6, mη = 2.4, q11 = 0.35, q12 = 0.4, q21 = 0.4,
q22=0.45, q31=0.5, and Γ is marked in Fig. 3. Algorithm 1 is
conducted as follows:
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Algorithm 2 Payment Determination Algorithm

Input: Γ,Φ,m, η, {qjk|S
j
k ∈ Γ} before D

Output: the payment pjk for ∀j ∈ [1, n] and ∀k ∈ [1, lj ]
1: for all βj

k ∈ Γ do
2: Φ′ ← ∅, pjk ← 0
3: if βj

k ∈ Φ then
4: while U(Φ′) < mη do

5: Select βj′

k′ from Γ−βj
k
− Φ′ to maximize

U
β
j′
k′

(Φ′)

bj
′

k′

6: U(Φ′)← U(Φ′) + U
βj′
k′
(Φ′)

7: Φ′ ← Φ′ ∪ {βj′

k′}

8: pjk ← max{pjk,
U

β
j
k

(Φ′)

U
β
j′
k′

(Φ′) · b
j′

k′}

9: return pjk for ∀j ∈ [1, n] and ∀k ∈ [1, lj ]

• First round: Φ=∅, U(Φ)=0, C(Φ)=0.
• Second round: Due to U(Φ)=0 <2.4, we compute

U
β1
1
(Φ)

b11
=0.26,

U
β1
2
(Φ)

b12
=0.27,

U
β2
1
(Φ)

b21
= 0.4,

U
β2
2
(Φ)

b22
=

0.34,
U

β3
1
(Φ)

b31
= 0.5. Since

U
β3
1
(Φ)

b31
is the maximal, we

update Φ = {β3
1}, U(Φ) = 1.5, C(Φ) = 3.

• Third round: Since U(Φ)=1.5 <2.4, we continue to

compute
U

β1
1
(Φ)

b11
= 0.14,

U
β1
2
(Φ)

b12
= 0.07,

U
β2
1
(Φ)

b21
= 0.2,

U
β2
2
(Φ)

b22
=0.16. As

U
β2
1
(Φ)

b21
is the maximal, we update

Φ = {β3
1 , β

2
1}, U(Φ) = 2.1, C(Φ) = 6.

• Fourth round: Owing to U(Φ) = 2.1 < 2.4, we

compute
U

β1
1
(Φ)

b11
=0.08,

U
β1
2
(Φ)

b12
=0.03,

U
β2
2
(Φ)

b22
=0.08.

WLOG, we select β1
1 as the winner and update

Φ = {β3
1 , β

2
1 , β

1
1}, U(Φ) = 2.4, C(Φ) = 10. Now

U(Φ) = mη and Algorithm 1 terminates.

The above calculation shows that the set of winning bids
is Φ = {β3

1 , β
2
1 , β

1
1}. Based on this result, Algorithm 2 is

conducted as follows:

• First round: Since β1
1 is a winning bid, Γ−β1

1
=

{β1
2 , β

2
1 , β

2
2 , β

3
1}. In the rounds of iteration from Step

4 to Step 9, the selected bids are β3
1 , β

2
1 , β

2
2 , in turn.

Accordingly,
U

β1
1
(∅)

U
β3
1
(∅) · b

3
1 =2.1,

U
β1
1
({β3

1})
U

β2
1
({β3

1})
· b21 =2.75,

U
β1
1
({β3

1 ,β
2
1})

U
β2
2
({β3

1 ,β
2
1})
· b22 = 4. Hence, p11 = 4.

• Second round: p12 = 0, as β1
2 /∈ Φ.

• Third round: Since β2
1 ∈ Φ, Γ−β2

1
= {β1

1 , β
1
2 , β

2
2 , β

3
1}.

In the computations of Steps 4-9, the selected bids are

β3
1 , β2

2 , β1
1 , in turn. Then

U
β2
1
(∅)

U
β3
1
(∅) · b

3
1 = 2.4,

U
β2
1
({β3

1})
U

β2
2
({β3

1})
·

b22 = 3.69,
U

β2
1
({β3

1 ,β
2
2})

U
β1
1
({β3

1 ,β
2
2})
· b11 = 4. Hence, p21 = 4.

• Fourth round: As β2
2 is not a winning bid, p22 = 0.

• Fifth round: Since β3
1 is a winning bid, Γ−β3

1
=

{β1
1 , β

1
2 , β

2
1 , β

2
2}. In the rounds of iteration from Step

4 to Step 9, the selected bids are β2
1 , β2

2 , β1
2 , in turn.

Accordingly,
U

β3
1
(∅)

U
β2
1
(∅) · b

2
1 = 3.75,

U
β3
1
({β2

1})
U

β2
2
({β2

1})
· b22 = 4.24,

U
β3
1
({β2

1 ,β
2
2})

U
β1
2
({β2

1 ,β
2
2})
· b12 = 3. Hence, p31 = 4.24.

We can find that the payment for each winning bid is no
less than the related cost. Then v1 and v2 will perform the
tasks successfully and will send the sensing data back to the
platform. Hence, the platform only pays for β1

1 and β2
1 (as

shown in Fig. 4). In this example, since v3 does not perform
the tasks and send data back, it gets nothing.

S1 S2

S3

S2 S3 S4

S1 S2
S2 S3

S4

S1 S3

S4

V3

V1 V2

Fig. 3. An example: v1, v2, v3 send their bids to the platform.
Sensing dataSensing data

S1
S2

S3

S2 S3 S4

S1 S2

S2 S3

S4

S1 S3

S4

V3

V1 V2

Fig. 4. The result of the example: v1 and v2 perform their winning bids
and get the payments after sending the sensing data back; v3 gets
nothing since it does not perform the tasks in the winning bid β3

1 .

