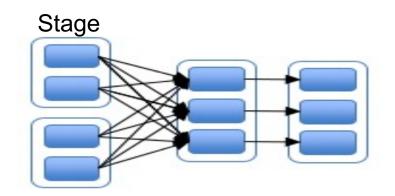
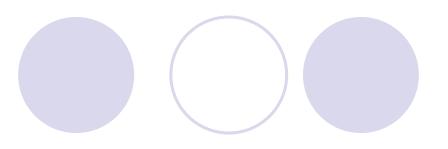
Reducing Average Job Completion Time for DAG-style Jobs by Adding Idle Slots

Yubin Duan and Jie Wu Dept. of Computer and Information Sciences Temple University, USA

GLOBECOM 2022


Outline

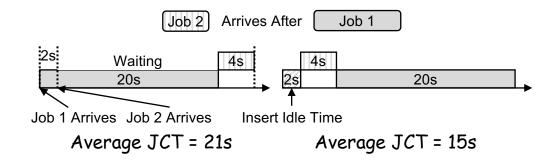
- 1. Introduction
- 2. Model
- 3. Idle-Aware Scheduler
 - Optimal conditions
 - RL-based scheduler
- 4. Experiment
- 5. Conclusions


1. Introduction

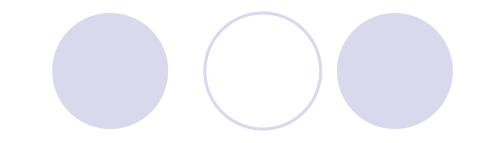
DAG-style job scheduling

- Big data processing jobs usually have DAG-style comp. graphs
- Scheduler:
 - Determine starting time of each stage
 - Decide number of executors allocated to each stage
- Objective
 - Minimize average job completion time (JCT) for online arrival jobs
 - JCT of each job: finish time arrival time

Motivation



Challenges


- DAG scheduling problem is NP-hard
 - Complex precedence constraints
- Unknown online arrival pattern brings additional challenges

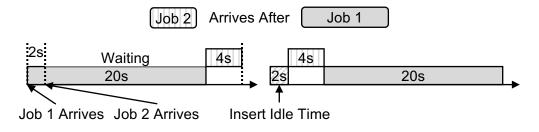
Observation

• Inserting deliberate idle time can reduce average JCT

2. Model

- List scheduling approach
 - Stage-level scheduling
 - Ordered list of processing sequence for job $i: O_i$
 - Parallelism level for stage j in job i: p_{ij}
 - Deliberate idle time for stage j in job i: d_{ij}

$$S_{i0} = [s_{i0}, s_{i1}, s_{i3}, s_{i4}, s_{i2}]$$
Schedule $O_i = [s_{i0}, s_{i1}, s_{i3}, s_{i4}, s_{i2}]$


3. Idle-Aware Job Scheduler

Optimal conditions for one-stage jobs

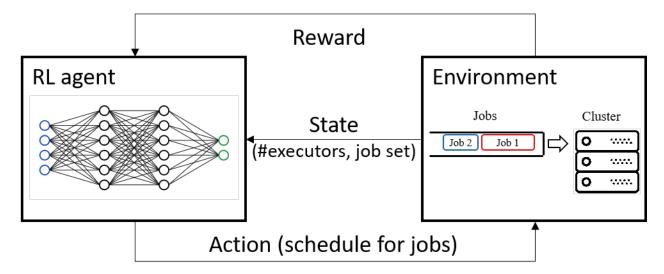
Theorem 1: For two adjacent jobs J_1 and J_2 , there exists an idle slot with length d_1 such that inserting it before J_1 could reduce the average JCT of J_1 and J_2 when $0 < (a_2 - a_1) \le (l_1 - l_2)/2$ and $l_1 > l_2$.

