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Abstract—Due to the explosive proliferation of mobile cloud computing applications, much data needs to be transmitted between
mobile users and clouds, incurring a huge traffic demand on cellular networks. Mobile offloading is a promising approach to address
this challenge. In this paper, we focus on the problem of offloading many deadline-sensitive data items to some WiFi networks with
capacity constraints; that is, how to schedule each data item to the WiFi networks, so that we can offload as many data items before
their deadlines as possible, while taking the constraints of transmission capacity into consideration. This problem involves a
probabilistic combination of multiple 0-1 knapsack constraints, which differs from existing problems. To solve this problem, we propose
a greedy oFfline Data Offloading (FDO) algorithm, achieving an approximation ratio of 2. Also, we propose an oNline Data Offloading
(NDO) algorithm, which has a competitive ratio of 2. Additionally, we extend our problem to a more general scenario where WiFi
transmission costs are heterogeneous. We design a Heterogeneous Data Offloading (HDO) algorithm to solve the extended problem,
and give its performance analysis. Finally, we demonstrate the significant performances of our algorithms through extensive
simulations based on some real-world and synthetic WiFi datasets.

Index Terms—deadline-sensitive data offloading, mobile data offloading, opportunistic WiFi offloading.

F

1 INTRODUCTION

W ITH the explosive growth of user population and
their demands for bandwidth-eager multimedia con-

tent in recent years, a big challenge is raised regarding the
cellular network. The Cisco VNI [8] report predicts that
mobile data traffic will grow at a compound annual growth
rate (CAGR) of 53 percent from 2015 to 2020, reaching 30.6
exabytes per month by 2020. Furthermore, the aggregate
smartphone traffic will be 8.8 times greater than it is today,
with a CAGR of 54 percent by 2020. To cope with the
unprecedented traffic load, mobile network operators need
to increase their cellular network capacities significantly.
However, this is expensive and inefficient. One promising
solution to this problem is to offload part of traffic to other
coexisting networks, while leaving the capacities of cellular
networks unchanged. Some recent research efforts have
been focused on offloading cellular traffic to other forms
of networks, such as WiFi networks [9, 12, 18–20, 36] and
Delay Tolerant Networks (DTNs) [14, 22, 28, 34, 38].

In this paper, we focus on the mobile data offloading
based on WiFi networks in mobile cloud computing [15].
Consider the scenario in which a mobile user is performing
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some mobile cloud computing applications and needs to
upload some data items to the cloud side. In order to ensure
the quality of the mobile cloud computing applications,
each data item needs to be uploaded before a deadline. On
the other hand, when the user conducts the mobile cloud
computing applications, it can access cellular networks at
any time, anywhere. Meanwhile, the user also might pass by
some WiFi APs. Hence, the user can transmit the data items
through cellular networks directly, or offload some data to
WiFi networks, when it visits a WiFi AP, as shown in Fig.
1. In general, the data transmission via cellular networks
has the advantage of instantaneity, but it will lead to a
large monetary cost. In contrast, data being offloaded to
WiFi networks can save a significant monetary cost, but
the instantaneity cannot be ensured. There is a trade-off
between the two transmission modes, especially when the
transmission capacity of WiFi APs is taken into considera-
tion. Our concern is how to schedule data items between
the two transmission modes, so that we can minimize the
total monetary cost, while ensuring that each data item be
uploaded before its deadline.

The proposed data offloading is different from existing
offloading problems [6, 12–14, 20, 22, 23, 28, 34, 35, 38]. These
works in [14, 22, 28, 34] mainly focus on offloading data
from cellular networks to DTNs, which is formulated as a
target-set selection problem. Zhuo et al. [38] provides an in-
centive framework based on the reverse auction to leverage
the delay tolerance for data offloading based on DTNs. In
addition, the works in [12, 20] study the economic benefits
and load balance problem of traffic offloading between
cellular networks and WiFi networks from the perspec-
tive of Network Services Providers (NSPs). In contrast, we
consider the data offloading problem from the user’s side.
Moreover, our problem can be deduced as an optimization
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Fig. 1. Data offloading scenario: the mobile user uploads data items onto
the cloud side through WiFi networks when it visits WiFi APs during
Time-To-Lives (TTLs) of data items, or via cellular networks when the
TTLs of data items expire, respectively.

problem with multiple 0-1 knapsack constraints, in which
each knapsack is related to a WiFi AP. Adding a data item
into a knapsack means offloading this data item via the
corresponding WiFi AP. Since the accessibility of each WiFi
AP is uncertain, it is a probabilistic event to add a data item
into a knapsack. Furthermore, each data item is allowed to
be added into multiple knapsacks. Hence, these data items
share a combinatorially probabilistic optimization objective.
Meanwhile, each data item also needs to be subject to a
different deadline constraint. It is because of these features
that our problem differs from the existing trivial Multiple K-
napsack Problems (MKP) [5, 26], and the existing algorithms
(e.g., Shortest Remaining Time First scheduling algorithm)
are not applicable in our problem.

To this end, we design an offloading utility function
according to the combinatorially probabilistic optimization
objective. Based on this utility function, we propose a greedy
offline data offloading algorithm to solve the aforemen-
tioned problem. Furthermore, we also propose an online
data offloading algorithm. The offline algorithm indicates
that the mobile user makes the data offloading decisions be-
fore it visits any WiFi AP, while the online algorithm means
that the mobile user dynamically makes the immediate data
offloading decisions at each time when it visits a WiFi AP.
Also, we extend our problem and solution to a more general
scenario where the transmission costs per unit data traffic
via different WiFi APs are heterogeneous. More specifically,
our major contributions are summarized as follows:

• We introduce a problem of offloading many deadline-
sensitive data items to some WiFi APs with capacity
constraints. We formalize it as an optimization prob-
lem with multiple 0-1 knapsack constraints, sharing
a combinatorially probabilistic optimization objective.
Moreover, we prove the NP-hardness of this problem.

• We propose an offline data offloading algorithm, i.e.,
FDO, to solve the above problem. A greedy strategy is
adopted in this algorithm. We prove that this greedy
strategy can achieve the approximation ratio of 2.

• We also propose an online data offloading algorithm,
i.e., NDO. It is composed of a series of greedy offload-
ing decisions, each of which is made when the mobile
user visits a WiFi AP. Furthermore, we derive that this
algorithm has the competitive ratio of 2.

• We further extend our problem to a more general
scenario where the transmission costs per unit data
traffic via WiFi networks are different. Accordingly, we
propose a heterogeneous data offloading algorithm, i.e.,

HDO, to solve it. We also analyze the performance of
HDO.

• We conduct extensive simulations to evaluate the per-
formances of the proposed algorithms, based on a real
WiFi dataset and some synthetic datasets. The results
show that our algorithms can achieve better perfor-
mances, compared with other algorithms.

The remainder of the paper is organized as follows. We
describe the network model, and formulate the optimization
problem in Section 2. The offline and online algorithms are
proposed in Sections 3 and 4, respectively. In Section 5,
we introduce the extended problem and new algorithm. In
Section 6, we evaluate the performances of our algorithm-
s through extensive simulations. After reviewing related
work in Section 7, we conclude the paper in Section 8.

2 MODEL AND PROBLEM FORMULATION

2.1 Offloading Model
We consider that a mobile user is conducting some

mobile cloud computing applications, in which the user
needs to upload some data to the cloud side. The data
can be denoted by a set D = {d1, · · · , di, · · · , dn}, where
di = ⟨si, ti⟩ (1 ≤ i ≤ n), in which si and ti denote the size
and Time-To-Live (TTL) of the i-th data item, respectively.
Without loss of generality, we assume that these data items
are organized in the ascending order of their TTLs, that is,
t1 ≤ t2 ≤ · · · ≤ tn. At the same time, each data item is as-
sumed to be indivisible. Moreover, the data item needs to be
uploaded successfully before the time when its TTL expires,
called the transmission deadline of this data item. Here, the
deadline of each data item has taken the transmission time
into consideration. Concretely, the deadline of a data item
in our model is the latest time from which the data item
can be successfully uploaded via cellular network. Its value
is actually the completion time of the offloading minus the
transmission time.

On the other hand, the mobile user is assumed to move
around in an urban area, so that it can upload these data
items to the cloud side, by using cellular networks at any
time, anywhere. However, if the mobile user transmits all
of these data items through cellular networks, it generally
needs to pay many fees for these data transmissions. In this
paper, we assume that there are many WiFi APs distributed
in the urban area, and the NSP is willing to provide the
WiFi-based offloading service, so as to alleviate the load of
cellular networks. Hence, in order to reduce the monetary
costs, the mobile user can offload some data items via WiFi
networks. Since most WiFi APs cannot be accessed for free,
the traffic offloading will also produce some costs, but they
will be much lower than the cost via cellular networks. We
use C and c to denote the transmission costs per unit data
traffic via cellular networks and WiFi networks, respectively.