4 QOD-AWARE INCENTIVE MECHANISM
In this section, we extend our problem to a case in which

the Quality of Data (QoD) is taken into consideration. We
first introduce the extended problem, where we integrate
the constraint (3) and the QoD constraint. After that, we
propose the QoD-aware incentive mechanism consisting of
a winning-bid selection algorithm and a payment determi-
nation algorithm for the extended problem.

4.1 The Extended Problem
In addition to the successful probability, the QoD is also

a major factor that needs to be considered in mechanism
design, as pointed out by [20] [21]. The QoD indicates
the usability of the sensing data. It might be affected by
various factors including poor sensor quality, noise, lack
of sensor calibration, and so forth. We consider a general
class of crowdsensing applications in which the availability
and preciseness of services significantly depend on the QoD,
e.g., noise pollution monitoring and air quality monitoring.
In these cases, the qualities of the sensing data collected by
vehicles are different, and the platform user requires that
the total quality of the received data for each task be no
less than a threshold. More specifically, we assume that the
platform not only requires that the probability of each task
being successfully performed be no less than η, but also that
the QoD for task si be no less than ξi. Additionally, just
like [21], we assume that the QoD profile of the vehicles,
denoted by R = {r1, r2, ..., rn}, is known to the platform
since the platform maintains a historical record of vehicles’
QoD profile R. R can be calculated from the ground truth
data or by utilizing algorithms such as those proposed in
[20], [43]–[45]. Thus, the platform will receive a request
including S, η, {ξ1, ξ2, ..., ξm} from the user.
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Algorithm 3 QoD-Aware Winning-Bid Selection Algorithm

Input: Γ,m, η,R, {ξ1, ξ2, ..., ξm}, {qjk|S
j
k ∈ Γ} before D

Output: winning bid set Φ, social cost C(Φ)
1: Φ← ∅, G(Φ)← 0, C(Φ)← 0
2: while G(Φ) < mη +

∑m
i=1 ξi do

3: Select a bid βj
k from Γ− Φ to maximize

G
β
j
k

(Φ)

bjk
4: G(Φ)← G(Φ) +Gβj

k
(Φ)

5: Φ← Φ ∪ {βj
k}

6: C(Φ)← C(Φ) + bjk
7: return Φ, C(Φ)

To design a truthful incentive mechanism for this sce-
nario, we need to solve both the winning-bid selection prob-
lem and the payment determination problem. In addition to
the probability constraints, the winning-bid selection must
also meet the QoD requirements. As vehicle vj ∈Φ performs
each task in Sj

k with a probability of qjk, we can calculate the
QoD expectation value µΦ

i of task si as follows:

µΦ
i =

∑
βj
k∈Φ∧si∈Sj

k

(rjq
j
k). (7)

In fact, the definition of QoD expectation value µΦ
i is de-

rived from the real-world example, e.g., crowd labeling [19],
[34], where the sum of expectation values outputted by all
winning vehicles denotes the final expected QoD. Then, we
can formalize the QoD-MCBS problem as follows:

min C(Φ) =
∑

βj
k∈Φ

cjk (8)

s.t. Φ ⊆ Γ (9)

ρΦi ≥ η, 1 ≤ i ≤ m (10)

µΦ
i ≥ ξi, 1 ≤ i ≤ m (11)

This QoD-MCBS problem can be simplified to MCBS
when we let rj ≥max{ξ1, · · · , ξm} for ∀1 ≤ j ≤ n. Hence,
QoD-MCBS is also NP-hard and an approximation algorith-
m is needed to solve this problem in polynomial time.

4.2 QoD-Aware Winning-Bid Selection Algorithm

To design an appropriate approximation algorithm, we
first propose a QoD utility function and a QoD marginal
contribution function. The QoD utility function F (Φ), which
is the sum of the QoD for all tasks, is defined as follows:

F (Φ) ,
m∑
i=1

min{µΦ
i , ξi}. (12)

Based on F (Φ), the QoD marginal contribution of a bid
βj
k ∈Γ−Φ is the increased QoD utility after adding βj

k into
Φ, defined as follows:
Fβj

k
(Φ) , F (Φ ∪ {βj

k})− F (Φ)

=
∑

si∈Sj
k

(min{µΦ∪{βj
k}

i , ξi}−min{µΦ
i , ξi}). (13)

To combine the constraints (10) and (11), we define the
combination utility function G(Φ) as follows:

G(Φ) = U(Φ) + F (Φ), (14)
The corresponding combination marginal contribution is

Gβj
k
(Φ) = Uβj

k
(Φ) + Fβj

k
(Φ). (15)

Algorithm 4 QoD-aware Payment Determination Algorithm

Input: Γ,Φ,m, η,R, {ξ1, ξ2, ..., ξm}, {qjk|S
j
k ∈ Γ} before D

Output: the payment pjk for ∀j ∈ [1, n] and ∀k ∈ [1, lj ]
1: for all βj

k ∈ Γ do
2: Φ′ ← ∅, pjk ← 0
3: if βj

k ∈ Φ then
4: while G(Φ′) < mη +

∑m
i=1 ξi do

5: Select βj′

k′ from Γ−βj
k
− Φ′ to maximize

G
β
j′
k′

(Φ′)

bj
′

k′

6: G(Φ′)← G(Φ′) +G
βj′
k′
(Φ′)

7: Φ′ ← Φ′ ∪ {βj′

k′}

8: pjk ← max{pjk,
G

β
j
k

(Φ′)

G
β
j′
k′

(Φ′) · b
j′

k′}

9: return pjk for ∀j ∈ [1, n] and ∀k ∈ [1, lj ]

Based on the combination utility function and combina-
tion marginal contribution function, we propose the QoD-
aware winning-bid selection algorithm in Algorithm 3. Sim-
ilar to Algorithm 1, Algorithm 3 utilizes a greedy process
in which the bid, whose combination MPC is the largest
in each round of iteration, is added into the winning-bid
set until the utility function achieves the maximum value
mη +

∑m
i=1 ξi. We prove the correctness of Algorithm 3 in

the following theorem.
Theorem 3. Algorithm 3 can always produce a feasible

solution if QoD-MCBS is solvable.