Insights

- Small jobs waiting for large jobs would enlarge average JCT
- Inserting idle slots before small jobs can prevent this case

Optimal Idle Time

- Need online arrival patterns to calculate
 - Optimal idle time: $d^* = \operatorname{argmin}_{d} \mathbf{E}[\eta|d]$


• η : average JCT. For the two-job case:

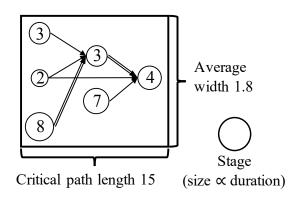
$$\eta' = \begin{cases} (\max\{x, l_1 + d_1\} + l_1 + d_1 + l_2 - x)/2, & 0 \le d_1 < x; \\ (\max\{x + l_2, d_1\} + l_1 + l_2)/2, & d_1 \ge x. \end{cases}$$

- Hard to find closed-form solutions
- Learn the unknown online arrival pattern
 Assumption: job arrival pattern is stable

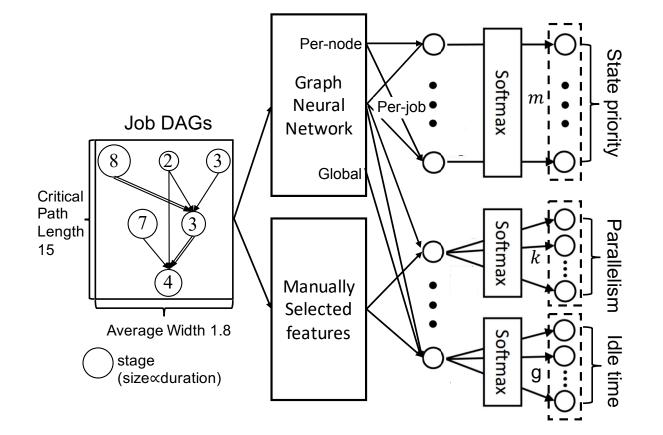
RL-based Scheduler

Reinforcement learning framework

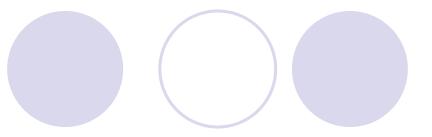
- Scheduling events:
 - New job arrival
 - An executor becomes available


Action Space Design

Priority score


- Determine the processing sequence
- Parallelism level
 - Determine the number of executors allocated to each stage
- Discretized idle time
 - Discretize idle time based on the stage size
 - Idle block: 1/G of the stage
 - Scheduler choose the number of idle blocks to insert

Policy Network Design


- Use graph neural network to capture DAG structure
- Use job abstraction to estimate job processing time
 - Job abstraction
 - Job length: critical path length
 - Job width: total job size / critical path length
 - Insights
 - Optimal idle time length is closely related to job length

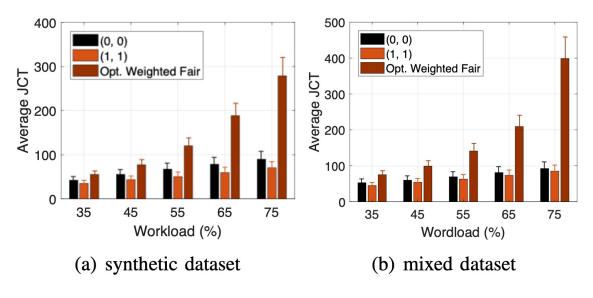
Policy Network Overview

4. Experiment

Experiment Setup

- Synthetic dataset
 - Short/long jobs randomly arrives
- Real-world dataset
 - TPC-H queries
- Mixed dataset
 - Randomly sample from synthetic and real-world datasets with a given ratio
- Training procedure
 - Gradually increase the workload
- Training platform
 - Ubuntu 20.04
 - 64 GB RAM
 - GTX 1080

Experiment Results


Compare RL agents

Label: (whether inserting idle slots, whether using job abstraction)

AVERAGE JCT EVALUATED IN DIFFERENT DATASETS

	(1,1)	(0,1)	(1,0)	(0,0)
Synthetic	46.3	52.7	53.5	55.0
Mixed	69.4	75.2	74.5	77.6

Performance under different cluster workloads

5. Conclusion

- Investigated online DAG-style job scheduling
 - NP-hard problem

Proposed to insert idle slots to reduce average JCT

- Prevent short jobs waiting for long jobs
- Theoretically proved the benefits of idle slots
 - Optimal conditions
- Enhanced the RL-based scheduler
 - Job abstractions

Thank you! Q & A

yubin.duan@temple.edu