In real scenarios, not all WiFi APs can provide the
offloading service. It is subject to many factors, such as when
the mobile user enters the communication range of a WiFi
AP, whether the WiFi AP is accessible, and so on. Moreover,
since the transmission rate and the time that the user stays
in the communication range of a WiFi AP are restricted, the
data items that the user can transmit via this WiFi AP are
generally limited. That is to say, the transmission capacity
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is also limited. To this end, we use a triple w = ⟨τ, p, q⟩ to
describe the offloading opportunity from a WiFi AP, where
τ (> 0) is the time of the user visiting the WiFi AP, p
(∈ (0, 1]) is the probability of the WiFi AP providing the
offloading service, and q (> 0) is the transmission capacity
of this WiFi AP. In this paper, we assume that NSP has
recorded the historical offloading transactions, including
the offloading time, transmission rate, and so on. This is
reasonable since all offloading operations are conducted via
NSP. Based on these historical offloading records and the
mobile behavior, each mobile user can derive the offloading
opportunity w = ⟨τ, p, q⟩ (from NSP) for each given WiFi
AP. More specifically, the probability p can be estimated by
the corresponding frequency of historical offloading trans-
actions. The transmission capacity q can be calculated by
using the transmission rate and the time that the user stays
in the communication range of each WiFi AP. Moreover,
we use W = {w1, w2, · · · , wm} to denote all offloading
opportunities, where wj = ⟨τj , pj , qj⟩ (1 ≤ j ≤ m), and
τ1 < τ2 < · · ·< τm. Here, if the user visits a WiFi AP more
than one time, it can offload data items multiple times, each
of which is seen as an offloading opportunity in W .

In addition, since the mobile user can connect cellular
network at any time, anywhere, the time that the user stays
in the communication range of cellular network is long e-
nough. As a result, the total amount of data items which can
be uploaded via cellular network is large enough. Moreover,
compared to the data items that the user needs to upload,
the processing capacity of cloud side is generally powerful
enough. Thus, we did not take the capacity constraint of
cellular network and the processing capacity of cloud side
into account in our data offloading model.

2.2 Problem Formulation
Then, we focus on the data items scheduling problem

in the above offloading model, that is, how to schedule the
data items in D to the offloading opportunities in W , so as
to minimize the total transmission cost, while ensuring that
each data item is uploaded before its deadline.

Before the problem formulation, we define two terms for
the simplicity of the following descriptions:
Definition 1. [Data Offloading Operation] A data offloading

operation, denoted by (di, wj), indicates that di will be
offloaded to the j-th offloading opportunity wj .

Definition 2. [Data Offloading Solution] A data offloading
solution, denoted by Φ, is defined as a set of data
offloading operations, i.e.,

Φ={(di, wj)|(di, wj)∈D×W }. (1)

In light of the uncertainty of each offloading opportunity,
it is important to note that we allow each data item to be
scheduled to multiple offloading opportunities, as shown in
Fig. 2, so as to improve the probabilities of being offloaded.
If the data item still fails to be uploaded after these offload-
ing opportunities, it will have to be transmitted by using
cellular networks, to ensure it be uploaded to the cloud side
before its deadline.

In our model, an offloading opportunity is not equiva-
lent to a WiFi AP. The mobile user encountering an offload-
ing opportunity means that it visits the related WiFi AP and

Timeline
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w1 wj wm

d1 di dn

j

Fig. 2. Data items might be offloaded to multiple WiFi APs.

at the same time the AP can provide the offloading service.
Moreover, if a data item has been offloaded via an offloading
opportunity successfully, it will not be uploaded via the
remaining offloading opportunities. Thus, for a given data
offloading solution Φ, we can derive the successful proba-
bility of a data item di being offloaded to WiFi networks. It
is the probability of the data item di being offloaded via any
one offloading opportunity in Φ, defined as follows:
Definition 3. [Successful Offloading Probability] For a given

data offloading solution Φ, the successful offloading
probability of data item di, denoted by ρi(Φ), satisfies:

ρi(Φ)=1−
∏

j:(di,wj)∈Φ

(1− pj). (2)

Then, according to the probabilities, we can derive the
total expected transmission cost of all data items being
uploaded, defined as follows:
Definition 4. [Total Transmission Cost] The total expected

transmission cost is the sum of the expected costs of all
data items in D being uploaded for a given data schedul-
ing solution, denoted by fcost(Φ), which satisfies:

fcost(Φ)=
n∑

i=1

si
(
cρi(Φ)+C(1−ρi(Φ))

)
. (3)

Now, we can formalize our problem as follows:

Minimize : fcost(Φ)

Subject to :
∑

i:(di,wj)∈Φ

si ≤ qj , 1≤j≤m; (P1)

ti≥τj , for ∀(di, wj) ∈ Φ⊆D×W .

Here,
∑

i:(di,wj)∈Φ si ≤ qj , called the capacity constraint,
means that the total size of data items that are offloaded to
the j-th WiFi AP should be no larger than the capacity of the
WiFi AP; and, ti≥τj , called the deadline constraint, indicates
that each data item di can be offloaded via the offloading
opportunity wj , only when the TTL of this data item is no
less than the time of the offloading opportunity wj .

By analyzing Eq. 3, we obtain

fcost(Φ)=C
n∑

i=1

si − (C − c)
n∑

i=1

siρi(Φ), (4)

where C
∑n

i=1 si and (C−c) are known fixed values. Based
on this, we define an offloading utility function as follows:
Definition 5. [Offloading Utility Function] The offloading

utility function of a data offloading solution Φ, denoted
by U(Φ), is the expected total size of data items that will
be offloaded to WiFi networks under this data offloading
solution. Then, U(Φ) satisfies:

U(Φ)=
n∑

i=1

siρi(Φ). (5)
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TABLE 1
Description of major notations.

Variable Description
n, m the numbers of data items and offloading opportunities, respectively.
D,W the sets of data items and offloading opportunities, respectively.
i, j the indexes for data items and offloading opportunities, respectively .
di=⟨si, ti⟩ the size and TTL of i-th data item di, respectively.
wj =⟨τj , pj , qj⟩ the time, probability and capacity of j-th offloading opportunity wj , respectively.
C, c transmission costs per unit data traffic via cellular networks and WiFi networks, respectively.
(di, wj), Φ a data offloading operation (Definition 1) and a data offloading solution (Definition 2).
ρi(Φ) the successful offloading probability of di for a given solution Φ (Definition 3).
∆ρij(Φ) the contribution of (di, wj)∈Φ to the successful offloading probability of the data item di.
ϱij(Φ), ϱi0(Φ) the expected probability of di being transmitted via wj and cellular networks, respectively.
Ωdi the set of deadline-satisfying offloading operations for the data item di.

Since fcost(Φ) =C
∑n

i=1 si−(C−c)U(Φ), Problem (P1)
can be equivalently re-formalized as follows:

Maximize : U(Φ)

Subject to :
∑

i:(di,wj)∈Φ

si ≤ qj , 1≤j≤m; (P2)

ti≥τj , for ∀(di, wj) ∈ Φ⊆D×W .

Unlike existing MKP [26], (P2) is an optimization prob-
lem with multiple 0-1 knapsack constraints, where each data
item might be added into multiple knapsacks, and these
data items in all knapsacks must share a combinatorially
probabilistic optimization objective. In the subsequent sec-
tion, we consider the following cases in order to solve this
problem: the offline data offloading and the online data
offloading. For the ease of reference, we summarize the
commonly used notations throughout the paper in Table 1.

3 OFFLINE DATA OFFLOADING
In this section, we analyze the hardness of our problem,

and then, propose an offline data offloading algorithm,
followed by the performance analysis.

3.1 Problem Hardness Analysis
First, we prove that Problem (P2) cannot be solved in

polynomial time unless P =NP . More specifically, we have
the following theorem:
Theorem 1. Problem (P2) is NP-hard.

Proof : To prove the NP-hardness of Problem (P2), we first
consider the following special 0-1 knapsack problem:

Maximize : s1x1 + s2x2 + · · ·+ snxn

Subject to : s1x1 + s2x2 + · · ·+ snxn ≤ S, (P3)

x1, x2, · · · , xn ∈ {0, 1}.

Here, si is the size of the i-th item, S is the size of the
knapsack, and xi is a variable which indicates whether the i-
th item is added into the knapsack. The special 0-1 knapsack
problem (P3) is NP-hard [24].

Second, we consider a special case of Problem (P2), in
which there is only one WiFi AP, i.e., W ={⟨τ1, p1, q1⟩}, and
τ1≤ t1. Such a data offloading problem can be expressed as:

Maximize :
∑

i:(di,w1)∈Φ

si (P4)

Subject to :
∑

i:(di,w1)∈Φ

si ≤ q1.

Mapping S in Problem (P3) to q1 in Problem (P4), we
can get the two problems to be equivalent. That is to say,
Problem (P4), i.e., the special case of Problem (P2), is a
special 0-1 knapsack problem, which is NP-hard. Thus,
Problem (P2) is also NP-hard. �

3.2 The Basic Solution
Since Problem (P2) has both deadline constraints and

capacity constraints, we divide our solution into two phases.
We take the deadline and capacity constraints into consider-
ation in the two phases, respectively.