Proof: Similar to Theorem 2, Γ is at least a feasible
solution. Hence, Algorithm 3 will terminate for sure either
before or after adding all bids in Γ into Φ. When it termi-
nates, G(Φ) = U(Φ) + F (Φ) = mη +

∑m
i=1 ξi. According to

(4) and (12), U(Φ) ≤ mη and F (Φ) ≤
∑m

i=1 ξi. Hence, when
Algorithm 3 terminates, U(Φ) = mη and F (Φ) =

∑m
i=1 ξi,

i.e. ρΦi ≥ η and µΦ
i ≥ ξi for ∀si∈S . The theorem holds. �

4.3 QoD-Aware Payment Determination Algorithm
To attract more vehicles and prevent them from ma-

nipulating the claimed costs, we need to decide a proper
payment for each bid that is selected by Algorithm 3.

Actually, the idea of QoD-aware payment determination
is similar to the basic payment determination in Section 3.3.
We set the payment for each winning bid as the maximum
critical value, i.e.,

pjk = max{
Gβj

k
(Φ′

q−1)

G
βj′
k′
(Φ′

q−1)
· bj

′

k′ |q = 1, 2, ...}, (16)

where the implications of the notations are the same as (6).
The detailed computation is presented in Algorithm 4.

The algorithm first checks whether a bid βj
k is winning

in Step 3 and then recalculates the winning set when βj
k

is excluded from Γ from Steps 4-9. For the winning bids,
the payments are the maximal critical values. For the losing
bids, the payments are exactly 0.

5 MECHANISM ANALYSIS
In this section, we prove that both the basic and QoD-

aware incentive mechanisms have the properties of truth-
fulness, individual rationality and computational efficiency.
We also analyze the approximation ratios of Algorithm 1
and Algorithm 3. In each subsection, we first analyze the
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property of the basic incentive mechanism and then analyze
the QoD-aware incentive mechanism based on the related
property of the basic incentive mechanism.

WLOG, we consider the q-th round of iteration in Algo-
rithm 1. In this round, βj

k is the winning bid and is added
into the winning set Φq (a winning subset of Γ). Moreover,
we also consider the q-th round of iteration for the payment
computation of βj

k in Algorithm 2 (See Steps 4-9), in which
the winning set is denoted as Φ′

q (a winning subset of Γ−βj
k

).
Then, we prove the truthfulness and individual rationality
properties as follows.

5.1 Truthfulness
To prove the truthfulness of the mechanisms, we first

give a lemma on the winning set.
Lemma 1. Φt = Φ′

t, for ∀t ∈ [0, q − 1].

Proof: Note that Φt and Φ′
t are the winning sets selected

from Γ and Γ−βj
k

respectively through the same greedy

strategy. Since βj
k is the winner of the q-th round, it must

have not been selected as a winning bid before the q-th
round. Therefore, although Γ = Γ−βj

k
∪ {βj

k}, the winning
bids selected from Γ and Γ−βj

k
before the q-th round are the

same. Hence, the lemma holds. �
Second, we prove that our mechanisms are bid-

monotonic and payment-critical, which implies that the
incentive mechanisms are truthful.
Lemma 2. Algorithm 1 is bid-monotonic.

Proof: Since βj
k wins in the q-th round of iteration of

Algorithm 1, the MPC of βj
k, i.e., Uβj

k
(Φq−1)/b

j
k, is the

maximal in this round, and it is no more than the MPC
values of all bids in Φq−1. Assume that βj

k reports a smaller
cost b̂jk (< bjk). As Uβj

k
(Φq−1)/b

j
k < Uβj

k
(Φq−1)/b̂

j
k, βj

k still
wins in or even before the q-th round according to the
greedy selection rule in Algorithm 1. Lemma 2 holds. �
Lemma 3. The payments determined by Algorithm 2 for all

winning bids are critical.

Proof: Assume that the winning bid βj
k reports a cost b̂jk

instead of bjk. To prove the criticality of the payment pjk, we
need to prove that βj

k will fail if b̂jk > pjk, and that it will win
if b̂jk ≤ pjk.

Case 1: b̂jk > pjk. We consider the q-th round of iteration
in Algorithm 1 and derive that

Uβj
k
(Φq−1)

b̂jk
=

Uβj
k
(Φ′

q−1)

b̂jk
<

Uβj
k
(Φ′

q−1)

pjk
≤

UβJ
K
(Φ′

q−1)

bJK
,

(17)
where βJ

K is a winning bid, so that Φ′
q = Φ′

q−1 ∪ {βJ
K}.

In (17), the first equality depends on Φq−1 = Φ′
q−1 in

Lemma 1 and the last inequality depends on pjk ≥ bJK ·
Uβj

k
(Φ′

q−1)/UβJ
K
(Φ′

q−1) according to (6). Hence, βJ
K is select-

ed as the winner instead of βj
k in the q-th round of iteration.

Moreover, Φq = Φq−1 ∪ {βJ
K} = Φ′

q . Repeating the above
analysis, we can see that βj

k will fail in all rounds of iteration
of Algorithm 1.

Case 2: b̂jk ≤ pjk. WLOG, assume that Algorithm 1 runs
when the input bid set is Γ−βj

k
, which is exactly the process

of computing the payment for βj
k. According to (6), we

assume that pjk = bJK · Uβj
k
(Φq′−1)/UβJ

K
(Φq′−1), where βJ

K

is the winner in the q′-th round of iteration of this process.
Now, we run Algorithm 1 again with the input bid set Γ. We
discuss two subcases of this new process: 1) βj

k wins before
the q′-th round; 2) βj

k does not win before the q′-th round.
In the q′-th round of iteration,

Uβj
k
(Φq′−1)

b̂jk
≥

Uβj
k
(Φq′−1)

pjk
≥

UβJ
K
(Φq′−1)

bJK
. (18)

Therefore, βj
k wins in this round. Synthesizing both subcas-

es, βj
k wins when b̂jk ≤ pjk.

