
Reducing Average Job Completion Time for
DAG-style Jobs by Adding Idle Slots

Yubin Duan and Jie Wu
Dept. of Computer and Information Sciences

Temple University, USA

GLOBECOM 2022

Outline

1. Introduction

2. Model

3. Idle-Aware Scheduler

l Optimal conditions

l RL-based scheduler

4. Experiment

5. Conclusions

1. Introduction

T
X

l DAG-style job scheduling
¡ Big data processing jobs usually have DAG-style comp. graphs
¡ Scheduler:

l Determine starting time of each stage
l Decide number of executors allocated to each stage

l Objective
¡ Minimize average job completion time (JCT) for online arrival jobs

l JCT of each job: finish time – arrival time

Stage

Motivation

T
X

l Challenges
¡ DAG scheduling problem is NP-hard

l Complex precedence constraints

¡ Unknown online arrival pattern brings additional challenges

l Observation
¡ Inserting deliberate idle time can reduce average JCT

20s
Waiting

20s
4s

2s
4s

Job 1Job 2 Arrives After

Insert Idle Time

2s

Job 2 ArrivesJob 1 Arrives

Average JCT = 21s Average JCT = 15s

2. Model

T
X

l List scheduling approach

¡ Stage-level scheduling

l Ordered list of processing sequence for job 𝑖: 𝑂!

l Parallelism level for stage 𝑗 in job 𝑖: 𝑝!"

l Deliberate idle time for stage 𝑗 in job 𝑖: 𝑑!"

𝑠!"
𝑠!#

𝑠!$ 𝑠!%

𝑠!&
Schedule 𝑂! = [𝑠!", 𝑠!#, 𝑠!$, 𝑠!%, 𝑠!&]

3. Idle-Aware Job Scheduler

l Optimal conditions for one-stage jobs

l Insights
¡ Small jobs waiting for large jobs would enlarge average JCT
¡ Inserting idle slots before small jobs can prevent this case

Theorem 1: For two adjacent jobs 𝐽! and 𝐽", there exists an
idle slot with length 𝑑! such that inserting it before 𝐽! could
reduce the average JCT of 𝐽! and 𝐽" when 0 < (𝑎" − 𝑎!) ≤
(𝑙! − 𝑙")/2 and 𝑙! > 𝑙".

20s
Waiting

20s
4s

2s
4s

Job 1Job 2 Arrives After

Insert Idle Time

2s

Job 2 ArrivesJob 1 Arrives

Optimal Idle Time

T
X

l Need online arrival patterns to calculate
¡ Optimal idle time: 𝑑∗ = argmin

"
𝐄[𝜂|𝑑]

l 𝜂: average JCT. For the two-job case:

¡ Hard to find closed-form solutions
l Learn the unknown online arrival pattern

¡ Assumption: job arrival pattern is stable

RL-based Scheduler

l Reinforcement learning framework

¡ Scheduling events:
l New job arrival
l An executor becomes available

Action Space Design

T
X

l Priority score
¡ Determine the processing sequence

l Parallelism level
¡ Determine the number of executors allocated to each stage

l Discretized idle time
¡ Discretize idle time based on the stage size

l Idle block: 1/𝐺 of the stage
l Scheduler choose the number of idle blocks to insert

l Use graph neural network to capture DAG structure
l Use job abstraction to estimate job processing time

¡ Job abstraction
l Job length: critical path length
l Job width: total job size / critical path length

¡ Insights
l Optimal idle time length is closely related to job length

Policy Network Design

T
X

8

3

2
3

4
7

stage (size�∝�duration)

Average
width 1.8

Critical path length 15
Stage

(size ∝ duration)

Policy Network Overview

T
X

������
�	����
�	�����

�������
�		��	��

	����	�

��
������

��������

�������

������

��	�����������

�

�

�	�	�������
�

��������
�

� ��

�

�

�

��������
�����
�������
��

	���������������

������
���������������

Per-node

Global

Per-job

4. Experiment

T
X

l Experiment Setup
¡ Synthetic dataset

l Short/long jobs randomly arrives

¡ Real-world dataset
l TPC-H queries

¡ Mixed dataset
l Randomly sample from synthetic and real-world datasets with a given ratio

¡ Training procedure
l Gradually increase the workload

¡ Training platform
l Ubuntu 20.04
l 64 GB RAM
l GTX 1080

Experiment Results

T
X

l Compare RL agents
¡ Label: (whether inserting idle slots, whether using job abstraction)

l Performance under different cluster workloads

5. Conclusion

T
X

l Investigated online DAG-style job scheduling
¡ NP-hard problem

l Proposed to insert idle slots to reduce average JCT

¡ Prevent short jobs waiting for long jobs

l Theoretically proved the benefits of idle slots
¡ Optimal conditions

l Enhanced the RL-based scheduler
¡ Job abstractions

Thank you!
Q & A

yubin.duan@temple.edu