In the first phase, we focus on the deadline constraints
of data items. That is, we first determine the priority of data
offloading operations according to the TTLs of data items,
and then remove the deadline constraints. More specifically,
the data items with smallest TTLs will be offloaded first,
since they have fewest offloading opportunities. Thus, the
data items are handled (i.e., determining the corresponding
offloading operations) in the ascending order of their TTLs,
i.e., d1, d2, · · · , dn. To remove the deadline constraints, we
determine a set of deadline-satisfying data offloading oper-
ations for each data item di, denoted as Ωdi :

Ωdi ={(di, wj) | ∀(di, wj)∈D×W : ti ≥ τj}. (6)

When we let all data offloading operations in Φ be selected
only from Ωdi (di ∈D), the data offloading solution Φ will
be deadline-satisfying, and will not miss any feasible data
offloading operations.

In the second phase, we focus on the optimization prob-
lem with the capacity constraints. Since the problem is NP-
hard due to the capacity constraints, we adopt a greedy
strategy to approximately solve the problem. Each iteration
of the second phase consists of two main steps: (1) we
select the data offloading operation in Ωdi for each data
item di, which can increase the offloading utility function
value most quickly; (2) if the selected offloading operation
incurs the failure of capacity constraint, we use it to replace
some offloading operations in Φ for ensuring the capacity
constraint of the related offloading opportunity.

More specifically, in the first step, we find the data of-
floading operation, which can increase the offloading utility
most quickly. This step can be formulated as follows:

(di, wj∗)= argmax
(di,wj)∈Ωdi

U(Φ∪{(di, wj)})−U(Φ). (7)

In the second step, if the offloading operation (di, wj∗)
can satisfy the capacity constraint of wj∗ , it will be added
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into the offloading solution Φ directly. Otherwise, we will
conduct the replacement procedure. To better describe the
procedure, we denote the contribution of the offloading op-
eration (di, wj)∈Φ to the successful offloading probability
of the data item di as ∆ρij(Φ), that is,

∆ρij(Φ)=ρi(Φ)−ρi(Φ\{(di, wj)}). (8)

In the replacement procedure, we first find a set Γ⊆Φ,
satisfying si ≤ qj∗ +

∑
(dx,wj∗ )∈Γ sx. This means that when

we use (di, wj∗) to replace Γ, the capacity constraint of wj∗

can be ensured. Here, each data offloading operation in Γ
is selected as follows. First, we let the offloading operations
in Φ corresponding to wj∗ , i.e., {(dx, wj∗)|(dx, wj∗) ∈ Φ},
be organized in the ascending order of the sx∆ρxj∗(Φ)
value, where sx∆ρxj∗(Φ) is the incremental offloading
utility of (dx, wj∗). According to this order, we add the
corresponding offloading operations into Γ one by one,
until si≤qj∗+

∑
(dx,wj∗ )∈Γ sx is satisfied. After determining

the set Γ, we compare the incremental offloading utility
values of (di, wj∗) and Γ, i.e., si∆ρij∗(Φ∪{(di, wj∗)}) and∑

(dx,wj∗ )∈Γ sx∆ρxj∗(Φ). If the former is larger than the
later, we will use (di, wj∗) to replace Γ. Otherwise, we will
not conduct the replacement.

3.3 The Detailed Algorithm

Based on the above strategy, we design the greedy al-
gorithm to approximately solve the optimization problem
(P2), as shown in Algorithm 1. In Step 1, the data offloading
solution Φ and the sets of deadline-satisfying offloading
operations for each data item di∈D (i.e., Ωdi ) are initialized
to be empty. In Steps 2-5, we add all deadline-satisfying data
offloading operations corresponding to di into the set Ωdi

(di ∈D). Then, the data offloading operation in Ωdi , which
can increase the offloading utility function most quickly
(e.g., (di, wj∗)), will be considered first, as shown in Steps 6-
7. If the capacity constraint of wj∗ is satisfied, (di, wj∗) will
be added into Φ directly, and at the same time the remaining
transmission capacity of wj∗ is updated in Steps 8-10.

Otherwise, we first find a set Γ= {(dx, wj∗)|(dx, wj∗)∈
Φ}, in which each offloading operation is selected in the
ascending order of sx∆ρxj∗(Φ), to ensure the capacity
constraint of wj∗ while replacing Γ by (di, wj∗), i.e., si ≤
qj∗ +

∑
(dx,wj∗ )∈Γ sx, in Steps 11-12. Then, we compute the

incremental offloading utility values of (di, wj∗) and Γ,
i.e., si∆ρij∗(Φ∪{(di, wj∗)}) and

∑
(dx,wj∗ )∈Γ sx∆ρxj∗(Φ),

respectively. If the former is larger than the later, we will
replace Γ by (di, wj∗), and update the remaining capacity of
wj∗ in Steps 13-15. Else, we will not conduct the replacemen-
t. Then, we update the set Ωdi by deleting (di, wj∗) from it,
in Step 16. After conducting the offloading procedure for the
last data item dn, the algorithm terminates and outputs the
data offloading solution Φ, in Step 17.

By analyzing Algorithm 1, we show that the algorith-
mic procedures are polynomial-time, and the computational
overhead of Algorithm 1 is O(m2n2). Moreover, we can
straightforwardly demonstrate correctness of the algorithm
in the following theorem:

Theorem 2. Algorithm 1 is correct. It will terminate for sure,
and will produce a feasible data offloading solution.

Algorithm 1 The FDO Algorithm
Require: D,W .
Ensure: Φ.

1: Initialize Φ = ϕ and Ωdi
= ϕ (di∈D);

2: for di from d1 to dn do
3: for wj from w1 to wm do
4: if τj ≤ ti then
5: Ωdi = Ωdi ∪ {(di, wj)};
6: while (∃ (di, wj)∈Ωdi) do
7: (di, wj∗)= argmax

(di,wj)∈Ωdi

U(Φ∪{(di, wj)}−U(Φ);

8: if si ≤ qj∗ then
9: Φ = Φ∪{(di, wj∗)};

10: qj∗ = qj∗−si, where si is the size of di;
11: else
12: Find a set Γ⊆Φ, s.t., si≤qj∗+

∑
(dx,wj∗ )∈Γ sx;

13: if si∆ρij∗(Φ∪{(di, wj∗)})>
∑

(dx,wj∗ )∈Γ

sx∆ρxj∗(Φ) then

14: Φ=Φ∪{(di, wj∗)}\Γ;
15: qj∗ =qj∗−si+

∑
(dx,wj∗ )∈Γ sx;

16: Ωdi = Ωdi \{(di, wj∗)};
17: return Φ;

Proof : Since each data offloading operation is selected
from the sets of deadline-satisfying data offloading oper-
ations, some limited sets, the algorithm will terminate for
sure, and the results will satisfy the deadline constraints.
On the other hand, at each round of selection in Algorithm
1, the capacity constraints are ensured. Thus, the produced
data offloading solution must be feasible. �

3.4 Examples

To better understand Algorithm 1, we present an exam-
ple to show the data offloading procedure, in which the
mobile user has four data items D={di= ⟨si, ti⟩|1≤ i≤4},
where s1 = 8, t1 = 11, s2 = 6, t2 = 13, s3 = 5, t3 = 17, s4 =
10, t4=18, and it wishes to offload the data items to two of-
floading opportunities w1=⟨τ1, p1, q1⟩ and w2= ⟨τ2, p2, q2⟩,
where τ1 = 10, p1 = 0.6, q1 = 15, τ2 = 15, p2 = 0.9, q2 = 10.
Since the deadline constraints τ1 < t1 < t2 <τ2 < t3 < t4 are
satisfied, Ωdi (di ∈D) is first determined in Fig. 3(a). Then,
Algorithm 1 greedily selects data offloading operations as
follows:

In the first round, Φ= ϕ. For the first data item d1, we
have Ωd1 = {(d1, w1)}. Since U(Φ∪{(d1, w1)})−U(Φ)=4.8
and s1≤q1, we add (d1, w1) into Φ and delete (d1, w1) from
Ωd1 , as shown in Fig. 3(a). Moreover, we update q1=7. Now,
since Ωd1 is empty, we consider the next data item d2.

In the second round, Φ = {(d1, w1)}. We consider the
data item d2 and get the corresponding set of deadline-
satisfying offloading operations Ωd2 ={(d2, w1)}. Similarly,
since U(Φ∪{(d2, w1)})−U(Φ)=3.6 and s2≤q1=7, we add
(d2, w1) into Φ and delete (d2, w1) from Ωd2 , as shown in
Fig. 3(b). We also update q1=1.

In the third round, we focus on the data item d3.
Now, we have Φ = {(d1, w1), (d2, w1)} and Ωd3 =
{(d3, w1), (d3, w2)}. Algorithm 1 computes the increased of-
floading utility function values for each offloading operation
(d3, wj)∈Ωd3 . The results are listed as follows:

U(Φ∪{(d3, w1)})−U(Φ)=3.0,U(Φ∪{(d3, w2)})−U(Φ)=4.5.
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(d) Replace (d3, w2) by (d4, w2)

Fig. 3. Example: greedily schedule the data items d1, d2, d3, d4 to offloading opportunities w1, w2, and the obtained data offloading solution is
Φ= {(d1, w1), (d2, w1), (d4, w2)}. The selected offloading operations are according to the greedy criterion max ∆U =U(Φ ∪ {(di, wj)})−U(Φ)
and max ∆ρij(Φ)si, respectively.