In conclusion, the payments for all winning bids are
critical, and the lemma holds. �
Theorem 4. Our basic incentive mechanism consisting of

Algorithm 1 and Algorithm 2 is truthful.

Proof: According to Myerson’s theorem [41], our incen-
tive mechanism is truthful since the winning-bid selection
rule is monotone (i.e., Lemma 2) and each winning bid is
paid with a critical value (i.e., Lemma 3). �
Theorem 5. Our QoD-aware incentive mechanism consisting

of Algorithm 3 and Algorithm 4 is truthful.

Proof: Despite of the utility function and the termination
threshold, the winning-bid selection methods in Algorithm
1 and Algorithm 3 are the same. Hence, Algorithm 3 is
also bid-monotonic according to Lemma 2. The payment
determination criteria and methods are also the same in
Algorithm 2 and Algorithm 4. Thus the payments deter-
mined by Algorithm 4 for all winning bids are also critical
according to Lemma 3. Then, based on Myerson’s theorem
[41], our QoD-aware incentive mechanism is also truthful.�

5.2 Individual Rationality
In this subsection, we prove the individual rationality of

the incentive mechanisms and have the following theorems:

Theorem 6. Our basic incentive mechanism consisting of
Algorithm 1 and Algorithm 2 is individually rational.

Proof: We assume that βJ
K wins in the q-th round of

iteration of the inner loop (Steps 4-9) in Algorithm 2. Since
βj
k is the winner in the q-th round of Algorithm 1,

UβJ
K
(Φq−1)

bJK
≤

Uβj
k
(Φq−1)

bjk
. (19)

According to (6) and Lemma 1,

bjk ≤
Uβj

k
(Φq−1)

UβJ
K
(Φq−1)

· bJK =
Uβj

k
(Φ′

q−1)

UβJ
K
(Φ′

q−1)
· bJK ≤ pjk. (20)

As each vehicle reports its real cost in the truthful incen-
tive mechanism, we get cjk=bjk. Hence, pjk≥cjk, indicating
that the payoff of βj

k is non-negative. The theorem holds. �
Theorem 7. Our QoD-aware incentive mechanism consisting

of Algorithm 3 and Algorithm 4 is individually rational.

Proof: Since the payment for each winning bid deter-
mined by Algorithm 4 is the maximum critical value in (16),
the QoD-aware incentive mechanism is also individually
rational according to Theorem 6. The theorem holds. �
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5.3 Computational Efficiency
We prove the computational efficiency of the two mech-

anisms in the following theorem.
Theorem 8. The basic and QoD-aware incentive mechanisms

have a polynomial-time computational complexity.

Proof: 1) The basic incentive mechanism is composed of
Algorithms 1 and 2. The computation overhead of Algo-
rithm 1 is dominated by Step 3, which can be denoted by
O(|Sj

k||Γ|). Since Algorithm 1 loops at most |Γ| times, its
computational complexity is denoted by O(|Sj

k||Γ|2). Actu-
ally, since |Sj

k| is much smaller than |Γ|, the computational
complexity of Algorithm 1 can be deemed as O(|Γ|2) for
simplicity. For Algorithm 2, since the outer loop (Step 1)
runs |Γ| times and the complexity of the inner loop (Steps
4-9) is O(|Γ|2), the complexity of Algorithm 2 is O(|Γ|3).

2) The QoD-aware incentive mechanism consists of Al-
gorithms 3 and 4. The computational complexity of Algo-
rithm 3 is the same as that of Algorithm 1, i.e., O(|Γ|2).
Meanwhile, similar to Algorithm 2, the computational com-
plexity of Algorithm 4 is denoted as O(|Γ|3).

Therefore, the theorem holds. �

5.4 Approximation Ratio Analysis
In this subsection, we first analyze the approximation

ratio of Algorithm 1, followed by Algorithm 3.

5.4.1 Approximation Ratio of Algorithm 1
To figure out the approximation ratio of Algorithm 1, we

first analyze the properties of the utility function U(Φ) and
the optimization objective function C(Φ). For simplicity of
description, we define two notations:

π(i|Φ) ,
∏

βj
k∈Φ∧si∈Sj

k

(1− qjk),

U(i|Φ) , min{ρΦi , η}.
In addition, we consider two arbitrary bid sets, Φ1 and Φ2,
Φ1 ⊆ Φ2 ⊆ Γ and a bid βj

k ∈ (Γ− Φ2). Then, we have:
Lemma 4. U(Φ) is an increasing function.

Proof: According to the decreasing property of π(i|Φ), ρΦi
is increasing. Therefore, ρΦ1

i ≤ ρΦ2
i and U(i|Φ1) ≤ U(i|Φ2)

for ∀si ∈ S . Then U(Φ1) ≤ U(Φ2) when Φ1 ⊆ Φ2, which
implies that U(Φ) is increasing. �
Lemma 5. U(Φ) is submodular.

Proof: WLOG, we assume that for two arbitrary bid sets
X and Y , X ⊆ Γ and Y ⊆ Γ. For ∀si ∈ S , we have the
following conclusions:

1) π(i|X ∪ Y ) ≤ π(i|X), π(i|Y ) ≤ π(i|X ∩ Y ) ≤ 1 ;
2) ρX∩Y

i ≤ ρXi , ρYi ≤ ρX∪Y
i ≤ 1.

Based on these, we can get that:

ρXi + ρYi − (ρX∪Y
i + ρX∩Y

i )

= π(i|X ∪ Y ) + π(i|X ∩ Y )− (π(i|X) + π(i|Y ))

= π(i|X ∩ Y )(1− π(i|X − Y ))(1− π(i|Y −X)) ≥ 0.