According to the results, we select (d3, w2). Due to s3 ≤ q2,
we add (d3, w2) into the set Φ and delete it from Ωd3 . We
update q2=5. Next, we compute U(Φ∪{(d3, w1)})−U(Φ)=
0.3. At the moment, we have s3 = 5 > q1 = 1. Therefore,
according to the ascending order of si∆ρij(Φ), we have Γ=
{(d2, w1)} so that q1+s2=7>s3. Then, we get s2∆ρ21(Φ)=
3.6>s3∆ρ31(Φ∪{(d3, w1)})=0.3. This means that we will
not conduct the replacement, as shown in Fig. 3(c). After
deleting (d3, w1) from Ωd3 , we get Ωd3 = ϕ. Thus, we will
consider the next data item.

In the fourth round, we have Ωd4 = {(d4, w1), (d4, w2)}
and Φ={(d1, w1), (d2, w1), (d3, w2)}. Similar to the compu-
tation in the third round, we have the following results:

U(Φ∪{(d4, w1)})−U(Φ)=6,U(Φ∪{(d4, w2)})−U(Φ)=9.

We first consider the offloading operation (d4, w2). Since
s4 = 10 > q2 = 5, we have Γ = {(d3, w2)} accord-
ing to the si∆ρij(Φ) value. Due to s3∆ρ32(Φ) = 4.5 <
s4∆ρ42(Φ∪{(d4, w2)})= 9, we replace (d3, w2) by (d4, w2)
in Φ, and get Φ = {(d1, w1), (d2, w1), (d4, w2)}. After
deleting (d4, w2) from Ωd4 , we have Ωd4 = {(d4, w1)}
and U(Φ ∪ {(d4, w1)}) − U(Φ) = 0.6. Similarly, we ob-
tain Γ = {(d1, w1), (d2, w1)}, and further get s1∆ρ11(Φ)+
s2∆ρ21(Φ) = 8.4 > s4∆ρ41(Φ ∪ {(d4, w1)}) = 0.6. This
means that we will not conduct the replacement. Now,
since Ωd4 is empty, Algorithm 1 terminates and outputs the
final offloading solution Φ = {(d1, w1), (d2, w1), (d4, w2)},
as shown in Fig. 3(d).

3.5 Performance Analysis
In this subsection, we analyze the approximation ratio of

Algorithm 1. First, we use optF to denote the optimal offline
offloading solution of optimization problem (P2). Then, we
have the following theorem:

Theorem 3. FDO has an approximation ratio of 2. That is,

U(optF )
U(Φ)

< 2. (9)

Proof : First, we consider a special solution. For this
solution, we assume that all data items can be divided, and
let each data item di = ⟨si, ti⟩ be divided as di1= ⟨1, ti⟩,
· · · , disi = ⟨1, ti⟩. Then, we conduct our Algorithm 1 to
get a solution, denoted by opt∗F . When all data items are
divisible, the greedy strategy in Algorithm 1 can achieve the
optimal result. This is because the problem has the property
of optimal substructure, the best offloading operation is
selected in each round, and the transmission capacity of
each offloading opportunity is fully utilized. Since optF
is the optimal solution where data items are indivisible,

it cannot fully utilize the transmission capacity of each
offloading opportunity in most cases. Hence, we have:

U(opt∗F ) ≥ U(optF ). (10)

Second, we consider another special solution for the case
where data items are indivisible, but the capacity constraint
of each offloading opportunity can be broken once. Denote
this solution as opt+F . Since opt+F and opt∗F are produced
by using the same greedy criterion, while opt+F can offload
data items beyond each capacity constraint once, we have:

U(opt+F ) ≥ U(opt∗F ). (11)

Now, we compare opt+F and Φ. Without loss of gener-
ality, we assume that there are g data offloading operations
corresponding to wj , which have been selected into Φ, de-
noted as {(di1 , wj), · · · , (dix , wj), · · · , (dig , wj)}, in which
dix =⟨six , tix⟩. Now, we consider that the current offloading
operation (di, wj), and assume that si>qj where si and qj
denote the data size of di and the remaining capacity of wj ,
respectively. According to the replacement strategy in Algo-
rithm 1, we find a set Γ⊆Φ so that si≤qj+

∑
(dix ,wj)∈Γ six .

In opt+F , (di, wj) will be added directly since each offloading
opportunity can be broken once. In contrast, we replace Γ by
(di, wj) if si∆ρij(Φ∪{(di, wj)})>

∑
(dix ,wj)∈Γ six∆ρixj(Φ).

For convenience, we use ∆Uj(Φ) to denote the incremental
offloading utility corresponding to wj based on Φ. There-
fore, we have

∆Uj(Φ)=
∑

(dix ,wj)∈(Φ\Γ)

six∆ρixj(Φ)

+max{
∑

(dix ,wj)∈Γ

six∆ρixj(Φ), si∆ρij(Φ∪{(di, wj)})}; (12)

∆Uj(opt
+
F )=

∑
(dix ,wj)∈Φ

six∆ρixj(Φ)+si∆ρij(Φ∪{(di, wj)}).(13)

Then, for ∀j∈ [1,m], we have

2∆Uj(Φ)≥∆Uj(opt
+
F )+

∑
(dix ,wj)∈(Φ\Γ)

six∆ρixj(Φ). (14)

Furthermore, based on Eqs. 5, 8 and 14, we get

2U(Φ) > U(opt+F ) ≥ U(optF ). (15)

Thus, the theorem is correct. �

4 ONLINE DATA OFFLOADING
In this section, we propose the online data offloading

algorithm, in which the data offloading decision is made
only when the user encounters the offloading opportunities.
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4.1 The Basic Idea
The basic idea is that the mobile user makes the online

data offloading decisions only when it encounters an offload-
ing opportunity. Here, the “encounter” means that the user
enters the communication range of the related WiFi AP and
at the same time this AP can provide offloading service.
When the user encounters the offloading opportunity wj ,
the estimated probability pj for this encounter is replaced
by 1. For convenience, we directly let pj = 1. Otherwise,
if the WiFi AP cannot provide offloading service when the
user visits it, we say that the user does not encounter the
offloading opportunity and let pj be replaced by 0.

Different from the offline case, we just focus on the data
offloading based on the encountered offloading opportunity
wj in the online case. That is, we will offload some data
items via wj in real time, while ignoring other offload-
ing opportunities. Moreover, once the offloading operation
(di, wj) is determined, the data item di is offloaded via
wj for sure, and it will not be considered for the later
offloading opportunities. This means that each data item
is scheduled only once in the online case. By extending
the offline strategy, we divide the online solution into two
phases: (1) we first determine the priority of data offloading
operations and remove the deadline constraints; (2) we
select the data offloading operations, which can increase the
offloading utility most quickly and at the same time satisfy
the capacity constraints.

In the first phase, we determine the priority of offloading
operations and remove the deadline constraints. Similar to
the offline case, the data items with smallest TTLs will be
offloaded first in the online case, since they have fewest
offloading opportunities. Also, we use Ωdi to denote the
set of deadline-satisfying offloading operations for the data
item di (∈D). Here, since we just focus on the encountered
offloading opportunity wj , Ωdi only contains one offloading
operation, i.e., Ωdi ={(di, wj)}, for the data item di.

In the second phase, we consider the capacity constraint
of the encountered offloading opportunity. For convenience,
we use Φj to denote the offloading solution corresponding
to the encountered offloading opportunity wj . For the data
item di, if the offloading operation (di, wj) in Ωdi satisfies
the capacity constraint of wj , it will be added into the
offloading solution Φj directly. Otherwise, we will con-
duct the replacement procedure. Concretely, we first find
a set Γ = {(dx, wj)|(dx, wj) ∈ Φj}, which satisfies the
capacity constraint of wj when replacing Γ by (di, wj), i.e.,
si ≤ qj+

∑
(dx,wj)∈Γ sx. Due to pj = 1, the incremental of-

floading utility of a data offloading operation (dx, wj)∈Φj

is actually the data size, i.e., sx. Based on this, we add the
offloading operations into Γ in the ascending order of data
sizes. By comparing the incremental offloading utility values
of (di, wj) and Γ, i.e., si and

∑
(dx,wj)∈Γ sx, we replace Γ by

(di, wj) if si>
∑

(dx,wj)∈Γ sx.

4.2 The Detailed Algorithm
The detailed algorithm is presented in Algorithm 2.

First, the offloading solution Φ∗ and Φj (1 ≤ j ≤ m) are
initialized to be empty in Step 1. Then, for each offloading
opportunity in W , if the mobile user encounters the j-th
offloading opportunity wj , the corresponding probability
pj is replaced by 1 and Algorithm 2 makes the online

Algorithm 2 The NDO Algorithm
Require: D, W .
Ensure: Φ∗.