Hence,
ρXi + ρYi ≥ ρX∪Y

i + ρX∩Y
i . (21)

Now to prove that U(Φ) is submodular, we consider the
relationships between ρX∪Y

i , ρXi , ρYi , ρX∩Y
i , and η, which

can be divided into the following four cases:

Case 1: ρX∪Y
i ≤ η. Then,

U(i|X) + U(i|Y )− U(i|X ∪ Y )− U(i|X ∩ Y )

= ρXi + ρYi − (ρX∪Y
i + ρX∩Y

i ) ≥ 0.

Consequently,

U(i|X) + U(i|Y ) ≥ U(i|X ∪ Y ) + U(i|X ∩ Y ) (22)

when ρX∪Y
i ≤ η.

Case 2: ρX∪Y
i > η while ρXi , ρYi ≤ η. Then

U(i|X) + U(i|Y )− U(i|X ∪ Y )− U(i|X ∩ Y )

> ρXi + ρYi − (ρX∪Y
i + ρX∩Y

i ) ≥ 0.

Hence, (22) also holds in this case.
Case 3: ρXi >η or ρYi >η while ρX∩Y

i ≤η. Consider ρXi and
ρYi :

1) If one of them is larger than η, (22) holds because
both ρXi and ρYi are no less than ρX∩Y

i ;
2) If they are both larger than η, (22) is still correct

because ρX∩Y
i ≤ η.

Therefore, (22) is true in this case.
Case 4: ρX∩Y

i > η. Now U(i|X)+U(i|Y )−U(i|X∪Y )−
U(i|X ∩ Y ) = 0, and (22) is valid.

In summary, (22) is valid in all cases. Hence, according
to the above analysis and the fact that U(Φ) =

∑m
i=1 U(i|Φ),

U(X) + U(Y ) ≥ U(X ∪ Y ) + U(X ∩ Y ),

which indicates that U(Φ) is submodular. �
Theorem 9. U(Φ) is a polymatriod function on 2Γ.

Proof: We have that U(Φ) = 0 when Φ = ∅. According
to Lemma 4 and Lemma 5, the theorem holds. �
Theorem 10. C(Φ) is a polymatroid function on 2Γ.

Proof: According to C(Φ)=
∑

βj
k∈Φc

j
k, C(Φ) is an increas-

ing function with C(∅)=0. As C(Φ1∪{βj
k})−C(Φ1)=cjk ≥

C(Φ2 ∪ {βj
k})−C(Φ2), we have that C(Φ) is submodular.

Therefore, C(Φ) is a polymatroid function on 2Γ. �
Suppose ϕ is the winning bid set after Algorithm

1 terminates in the Q-th round of iteration. Let θ1 =

min{Uβq (Φq−1)

bq
|q = 1, 2, 3, ...Q}, where βq is the winning

bid in the q−th round, θ2=
C(ϕ)
mη , and θ=max{ 1

θ1
, θ2}. Uti-

lizing θ, we derive a new utility function, U ′(Φ) = θU(Φ),
and the new marginal contribution of βj

k /∈ Φ, U ′
βj
k

(Φ) =

θUβj
k
(Φ). Moreover, we derive the following theorems:

Theorem 11. U ′(Φ) is a polymatroid function on 2Γ.

Proof: According to Theorem 9 and the fact that θ is a
constant, the theorem holds. �
Theorem 12. The MCBS problem can be equivalently re-

formalized as:
min{C(Φ)|U ′(Φ) = U ′(Γ),Φ ⊆ Γ} (23)

Proof: On one hand, the constraint (3) are met when
U(Φ)=mη (U ′(Φ)=θmη) according to Theorem 2. On the
other hand, for ∀si∈S , min{ρΦi , η}=η, and U ′(Φ)= θmη, if
ρΦi ≥η, i.e., (3). That is to say, U ′(Φ) = θmη is equivalent to
the constraint (3), and we can replace (3) with U ′(Φ) = θmη.
Since U ′(Γ) = θmη, we can equivalently replace (3) with
U ′(Φ)=U ′(Γ). The theorem holds. �



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. , NO. , 2018 10

According to Theorems 10-12, the MCBS problem can be
deemed as a minimum submodular cover with submodular
cost problem [46]. Additionally, we can derive a new greedy
algorithm that shares the same solution as Algorithm 1 by
replacing U(Φ), Uβj

k
(Φ), and mη in Algorithm 1 with U ′(Φ),

U ′
βj
k

(Φ), and θmη, respectively. The derived algorithm also

greedily selects the bid βj
k, whose MPC, i.e., U ′

βj
k

(Φ)/bjk, is
the maximal in each round of iteration. Then we can analyze
the approximation ratio of the derived algorithm based on
the theorem in [46]:
Theorem 13. If in each iteration of a greedy algorithm, the

selected bid βj
k always satisfies that U ′

βj
k

(Φ)/bjk≥1, then

the greedy solution is a (1 + ln(U
′(Γ)
opt ))-approximation,

where U ′ is a polymatroid function on 2Γ, opt is the cost
of a minimum submodular cover, and U ′(Φ) ≥ opt. �

Theorem 14. The derived algorithm achieves the (1 +
ln θmη

opt )-approximation of the optimal social cost, where
opt is the cost of the optimal solution to MCBS.

Proof: Note that U ′(Γ) = θU(Γ) = θmη. Consequently,
U ′(Γ) ≥ mηθ2 = C(ϕ) ≥ opt. Additionally, U ′

βj
k

(Φ)/bjk ≥
Uβj

k
(Φ)/(θ1 ·bjk)≥1 for ∀βj

k∈Φ according to the definition of
θ1. Hence, the approximation ratio of the derived algorithm
is (1 + ln θmη

opt ) based on Theorems 10-13. �
Theorem 15. Algorithm 1 achieves the (1 + ln θmη

opt )-
approximation of the optimal social cost, where opt is
the cost of the optimal solution to the MCBS problem.

Proof: Since the derived algorithm shares the same so-
lution with Algorithm 1, Algorithm 1 approximates the
optimal solution of MCBS within a factor of (1 + ln θmη

opt )
according to Theorem 14. �

5.4.2 Approximation Ratio of Algorithm 3
After getting the approximation ratio of Algorithm 1, we

analyze Algorithm 3. We also define a notation:
F (i|Φ) , min{µΦ

i , ξi}.
Consider two arbitrary bid sets, Φ1 and Φ2, Φ1 ⊆ Φ2 ⊆ Γ,

and a bid βj
k ∈ (Γ− Φ2). Then, we have:

Lemma 6. F (Φ) is an increasing function.

Proof: Considering the definition in (7), we get µΦ1
i ≤µΦ2

i

and F (i|Φ1) ≤ F (i|Φ2) for ∀si ∈ S . Then, F (Φ1) ≤ F (Φ2)
when Φ1⊆Φ2, which implies that F (Φ) is increasing. �
Lemma 7. F (Φ) is a submodular function.

Proof: WLOG, we assume that for two arbitrary bid sets
X and Y , X ⊆ Γ, and Y ⊆ Γ. For ∀si ∈ S , we have the
following conclusions:

1) µX∩Y
i ≤ µX

i , µY
i ≤ µX∪Y

i ;
2) µX

i + µY
i = µX∪Y

i + µX∩Y
i .

Similar to the proof of Lemma 5, we have that F (i|X) +
F (i|Y ) ≥ F (i|X ∪Y )+F (i|X ∩Y ) is valid in the following
four cases:

1) µX∪Y
i ≤ ξi;

2) µX∪Y
i > ξi while µX

i , µY
i ≤ ξi;

3) µX
i >ξi or µY

i >ξi while µX∩Y
i ≤ξi;

4) µX∩Y
i >ξi.

Hence, F (X) + F (Y ) ≥ F (X ∪ Y ) + F (X ∩ Y ), and the
theorem holds. �
Lemma 8. G(Φ) is a polymatroid function on 2Γ.

Proof: Since both F (Φ) and U(Φ) are submodular based
on Lemma 5 and Lemma 7, G(Φ) is submodular according
to (14). Meanwhile, G(Φ) is also an increasing function
because of the increasing property of F (Φ) and U(Φ). As
G(∅) = 0, the theorem holds. �

Suppose ϕ is the winning bid set after Algorithm
3 terminates in the Q-th round of iteration. Let α1 =

min{Gβq (Φq−1)

bq
|q = 1, 2, 3, ...Q}, where βq is the win-

ning bid in the q−th round, α2 = C(ϕ)
mη+

∑m
i=1 ξi

, and α =

max{ 1
α1

, α2}. Utilizing α, we derive a new utility function,
G′(Φ) = αG(Φ), and a new marginal contribution of βj

k/∈Φ,
G′

βj
k

(Φ)=αGβj
k
(Φ). Similar to the proofs in Section 5.4.1, we

can have the following two theorems:

Theorem 16. G′(Φ) is a polymatroid function on 2Γ.

Proof: According to Lemma 8 and the formula G′(Φ) =
αG(Φ) in which α is a constant, the theorem holds. �
Theorem 17. The QoD-MCBS problem can be equivalently

reformalized as:
min{C(Φ)|G′(Φ) = G′(Γ),Φ ⊆ Γ}.

Proof: The constraints (10) and (11) are simultaneous-
ly met when U(Φ) = mη and F (Φ) =

∑m
i=1 ξi, that is,

G(Φ)=mη+
∑m

i=1 ξi and G′(Φ)=α(mη+
∑m

i=1 ξi). On the
other hand, if G′(Φ) = α(mη+

∑m
i=1 ξi), i.e., U(Φ) =mη

and F (Φ)=
∑m

i=1 ξi, for ∀si∈S , we have ρΦi ≥ η (10) and
µΦ
i ≥ ξi (11). This indicates that G′(Φ)=α(mη+

∑m
i=1 ξi)

is equivalent to the constraints (10) and (11). Based on
G′(Γ)=α(mη+

∑m
i=1 ξi), we can equivalently replace (10)

and (11) with G′(Φ)=G′(Γ). The theorem holds. �
Based on Theorems 10, 16, and 17, QoD-MCBS can also

be deemed a minimum submodular cover with submodular
cost problem [46]. Similar to Section 5.4.1, when replacing
G(Φ), Gβj

k
(Φ), and mη+

∑m
i=1 ξi in Algorithm 3 with G′(Φ),

G′
βj
k

(Φ), and α(mη+
∑m

i=1 ξi) respectively, we can get a new
algorithm which shares the same solution with Algorithm 3
and has the approximation ratio of (1 + ln

α(mη+
∑m

i=1 ξi)
opt )

where opt is the cost of the optimal solution to the QoD-
MCBS problem. Then, we have another theorem:

Theorem 18. Algorithm 3 achieves the (1+ln
α(mη+

∑m
i=1 ξi)

opt )-
approximation of the optimal social cost, where opt is the
cost of the optimal solution to the QoD-MCBS problem.

Proof: Since the derived algorithm of Algorithm 3 shares
the same solution to the QoD-MCBS problem, Algorithm
3 approximates the optimal solution of QoD-MCBS with a
factor of (1 + ln

α(mη+
∑m

i=1 ξi)
opt ). The theorem holds. �

6 EVALUATION

We conduct extensive simulations to evaluate the per-
formances of the proposed incentive mechanisms. The trace
that we used, the simulation settings, the metrics and the
results are presented as follows.
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Fig. 5. The selected streets are noted by red marks on map of Rome.