1: Φ∗=Φj=ϕ (1≤j≤m);
2: for wj in W do
3: if the user encounters wj then
4: D={di|di∈D, ti≥τj}\{di|(di, wj)∈∪m

j=1Φj};
5: for di in D do
6: Ωdi = {(di, wj)};
7: while (∃ (di, wj)∈Ωdi) do
8: if si ≤ qj then
9: Φj = Φj∪{(di, wj)}, qj = qj−si;

10: else
11: Find a set Γ⊆Φj , s.t., si≤qj+

∑
(dx,wj)∈Γ sx;

12: if si>
∑

(dx,wj)∈Γ sx then
13: Φj=Φj∪{(di, wj)}\Γ;
14: qj=qj−si+

∑
(dx,wj)∈Γ sx;

15: Ωdi = Ωdi \{(di, wj)};
16: else
17: Continue; //the user does not meet wj , i.e., pj=0;
18: Φ∗=∪m

j=1Φj ;
19: return Φ∗;

offloading decisions in Steps 3-15, otherwise the algorithm
skips wj and continues in Steps 16-17.

More specifically, when the user encounters the offload-
ing opportunity wj , the set of data items, which have
not been offloaded and the corresponding TTLs have not
expired, is determined in Step 4. Then, the offloading opera-
tion corresponding to wj for each data item di is determined
in Steps 5-6. If the offloading operation (di, wj) in Ωdi

satisfies the capacity constraint of wj , it will be added into
Φj directly, and at the same time the remaining capacity
of wj is updated, in Steps 8-9. Otherwise, we determine
a set Γ ⊆ Φj satisfying si ≤ qj +

∑
(dx,wj)∈Γ sx, in Step

11. If the incremental offloading utility of (di, wj) is larger
than that of Γ, the offloading operations in Γ are replaced
with (di, wj), and the remaining transmission capacity of
wj is updated in Steps 12-14. Then, (di, wj) will be deleted
from Ωdi in Step 15. When the user does not encounter
wj , Algorithm 2 will skip wj and continue, in Steps 16-
17. At last, by combining the offloading solution for each
encountered offloading opportunity (i.e., Φj), Algorithm 2
terminates and outputs the final offloading solution Φ∗ in
Steps 18-19.

In addition, the computational overhead of Algorithm 2
is O(mn).

4.3 Performance Analysis
We use competitive ratio to evaluate the online approxi-

mation performance of NDO. Assume that there is a god,
who can foresee whether the mobile user will encounter
each offloading opportunity. Based on this knowledge, the
god can give an optimal online offloading solution, denoted
by optN . The competitive ratio is defined as the ratio of
optN and our online solution Φ∗, i.e., U(optN )

U(Φ∗) . This metric
is different from the approximation ratio adopted in the
offline case. Note that the approximation ratio is the ratio
of the optimal offline solution optF and our offline solution
Φ, i.e., U(optF )

U(Φ) . Since optF is not optimal in the online case,
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optN is better than optF . As a result, the competitive ratio is
more accurate than the approximation ratio. Then, we have:

Theorem 4. The competitive ratio of NDO satisfies

U(optN )

U(Φ∗)
< 2. (16)

Proof : We use mathematical induction to prove the cor-
rectness. Like the offline case, we consider a special solution,
where each item can be divisible. Then, the algorithm can
produce an online offloading solution for this case, denoted
by opt∗N . Also, we consider another special solution in
which each offloading opportunity can be broken once,
and use opt+N to denote the online solution. Similar to the
analysis in the offline case, we straightforwardly have

U(opt+N ) ≥ U(opt∗N ) ≥ U(optN ). (17)

Then, we focus on opt+N and Φ∗ hereinafter.
(1) Without loss of generality, we assume that the first

encountered offloading opportunity is wj1 , and the total g
data offloading operations have been selected for wj1 , i.e.,
Φj1 = {(dix , wj1)|1 ≤ x ≤ g}, in which dix = ⟨six , tix⟩.
When considering the next offloading operation (di, wj1),
we find that si>qj1 where qj1 is the remaining transmission
capacity of wj1 . Then, we determine a set Γ ⊆Φj1 so that
si≤ qj1+

∑
(dix ,wj1 )∈Γ six . Based on this, we have U(Φ∗)=

U(Φj1)=
∑

(dix ,wj1 )∈(Φj1\Γ) six+max{si,
∑

(dix ,wj1 )∈Γ six}
and U(opt+N ) =U(opt+Nj1

) =
∑

(dix ,wj1 )∈Φj1
six+si, where

U(opt+Nj
) denote the offloading utility corresponding to wj

based on the online solution opt+N . Thus, for wj1 , we get

2U(Φ∗) ≥ U(opt+N ). (18)

(2) Then, we consider that Eq. 18 holds for the h-th en-
countered offloading opportunity wjh , i.e., 2U(∪h

k=1Φjk)≥
U(∪h

k=1opt
+
Njk

), and now we take wjh+1
into account. When

the user encounters wjh+1
, we divide the situation into two

cases. In the first case, we consider that
∑

di∈D si≥ 1
2qjh+1

.
Hence, similar to the analysis in (1), we can directly get

2U(∪h+1
k=1Φjk)≥U(∪h+1

k=1opt
+
Njk

). (19)

In the second case, we consider
∑

di∈D si <
1
2qjh+1

. This
may be caused by the abandonment of offloading operations
for the encountered offloading opportunities. Without loss
of generality, we assume that only some data offloading
operations, whose corresponding TTLs of the data items are
between τjh and τjh+1

, are abandoned. This is because the
offloading operation (e.g., (di∗ , wjh)) with larger data size
where ti∗ ≥τjh+1

is added into Φjh . For convenience, we use
Dj to denote the set of data items whose TTLs are between
τj and τj+1. Then, in the worst case where Djh+1

= {di∗}
and si∗ <

1
2qjh+1

, we have

U(Φjh)+U(Φjh+1
)=si∗ ; (20)

U(opt+Njh
)+U(opt+Njh+1

)=si∗+
∑

di∈Djh

si. (21)

According to
∑

di∈Djh
si <

1
2qjh and si∗ ≥ 1

2qjh in the
second case, we can also get

2U(∪h+1
k=1Φjk)≥U(∪h+1

k=1opt
+
Njk

). (22)

Based on the nature of mathematical induction, we have

2U(Φ∗) ≥ U(opt+N ) ≥ U(optN ). (23)

As a result, the theorem holds. �

5 EXTENSION

In this section, we extend our problem to a more practical
scenario, where the transmission costs per unit data traffic
via WiFi networks are heterogeneous. We first introduce the
extended problem, and then propose a Heterogeneous Data
Offloading algorithm, called HDO, to solve this problem,
followed by the performance analysis.

5.1 The Extended Problem

In our initial problem, we consider that all WiFi AP
owners have come to an agreement with NSP, and made
the transmission costs per unit data traffic via all WiFi
networks be uniform. In a more general case, the WiFi APs
are distributed in different locations in the city. Different
locations mean different difficulty degrees of accessing WiFi
networks, resulting in different transmission costs per unit
data traffic. Hence, the initial triple w = ⟨τ, p, q⟩ to describe
the offloading opportunity from a WiFi AP, is replaced by
w = ⟨τ, p, q, c⟩, where c denotes the transmission cost per
unit data traffic via this WiFi AP. Moreover, we consider
that ∀cj(1 ≤ j ≤ m) is much smaller than the cost via
cellular networks C. We also use Φ to denote the data
offloading solution in the extended problem. According to
the defined offloading utility function U(Φ) =

∑n
i=1 siρi(Φ)

in the original problem, minimizing the total transmission
cost fcost(Φ) is equivalent to maximizing the utility function
U(Φ). However, in the extended case, the transmission costs
per unit data traffic via WiFi networks are different. That is
to say, here, minimizing the total transmission cost fcost(Φ)
is not equivalent to maximizing the utility function U(Φ).
Therefore, the greedy strategy used in the FDO and NDO
algorithms is not applicable. To solve the extended prob-
lem, we propose another concept of offloading cost function,
based on which we design another greedy algorithm, called
Heterogeneous Data Offloading (HDO) algorithm.

For the simplicity of following descriptions, we use
ϱij(Φ) to denote the expected probability that di is sched-
uled via WiFi AP wj with a given data scheduling solution
Φ. ϱij(Φ) is calculated in the following form:

ϱij(Φ)=
∏

k:k<j∧(di,wk)∈Φ

(1−pk)×pj . (24)

Also, we use ϱi0(Φ) to denote the expected probability
of transmitting data item di via cellular networks, and we
have the following definition.

Definition 6. [Expected Transmission Probability via Cellular
Networks] For a given data offloading solution Φ, the
expected transmission probability via cellular networks
for the data item di, i.e., ϱi0(Φ), satisfies:

ϱi0(Φ)=1−
m∑
j=1

ϱij(Φ). (25)
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Then, the total expected transmission cost for a given
data scheduling solution Φ is expressed as follows:

fcost(Φ)=
n∑

i=1

si
( m∑
j=1

ϱij(Φ)cj + ϱi0(Φ)×C
)
. (26)

Here,
∑m

j=1 ϱij(Φ)cj denotes the expected transmission
cost per unit data traffic via all WiFi networks, while
ϱi0(Φ)×C denotes the expected cost through cellular net-
works. The total cost of all data items that are transmitted
through cellular networks, is denoted as C×

n∑
i=1

si, which

is fixed. Hence, for a given data offloading solution Φ,
the total transmission cost via all WiFi networks can be
computed. Different from the concept of Offloading Utility
Function U(Φ) in Definition 5, we define an offloading cost
function as follows:

Definition 7. [Offloading Cost Function] The offloading cost
function of a data offloading solution Φ, denoted by
C(Φ), is the expected total cost of data items that will be
offloaded to WiFi networks under this data offloading
solution, which satisfies:

C(Φ)=C
n∑

i=1

si−fcost(Φ)=
n∑

i=1

si
( m∑
j=1

(C−cj)ϱij(Φ)
)
. (27)

Then, we formalize the extended problem as follows:

Maximize : C(Φ) (Extension)

Subject to :
∑

i:(di,wj)∈Φ

si ≤ qj , 1≤j≤m;

ti≥τj , for ∀(di, wj) ∈ Φ⊆D×W .

Note that when cj = c(1≤ j≤m), C(Φ)= (C − c)U(Φ),
indicating that U(Φ) is actually a special form of Offloading
Cost Function C(Φ). Also, we use ∆CΦ((di, wj)) to denote
the increment of C(Φ) after adding a new offloading oper-
ation (di, wj), based on a given data offloading solution Φ.
Thus, we have the following expression:

∆CΦ((di, wj)) = C(Φ ∪ {(di, wj)})− C(Φ). (28)

Similarly, we use ∆CΦ(Γ) to denote the incremental of-
floading cost function value by adding a set of offloading
operations Γ into the data offloading solution Φ.

5.2 The HDO Algorithm
To solve the extended problem in which the transmission

costs via different WiFi APs are heterogeneous, we propose
an extended algorithm, i.e., Heterogeneous Data Offloading
(HDO) algorithm. Since the extended problem also has
capacity constraints and deadline constraints, we adopt the
similar strategy used in the offline algorithm to remove
them. That is, we determine the priority of data offloading
operations and further remove the deadline constraints in
the first phase. Then, we select the offloading operations
that satisfy the capacity constraints in the second phase.

In the first phase, we determine the priority of offloading
operations and remove the deadline constraints. Concretely,
the data items with smallest TTLs will be considered first.
We also use Ωdi to denote the set of deadline-satisfying
offloading operations for the data item di. After we have
derived the set Ωdi for di ∈ D, we always select the data

Algorithm 3 The HDO Algorithm
Require: D,W where wj(∈W )=⟨τj , pj , qj , cj⟩.
Ensure: Φ.

1: Initialize Φ = ϕ and Ωdi = ϕ (di∈D);
2: for di from d1 to dn do
3: for wj from w1 to wm do
4: if τj ≤ ti then
5: Ωdi = Ωdi ∪ {(di, wj)};
6: while (∃ (di, wj)∈Ωdi) do
7: (di, wj∗)= argmax

(di,wj)∈Ωdi

∆CΦ((di, wj));

8: if si ≤ qj∗ then
9: Φ = Φ∪{(di, wj∗)}, qj∗ = qj∗−si;

10: else
11: Find a set Γ⊆Φ, s.t., si≤qj∗+

∑
(dx,wj∗ )∈Γ sx;

12: if ∆CΦ((di, wj∗)) > ∆CΦ\Γ(Γ) then
13: Φ = Φ∪{(di, wj∗)}\Γ;
14: qj∗ =qj∗−si+

∑
(dx,wj∗ )∈Γ sx;

15: Ωdi =Ωdi \{(di, wj∗)};
16: return Φ;

offloading operations from Ωdi (di ∈D). Based on this, the
data offloading solution Φ is deadline-satisfying.

In the second phase, we consider the capacity con-
straints. More specifically, we first select the data offloading
operation (di, wj∗), which can increase the defined offload-
ing cost function value most quickly. The greedy criterion of
selection in each round is formulated as follows:

(di, wj∗)= argmax
(di,wj)∈Ωdi

∆CΦ((di, wj)). (29)

Then, if the data offloading operation (di, wj∗) can sat-
isfy the capacity constraint of the offloading opportunity
wj∗ , it will be added into Φ directly. Else, we will conduct
the replacement procedure as follows. we first find a set
Γ ⊆ Φ to ensure the capacity constraint of wj∗ when
replacing Γ by (di, wj∗) (i.e., si≤qj∗+

∑
(dx,wj∗ )∈Γ sx). Here,

each data offloading operation (dx, wj∗) ∈ Γ is selected
based on the minimum increment of offloading cost function
value. Concretely, we organize the offloading operations
in Φ corresponding to wj∗ , i.e., {(dx, wj∗)|(dx, wj∗) ∈ Φ},
in the ascending order of the incremental offloading cost
function value, i.e., ∆CΦ\{(dx,wj∗ )}((dx, wj∗)). According to
this order, we add offloading operations into Γ one by one
until si ≤ qj∗+

∑
(dx,wj∗ )∈Γ sx is satisfied. After comparing

the incremental offloading cost function values of (di, w∗)
and Γ, i.e., ∆CΦ((di, wj∗)) and ∆CΦ\Γ(Γ), we will use
(di, wj∗) to replace Γ if the former is larger than the later.

Based on this greedy strategy, we present the Heteroge-
neous Data Offloading (HDO) algorithm, as shown in Algo-
rithm 3. The HDO algorithm also starts by initializing the
offloading solution set Φ and the sets of deadline-satisfying
offloading operations Ωdi (di ∈D), in Step 1. Then, the set
Ωdi for each data item di∈D is determined in Steps 2-5. We
select the data offloading operation (e.g., (di, wj∗)) which
can increase the offloading cost function value most quickly
in Steps 6-7. If (di, wj∗) satisfies the capacity constraint of
wj∗ , it will be added into Φ directly in Steps 8-9. Else, we
will conduct the replacement procedure in detail. We first
determine a set Γ ⊆Φ satisfying si ≤ qj∗ +

∑
(dx,wj∗ )∈Γ sx
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in Step 11. After comparing the incremental offloading cost
function values of (di, wj∗) and Γ, we choose the better one
for the data offloading, in Steps 12-14. Then, each considered
offloading operation (di, wj∗) will be deleted from Ωdi in
Step 15. At last, Algorithm 3 terminates and outputs the
offloading solution in Step 16.

Additionally, the computation overhead of Algorithm 3
is also O(m2n2).

5.3 Performance Analysis
In this subsection, we analyze the performance of Algo-

rithm 3. After denoting the optimal solution to the extended
problem as optT , we have the following theorem:

Theorem 5. The offloading cost function for the data offload-
ing solution Φ produced by HDO satisfies:

C(optT )
C(Φ)

< 2. (30)

Proof : Similar to the analysis of the FDO algorithm, we
first consider two special solutions opt∗T and opt+T . More
specifically, opt∗T and opt+T denotes the solutions obtained
by Algorithm 3, in which all data items are assumed to
divisible and the capacity constraints of offloading oppor-
tunities can be broken once, respectively. Since optT , opt∗T
and opt+T are produced by the same strategy, we have

C(opt+T ) ≥ C(opt∗T ) ≥ C(optT ). (31)

When comparing opt+T and Φ, we assume that there are
g data offloading operations corresponding to wj in Φ, de-
noted as {(dix , wj)|1≤x≤ g}. For the offloading operation
(di, wj), we assume si > qj . According to the replacement
strategy in Algorithm 3, we determine a set Γ ⊆ Φ so
that si ≤ qj +

∑
(dix ,wj)∈Γ six . The offloading operations

in Γ are selected based on the minimum incremental of-
floading cost function value, i.e., ∆CΦ\{(dix ,wj)}((dix , wj)).
In opt+T , (di, wj) will be added directly since each of-
floading opportunity can be broken once. In contrast, we
select (di, wj) if ∆CΦ((di, wj)) > ∆CΦ\Γ(Γ). Also, we use
∆Cj(Φ) to denote the incremental offloading cost function
value corresponding to wj based on the solution Φ. Since∑m

j=1(ϱij(Φ)−ϱij(Φ\{(di, wj)})) is actually the value of
∆ρij(Φ) defined in the offline case, we have

∆Cj(Φ)

C−cj
=

∑
(dix ,wj)∈(Φ\Γ)

six∆ρixj(Φ)

+max{
∑

(dix ,wj)∈Γ

six∆ρixj , si∆ρij(Φ∪{(di, wj)})}; (32)

∆Cj(opt+T )
C−cj

=
∑

(dix ,wj)∈Φ

six∆ρixj+si∆ρij(Φ∪{(di, wj)}). (33)

Then, we get

2∆Cj(Φ)≥∆Cj(opt+T )>∆Cj(optT ), for ∀j∈ [1,m]. (34)

Furthermore, we have

2 C(Φ) ≥ C(opt+T ) > C(optT ). (35)

Thus, this theorem holds. �

6 PERFORMANCE EVALUATION
We conduct extensive simulations to evaluate the per-

formances of our algorithms. Note that the FDO and NDO
algorithms are designed for the scenario where transmission
costs per unit data traffic via all WiFi networks are uniform,
while the HDO algorithm is designed for the case in which
transmission costs per unit data traffic via WiFi networks
are different. Hence, the simulations are divided into two
parts. The FDO, NDO algorithms and two compared al-
gorithms are conducted in the same simulation settings,
and the HDO algorithm is conducted with the compared
algorithms in other simulation settings. More specifically,
we first introduce the compared algorithms used in our
simulations. Then, we present the real trace that we used
and the corresponding settings. We also describe the syn-
thetic traces and the relevant simulation settings. Finally,
we present and analyze the obtained experimental results.