6.1 The Trace and Settings
We adopt the widely-used trace in [14] which contains

the GPS coordinates of approximately 320 taxi cabs collected
over 30 days in Rome, Italy. All of the taxi cabs in the trace
move along different streets in Rome day after day. In our
simulations, we select 50 main streets from the trace, as
illustrated in Fig. 5. In the selected streets, we randomly
deploy {100, 200, 300, 400} sensing tasks. Furthermore, we
choose 316 vehicles from the trace for our simulations by
excluding those vehicles that visit the selected streets with
low frequency.

In our simulations, we select 30 days’ records of GPS
coordinates for the chosen vehicles. We divide each day into
two equal-length sensing periods, i.e., [0, 12] and [12, 24],
and thus divide 30 days into 60 periods. Moreover, we let
the sensing tasks be distributed in the same period and let
the D of the tasks be set as 12 hours. The probability of each
vehicle visiting a street (i.e. the probability of a trajectory) is
estimated as follows. First, we determine whether a vehicle
has visited a street in a sensing period by testing whether
the coordinates of this vehicle located in the street during
this period. Then, we count the number of sensing periods
during which a vehicle has visited a street. This number
divided by 60 is viewed as the average probability of the
vehicle visiting the street. Additionally, the real costs of bids
are generated based on three distributions, i.e., uniform
distribution (UNM), normal distribution (NORM) and ex-
ponential distribution (EXP). Each simulation is conducted
with the three distributions. All simulations in this section
are performed in JAVA on a Windows PC with a 3.2GHz
Intel Core i5 CPU and 8GB memory.

6.2 The Evaluation Metrics, Methodology and Results
To evaluate the performance of our mechanisms, we

use the following metrics: number of winning bids, successful
performing ratio, social cost, overpayment ratio, truthfulness,
and individual rationality. The Number of Winning Bids (N-
WB) measures the scale of crowdsensing. The Successful
Performing Ratio (SPR) is the ratio of the number of the
successfully performed crowdsensing tasks and the number
of all tasks. The overpayment ratio is defined as:

λ = (P − C(Φ))/C(Φ),

where P is the total payment and C(Φ) is the total cost.
It measures the cost paid by the platform user to induce
the truthfulness of all vehicles. Truthfulness is the property
ensuring that no bidder can improve his or her payoff by
submitting a different cost from the real one. Individual
rationality is the property which ensures that the payoff of
each bid is non-negative.

TABLE 2
Default settings of major parameters

Parameter name Default value
Number of tasks m 100

Cost range C [10,20]
Threshold of successful performing

probability η 0.6
Variance of NORM σ 10

Quality Range of tasks Q [0,0]
Quality Range of vehicles R [0,0]

The default settings of our simulations are shown in
Table 2. We set the default QoD values Q and R as 0, which
means that we conduct simulations for the basic incentive
mechanism. The results are shown as follows.

Number of winning bids: We depict the evaluation on
the NWB in Figs. 6, 10 and 16. We increase the number of
tasks to verify the impact on the NWB, and the results show
that the NWB will increase since we need more vehicles
and bids to perform more tasks. Additionally, more bids are
needed to meet constraint (3) when η increases, as shown
in Fig. 16. However, when the average of the real cost
increases, the NWB does not change much (see Fig. 10).
This is because we have to keep the joint probability no
less than η no matter how much it will cost. If C expands
(i.e., the average cost increases), the MPCs of all bids will
decrease, leading to results with fewer changes. We also find
that the UNM needs the most bids and that the EXP needs
the fewest.

Successful performing ratio: Fig. 7 plots the successful
performing ratio when the number of tasks (i.e., m) changes
from 100 to 400. With the increase of m, more bids will be
selected, spontaneously leading to the increase of successful
performing ratios. Fig. 11 and Fig. 17 plot the SPR when
the cost range C and the threshold η increase, respectively.
The SPR does not change much in Fig. 11, since the number
of the winning bids changes little when C increases (see Fig.
10). The results in Fig. 17 show that the SPR is slightly larger
than η. These results are reasonable, since the SPR is in
the constraint (3). Additionally, the distribution of costs has
little influence on the SPR based on the above figures. This
is because we have guaranteed the successful performing
probability of each task in the bid selection process.

Social cost: We verify the performance of the social cost
by changing m, C, and η, and present the results in Figs. 8,
12, and 18, respectively. These figures show that the social
cost will increase if we increase m, C, and η separately. This
is because with the increase of m and η, the mechanism
will select more bids to meet the constraint (3). If we
increase the average cost (i.e., expand C), the social cost
will spontaneously increase. Additionally, the results in the
three figures show that the social cost of UNM is larger than
those of NORM and EXP. This is because the UNM produces
greater costs than the others do. Since NORM produces
more middle-range costs, the social cost of NORM is always
less than that of the other two distributions.

Overpayment ratio: We depict the evaluation on over-
payment ratio λ in Figs. 9, 13, and 19. The results show that
λ is always less than 0.6, which means that the platform
user does not have to pay much extra money to induce
truthfulness. If we increase m and η in Fig. 9 and Fig.
19, λ will increase in accordance. This is because more
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Fig. 8. Social cost vs. m
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Fig. 9. Overpayment ratio vs. m
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Fig. 10. NWB vs. C
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Fig. 11. SPR vs. C
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vehicles and bids will be recruited and the increments of
the payments are greater than those of the costs. We find
that when C increases in Fig. 13, λ will also increase since
the truthfulness guarantees that each payment is larger than
the related cost and that the increments of the payments are
larger than those of the costs.
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Fig. 15. Payments vs. costs
Truthfulness and individual rationality: To verify the

truthfulness of our incentive mechanism, we randomly pick
a winning bid, change its claimed cost, and recalculate the
related payments as well as the payoffs. The results are
illustrated in Fig. 14. The payment is 25.2, and the real
cost is 16. Then, the payoff is 9.2. We find that the payoff
remains unchanged if the claimed cost is no more than the
payment. Moreover, when the claimed cost is larger than the
critical value 25.2, the payoff becomes zero. We also verify
the individual rationality by comparing the real EXP cost of
each bid and the related payment, which is calculated when
m = 100, η = 0.6, and C = [10, 30]. Then we find that each
payment is greater than the related cost (see Fig. 15).