6.1 Algorithms in Comparison
As we discussed in Section 1, our problem is different

from the existing works. Previous offloading algorithms
cannot be applied in our problem directly. Hence, we im-
plement two other scheduling algorithms for comparison:
RS (Random Selection) and SRTF (Shortest Remaining Time
First). In the RS algorithm, all data offloading operations
are randomly selected from Ωdi (di ∈ D), while satisfying
capacity constraints of offloading opportunities and dead-
line constraints of offloaded data items simultaneously. In
the SRTF algorithm, all data items are first sorted in the
ascending order of their TTLs (Time-To-Live). Then, SRTF
selects the data items which satisfy the deadline constraints
to each offloading opportunity one by one according to this
order, until the total size of selected data items exceeds
the capacity of the corresponding offloading opportunity.
In other words, the data items with smallest TTLs will be
offloaded first.

6.2 Real-trace Used and Simulation Settings
We adopt the newest real dataset [31] collected from

two smartphone testbeds deployed in University at Buffalo
(UB) and University of Notre Dame (ND): 5-month scans
from PhoneLab at UB, and 32-month scans from NetSense
at ND. Smartphones perform WiFi scans to adapt to the
changing wireless environments caused by mobility, and
WiFi scan results data, together with other WiFi related logs,
is collected using the PhoneLab smartphone testbed over 5
months. Throughout the paper we mainly use the dataset
called WifiRSSIChange, which contains 274 contents and
one content corresponds to a specific WiFi AP. Moreover,
every content includes multiple files, each of which means
the logs of WiFi Received Signal Strength Indicator (RSSI)
change for a day. For the simplicity of following description,
these files are called LogDate. Each LogDate contains lots
of entries, and each one for the log of WiFi RSSI state for
a specific moment is called LogMoment. One LogMoment
includes (1) WiFi SSID and BSSID, (2) a log timestamp, (3)
WiFi linkspeed and (4) RSSI values.

We first select an arbitrary content (i.e., a WiFi AP) in
WifiRSSIChange, and then choose a file (i.e., LogDate) in
the content randomly. Next, we filtrate the WifiRSSIChange
and find all WiFi APs which contain the LogDate with the
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Fig. 4. Performance comparisons: total transmission cost and offloading ratio vs. the numbers of data items and the average sizes of data items.
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Fig. 5. Performance comparisons: the total transmission cost and of-
floading ratio vs. the different TTLs of data items.

same name as the selected LogDate. We let m be the number
of selected WiFi APs, and use W ={w1, · · · , wm} to denote
them. Since the WiFi linkspeed is changing over time in a
LogDate, we select an arbitrary moment in the LogDate to
denote the timestamp as the time that the user enters the
communication range of one WiFi AP, i.e., τj . Furthermore,
we use the time period, during which the linkspeed of WiFi
APs remains unchanged, to denote the time that the user
stays in the communication range of one WiFi AP. Then,
we calculate the capacity of each WiFi AP, i.e., qj , according
to the linkspeed and time period. In addition, we denote
the probability pj of accessing the WiFi AP wj by using
some random values which are generated from (0, 1]. By
that analogy, we can get the all parameters of satisfied WiFi
APs (τj , qj , pj , 1≤ j≤m). Note that τ1 ≤ τ2 ≤ · · · ≤ τm. Ad-
ditionally, we use τ and q to denote the average appearing
time and average capacity of all WiFi APs, respectively.

Note that the simulation settings in the initial and ex-
tended problems are same, except for the transmission costs
via all WiFi networks. Therefore, we first introduce the
same simulation settings in both scenarios, and then present
the different settings. Since there is no information about
mobile user in the dataset WifiRSSIChange, we generate a
fictitious mobile user and randomly produce the deadline-
sensitive data items for it. More specifically, the number
of data items is selected from {50, 100, · · · , 250}. The size
and Time-To-Lives (TTLs) of all data items are randomly
produced in [0, 2l] and [0, 2t], where l and t denote the
average size and TTL of data, respectively. Moreover, l
and t are selected from {0.05q, 0.1q, 0.15q, 0.2q, 0.25q} and
{0.1τ , 0.2τ , 0.3τ , 0.4τ , 0.5τ}, respectively.

For the simplicity of descriptions, the simulation settings
where the transmission cost via WiFi APs is uniform, based
on the real trace WifiRSSIChange, are called settings1-1. The
settings in which the transmission costs are different, are
called settings1-2. Hence, the different settings in initial and
extended problems are presented as follows.

1) settings1-1: We let the transmission costs per unit data
traffic via cellular network and WiFi networks be C = 0.1
and c=0.01, respectively.

2) settings1-2: We let the transmission costs via WiFi
networks be generated from [0, 2δ] randomly, where δ is

selected from {0.005, 0.01, 0.015, 0.02, 0.025}. Additionally,
we still let the transmission cost via cellular network be 0.1.

6.3 Synthetic Traces and Simulation Settings
In order to evaluate the performances of our algorithms

with different attributes of WiFi APs, we also conduct
a series of simulations on synthetic datasets. Similar to
WifiRSSIChange, the simulation settings in the synthetic
datasets are also classified into two parts. The simulation
settings in which the transmission cost via WiFi networks
is uniform based on synthetic trace, are called settings2-
1, while the settings which consider the differences of
transmission costs via WiFi networks, are called settings2-
2. We first introduce the common settings in settings2-1 and
settings2-2. To evaluate the performance of our algorithms
with different numbers of WiFi APs, we let the numbers
of WiFi APs be selected from {5, 10, · · · , 25}. More specif-
ically, we take another two attributes of WiFi APs into
consideration as follows. The capacities of WiFi APs are
randomly generated in [0, 2L], where L is selected from the
set {1000, 2000, · · · , 5000}. The probabilities of contacting
WiFi networks are produced in [0, 2p] randomly, and p is
selected from the set {0.1, 0.15, · · · , 0.3}, which is used to
generate contact events. Note that the different settings in
settings2-1 and settings2-2 are the same as settings1-1 and
settings1-2, respectively.

6.4 Evaluation Metrics
In a generic WiFi-based offloading model, the most im-

portant performance metrics include the amount of offload-
ed data and the offloading delay. However, in our mobile
data offloading model, the offloading delay is used as the
deadline constraints. Our primitive optimization problem
is to minimize the total data transmission cost. Hence,
the total transmission cost of all data items is used as a
most leading metric in our simulation. In addition to the
Total Transmission Cost (TTC), we also evaluated the data
offloading ratio (OR) which is defined as Eq. 36, based on
the initial problem and the extended problem.

OR =


∑n

i=1 siρi(Φ)∑n
i=1 si

; (P2)∑n
i=1 si(

∑m
j=1 ϱij(Φ))∑n

i=1 si
; (Extension)

(36)

6.5 Evaluation Results
6.5.1 Results of the Real Trace

1) settings1-1: We first present the results obtained by
the four algorithms, FDO, NDO and two compared al-
gorithms, according to the dataset WifiRSSIChange, in
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Fig. 6. Performance comparisons on the total transmission cost with the different numbers of data items, the average sizes of data items, the
average TTLs of data items, and the average transmission costs per unit data traffic via WiFi APs.
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Fig. 7. Performance comparisons on the offloading ratio with the different numbers of data items, the average sizes of data items, the average TTLs
of data items, and the average transmission costs per unit data traffic via WiFi APs.

settings1-1. The performance comparisons in terms of the
number of data items n, average size l and average TTL t of
data items, are presented in Figs. 4 and 5. In the simulations,
when we conduct the four algorithms by changing one of
the parameters n, l, and t, we keep others fixed. The results
of the total transmission cost (TTC) and offloading ratio
(OR) while changing the number of data items n are shown
in Figs. 4(a) and 4(b). Similarly, the results of TTC and OR
by changing l or t are shown in Figs. 4(c), 4(d), 5(a), and
5(b), respectively. By analyzing the results, we conclude that
NDO and FDO achieve about 26.6% and 10.9% smaller total
transmission costs than the two compared algorithms as
a whole, respectively. Additionally, we get that when the
number of data items or the average size of data items
increases, the TTCs of all algorithms increase, and the ORs
decrease; when the average TTL of data items increases, the
TTCs increase, while the ORs decrease. These simulations
validate our theoretical analysis results.

2) settings1-2: Then, we show the results obtained from
the HDO algorithm and two compared algorithms on
WifiRSSIChange, according to settings1-2. The performance
comparisons on TTCs of all data items and ORs with differ-
ent numbers of data items n, average sizes of data items l,
average TTLs of data items t or average transmission cost
via all WiFi networks c, are shown in Figs. 6 and 7. Here,
the default values of n, l, t, and δ are set to 100, 0.1q, 0.1τ
and 0.01, respectively. We see that when we change n, l, or t,
HDO always achieves the best performance, and gets about
67.7%, 23.3%, 35.1% smaller total transmission costs than
those of the compared algorithms, respectively. Moreover,
when we change the parameters of n or l, the TTCs and
ORs almost have the same change trend as the settings1-1.
We see that the ORs derived in HDO may be less than that
obtained in the compared algorithms. This is because that
the expected probability of offloading data to WiFi networks
in HDO may be less than that of RS and SRTF, resulting
in the lower ORs. However, the expected transmission cost
through WiFi networks in HDO, considering the various
transmission costs per unit data traffic via WiFi APs, may
be much smaller than that in RS and SRTF. In addition,
the performance comparisons on TTCs and ORs with the
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Fig. 8. Performance comparisons: the total transmission cost and of-
floading ratio vs. the number of WiFi APs.

parameter δ, are shown in Figs. 6(d) and 7(d). HDO gets
about 22.5% smaller total transmission costs than those of
the compared algorithms. Along with the increase of δ, the
TTCs obtained in all three algorithms increase correspond-
ingly. This is because the average transmission cost per unit
data size via all WiFi networks increases, resulting in the
higher total transmission costs. These simulation results are
still consistent with our theoretical analysis.

6.5.2 Results of Synthetic Traces
1) settings2-1: Next, we present the simulation results

of the four algorithms by using synthetic traces, based
on settings2-1. We evaluate the performances of the four
algorithms, taking the number of WiFi APs m, the accessible
probability p and capacity L of each WiFi AP into consid-
eration. Also, when we change one of the parameters for
evaluation, we keep the other parameters fixed. The per-
formances of TTCs and ORs by changing m are presented
in Figs. 8(a) and 8(b). As we expected, NDO achieves the
best performance, and FDO follows. The total transmission
costs of FDO and NDO are about 36.7% and 85.0% smaller
than those of the compared algorithms, respectively. The
offloading ratio of NDO achieves the best result; the FDO
and the two compared algorithms decrease stepwise. Then,
we evaluate the performances of the four algorithms by
changing the parameter p or L. The results of TTCs and
ORs are shown in Fig. 9. FDO and NDO achieve about
12.3% and 57.2% smaller total transmission costs than the
two compared algorithms, respectively. Additionally, NDO
has the biggest offloading ratio, and FDO follows. When
p or L increases, the total transmission costs decrease. The
offloading ratios of all algorithms increase simultaneously.
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Fig. 9. Performance comparisons: the total transmission cost and offloading ratio vs. the average accessing probability and capacity of WiFi APs.
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Fig. 10. Performance comparisons on the total transmission cost with the number of WiFi APs, the average probability of accessing WiFi APs, the
average capacity of WiFi APs, and the average transmission cost via WiFi APs.
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Fig. 11. Performance comparisons on the offloading ratio with the different numbers of WiFi APs, average probabilities of accessing WiFi APs,
average capacities, and average transmission cost per unit data traffic of WiFi APs.

2) settings2-2: Lastly, we evaluate the performances of
three algorithms: HDO, RS, and SRTF, by considering the
number of WiFi APs, average probability of accessing WiFi
APs, average capacity of all WiFi APs, and average trans-
mission cost via WiFi networks. Likewise, when we change
one of the parameters for evaluation, we keep the other pa-
rameters fixed. The simulation results are shown in Figs. 10
and 11. The results demonstrate that HDO achieves better
performances than RS and SRTF, about 10.8% smaller total
transmission costs than the two compared algorithms. In
addition, along with the increase of the number of WiFi
APs, average capacity of WiFi APs, and average probability
of mobile user visiting WiFi APs, the TTCs decrease. The
ORs of all algorithms increase simultaneously. In contrast,
along with the increase of the transmission costs via all
WiFi networks, the TTCs increase. These simulations remain
consistent with our theoretical analysis results.

7 RELATED WORK
In this paper, we focus on the data transmission problem

in mobile cloud computing applications, in which these
offloading data items must share a combinatorially proba-
bilistic optimization objective. By far, the latest works [2–
4, 7, 10, 17, 33, 37] concentrate on offloading traffic from
cellular networks to other coexisting networks to provide
better service. In a broad sense, offloading cellular traffic
can be mainly classified into two categories: WiFi-based
offloading [1, 12, 20, 21, 25, 27, 32, 33] and DTNs-based
offloading [14, 22, 28, 29, 34, 38].

Generally, data offloading through third party WiFi APs
or femtocell APs requires the cooperation and agreement
of both the mobile cellular network operators (MNOs) and

AP owners (APOs). Gao et al. [12] developed a model to
analyze the interaction among one MNO and multiple APOs
by using Nash bargaining theory. Lee et al. [20] studied the
economic benefits generated due to delayed WiFi offload-
ing, by analyzing the traffic load balance between cellular
networks and WiFi networks. In the work [18], the hetero-
geneous network is responsible for collecting the network
information, and decides the specific portion of traffic to
be transmitted via WiFi networks, to maximize the per-user
throughput. Wang et al. [33] proposed an auction-based al-
gorithm to achieve both load balancing among base stations
and fairness among mobile users, which optimally solves
the global proportional fairness problem in polynomial time
by transforming it into an equivalent matching problem.
Additionally, Mehmeti et al. [25] proposed a queueing an-
alytic model for delayed WiFi offloading, and derive the
mean delay, offloading efficiency, and other metrics of inter-
est, as a function of the user’s “patience”. The authors in the
work [10] proposed and evaluated an integrated architec-
ture exploiting the opportunistic networking paradigm to
migrate data traffic from cellular networks to metropolitan
WiFi APs. Different from the aforementioned works, our
purpose is to minimize the total transmission cost of all data
items, from the perspective of mobile users. Additionally,
we take the deadline constraints and the capacity constraints
into consideration simultaneously.

Furthermore, our work is also different from the of-
floading using DTNs. For example, Zhuo et al. [38] mainly
investigated the trade-off between the amount of traffic
being offloaded and the users’ satisfaction. Then, they pro-
posed a novel incentive offloading target where users with
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high delay tolerance and large offloading potential will be
prioritized for traffic offloading. Li et al. in [22] established a
mathematical framework to study the problem of multiple-
type mobile data offloading under realistic assumptions,
where (1) mobile data is heterogeneous in terms of size and
lifetime; (2) mobile users have different data subscribing
interests; and (3) the storages of offloading helpers are
limited. Then they formulated the objective of achieving
maximum mobile data offloading as a submodular function
maximization problem with multiple linear constraints of
limited storage, and proposed three algorithms to solve this
challenging optimization problem. The authors of work [34]
proposed the framework of traffic offloading assisted by
Social Network Services (SNS) via opportunistic sharing,
to offload SNS-based cellular traffic by user-to-user sharing,
which is formulated as a special target-set selection problem.
Han et al. [14] exploited opportunistic communications to
facilitate information dissemination in the emerging Mobile
Social Networks (MSNs) and thus reduce the amount of
mobile data traffic. The work [14] investigated the target-set
selection problem for information delivery to minimize the
cellular data traffic. Different from the existing problems, we
formulate the objective of achieving the minimum of data
transmission cost from a mobile device to the cloud side.

We deduce the problem as an optimization problem
with a probabilistic combination of multiple 0-1 knapsack
constraints, which also differs from the existing MKP [5, 26].
The closest to our problem is the Multiple 0-1 Knapsack
problem with Assignment Restrictions and Capacity Con-
straints (MK-AR-CC) [26], in which multiple knapsacks is
independent. By contrast, the multiple 0-1 knapsack con-
straints in our optimization problem involves a probabilistic
combination, and each item, which is allowed to be assigned
to multiple knapsacks, shares a combinatorially probabilistic
optimization objective in our model. Thus, our problem is
more complicated than MK-AR-CC. The method used in
MK-AR-CC [26] cannot solve our problem. Since dynamic
programming cannot solve MK-AR-CC [26] to get an opti-
mal result, it cannot solve our problem.

Besides, some recent research efforts have been focused
on other aspects while alleviating the traffic load over cel-
lular networks. For example, Saad et al. [30] considered the
problem of uplink user association in small cell networks,
and then proposed a distributed algorithm to solve it. Bar-
bera et al. [2] designed and built a working implementation
of CDroid, a system that tightly couples the device OS to
its cloud counterpart, where the cloud-side handles data
traffic through the device efficiently and caches code or
data optimally for possible future offloading. Higgins et
al. [16] designed a useful mobile prefetching system, where
they used a cost-benefit analysis to decide when to prefetch
data, and employed goal-directed adaptation to minimize
application response time while meeting budgets for battery
lifetime and cellular data usage.

8 CONCLUSION
We have studied the problem of how to offload multiple

mobile data items from cellular networks to WiFi networks
to minimize the total transmission cost from the perspective
of mobile users. These data items are heterogeneous in data

sizes and TTLs, and the capacities of WiFi networks are
limited. We first prove the NP-hardness of the offloading
problem. Then, we design the offline algorithm (FDO) and
the online algorithm (NDO) to solve the optimization prob-
lem. We prove that FDO achieves the approximation ratio of
2, and NDO achieves the competitive ratio of 2. In addition,
we extend our problem and solution to a more general
scenario where the transmission costs per unit data traffic
via WiFi networks are heterogeneous. We further propose
the heterogeneous data offloading algorithm (HDO), and
analyze the performance of HDO. At last, extensive simu-
lations based on real and synthetic traces are conducted to
verify the significant performances of our algorithms.
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