We also conduct simulations under the condition that Q
and R are not 0. More specifically, the range of Q is set as
{[10, 15], [10, 20], [10, 25]}, the range of R is set as [10, 20],
and the other parameters are set as the default values. The
results are shown in Figs. 20-23. Compared to the results
of the basic mechanism in Figs. 6, 8, and 9 when m=100,
the results in Figs. 20, 22, and 23 show that more winning
bids are needed, more social costs are spent, and higher
overpayment ratios are produced since we have to meet the
QoD constraint (11) besides the probability constraint. We
also find that some SPRs in Fig. 21 are less than the related
value of η, e.g., SPR of UNM is 0.51 when η = 0.6 and
Q = [10, 15]. This is because if the QoD constraints of some
tasks are not met, we deem that these tasks are incomplete,
even if they have been performed by a few vehicles.

7 RELATED WORK
There have been a few works [15]–[24], [28]–[33]

on the incentive mechanism design for crowdsens-

ing/crowdsourcing, which can be divided into two cate-
gories: offline and online.

Offline incentive mechanism. In an offline scenario,
the crowdsourcer/platform is aware of all users, and no
users will come/leave during the process. In [15], Yang
et al. proposed two types of mechanisms to maximize the
utility of the corwdsourcer: CCM and UCM. They have
shown that their mechanisms perform well by proving
the unique Stackelberg Equilibrium of IMCC in CCM and
giving the approximation ratio of IMCU in UCM. Feng et al.
solve the problem of location-aware collaborative sensing
in mobile crowdsourcing in [24] by proposing TRAC. They
formulate WBDP as a linear set cover problem with min-
imum social cost and present an approximation algorithm
that can approach the optimum solution within a factor
of 1+ln(n). Zhang et al. [18] consider a scenario where a
crowdsourcing job requires the collective effort of multiple
participants. They propose incentive mechanisms for three
models: SS-Model, SM-Model, and MM-Model. In [25], Luo
et al. propose a different incentive mechanism based on an
all-pay auction model, in which every bidder must pay for
his bid regardless of whether he wins or losses the auction.

In addition, some works focus on the mechanism design
for special problems, e.g., image labeling and noise sens-
ing. In [19], Zhang et al. study the problem that how to
stimulate workers to perform binary labeling tasks while
maximizing the utility of the platform and meeting budget
constraints. They profile the quality of the workers with
Beta distribution functions and calculate them by Bayes’
rule. In [20], [21], the authors incorporate the consideration
of data quality into the design of incentive mechanism for
noise sensing. Jin et al. [21] prefer to maximize social welfare
while ensuring that the quality of each task is no less than
a given threshold. Peng et al. [20] propose a mechanism to
maximize the platform’s profit. They estimate the quality
of sensing data via the well-known expectation maximiza-
tion algorithm and quantify the participants’ contributions
through information uncertainty reduction.

Online incentive mechanism. Different from the offline
scenario, in an online scenario the statuses of users are
dynamic. That is to say, the users and tasks come and
leave randomly, and the crowdsourcer/platform only sees
part of its users in one time interval. Considering this
scenario, Zhao et al. [16] propose two online mechanisms,
OMZ and OMG, that adopt a multiple-stage sampling ac-
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Fig. 17. SPR vs. η
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Fig. 18. Social cost vs. η
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Fig. 19. Overpayment ratio vs. η

12.5 15.0 17.5
0

4

8

12

 

 

N
u

m
b

e
r 

o
f 
w

in
n

in
g

 b
id

s
 (

1
0

E
1

)

Average of task quality

 UNM

 EXP

 NOR

Fig. 20. NWB vs. Q
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Fig. 21. SPR vs. Q
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Fig. 22. Social cost vs. Q
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Fig. 23. Overpayment ratio vs. Q

ceptance process to maximize the value of the crowdsourcer
without sacrificing utility. To satisfy the budget constraint,
their mechanisms utilize the density threshold to filter out
inapposite users. Moreover, both OMZ and OMG are com-
petitive with the offline scenario. Zhang et al. [22] design
three online, reverse-auction-based incentive mechanisms:
TBA, TOIM, and TOIM-AD. TBA uses the first batch of
bidders as a sample and makes decisions on the second
batch of bidders. It is designed to pursue the maximization
of the platform utility. TOIM is a truthful online mechanism
which is highly competitive with the optimal solution in the
zero arrival-departure model. TOIM-AD extends TOIM to
the non-zero arrival-departure model. In [23], Zhu et al. first
propose an offline mechanism where the platform knows
the active time and the arrival time of each task at the
beginning of the crowdsourcing. Based on this offline mech-
anism, they propose the online social welfare maximization
mechanism which divides time into slots, finds the near-
optimal solution, and decides the payments in each slot. The
task allocation algorithm in the online mechanism achieves
a constant competitive ratio of 1

2 . In [17], Wei et al. consider
stimulating both service users and providers to participate
in mobile crowdsourcing and model the interactions as an
online double auction. They propose an expressive general
framework that is suitable for different price schedules.

8 CONCLUSION

In this paper, we first design a truthful incentive mech-
anism for vehicle-based, nondeterministic crowdsensing,
where the sensing tasks are performed with different prob-
abilities and the probability of each task being successfully
performed is no less than a threshold. After considering a
more complex scenario where the platform has a require-
ment on the QoD, we also design a QoD-aware incentive
mechanism. Through rigorous theoretical analysis, we prove
that both incentive mechanisms have the properties of truth-
fulness, individual rationality, computational efficiency and
social cost efficiency. Finally, we conduct lots of simulations
on a real trace to verify the significant performances of our
incentive mechanisms.
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