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Abstract—In trust-based recommendation systems, if a user
is predicted to have a high rating of a product, then this product
is recommended to that user for shopping potential. Therefore,
rating predictions are critical for qualified recommendations. In
this paper, based on the fluid dynamics theory, we propose a novel
rating prediction scheme called DynFluid. The key observation is
that the rating of a user depends on his/her user experience, as
well as the ratings of other users. For example, users may refer
to friends’ ratings upon rating a product, themselves. DynFluid
analogizes the rating reference among the users to the fluid flow
among containers: each user is represented by a container; the
rating of a user is mapped to be the fluid temperature in the
corresponding container. Two user characteristics, persistency
and persuasiveness, are also incorporated into DynFluid. Finally,
real data-driven experiments in Epinions and Ciao validate the
efficiency and effectiveness of the proposed DynFluid.

Keywords—Online social networks, recommendation systems,
trust propagation, rating prediction, fluid dynamics.

I. INTRODUCTION

Nowadays, increasing amounts of people are involved in
Online Social Networks (OSNs) for daily activities, including
forming an opinion on a particular product. One central issue in
OSNs is the notion of trust. To be trusting is to be fooled from
time to time; to be suspicious is to live in constant torment.
More specifically, trust in OSNs denotes the subjective prob-
ability by which a user expects another given user to perform
a given action. One important application of trust is in online
recommendation systems, such as Epinions and Ciao [1]. Such
systems have two essential components: the rating (or opinion)
of a user on a product and the trust relationships among users.
Generally speaking, the product rating given out by a user
depends on his/her user experience, as well as the existing
ratings of the other users (such as trusted friends).

In this paper, we focus on the rating prediction problem in
trust-based recommendation systems [2]. If a user is predicted
to have a high rating on a product, then the service provider can
recommend this product to that user for the shopping potential.
As shown in Fig. 1, a typical online recommendation system
provides the following product information to a user: a brief
product description; a public broadcast channel (or simply
public channel) that shows the average product rating of all
users; the ratings and comments from the trusted friends of
that user; the ratings and comments from the strangers. The
last one is not shown in Fig. 1 and is not considered in this
paper. This is because very few users would read the ratings
and comments from the strangers. On the other hand, trusted
friends’ ratings and the public channel are likely to be referred
to when users give out their own ratings.

Fig. 1. An illustration for the rating of a product in Ciao.

Our rating predictions are based on the references of the
ratings among the users. To further understand the rating
behavior of a user, here we introduce two concepts called
persistency and persuasiveness. Persistency denotes how much
a user insists on his/her own user experience. A user with a low
persistency would like to refer to the ratings of other users. On
the other hand, persuasiveness denotes the convincingness of a
user’s rating. A user with a higher persuasiveness indicates that
his/her ratings are more likely to be referred to by the other
users. These two user characteristics are critical for improving
the accuracy of the rating predictions.

We first consider the scenario with one product. A subset
of users (raters, denoted as R) have prior ratings on the
product. The remaining non-raters (denoted as N ) have not
rated the product, but they can refer to the existing ratings
before giving out their own ratings. In other words, the non-
raters are influenced by the raters, in terms of the ratings. An
example for our system is shown in Fig. 2, where the numbers
on the top of the raters are their prior ratings of the product.
Directional links are trust relationships. Then, a directional link
from a1 to a3 means that a1 is trusted by a3, and thus a3 may
refer to a1’s rating before giving out its own rating.

As shown in Fig. 2, our main idea is to analogize the rating
reference (representing the opinion propagation) among the
users to the fluid flow among the containers. The users are
mapped to be containers, while the trust relationships among
users are mapped to be directional pipes (pipes with one-way
valves). The fluid temperature in a container represents the
rating of the corresponding user. For example, in Fig. 2, the
rater a1 has a rating of 3, and thus the corresponding fluid
temperature is 3◦C. Then, the persistency and persuasiveness
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Fig. 2. An illustration of DynFluid. Each user corresponds to a container,
while the directional pipes represent the trust relationships among users. The
container ab is added to represent the public channel.

of a user are represented by the fluid height and the cross-
sectional area of the corresponding container, respectively. A
higher fluid height indicates a larger persistency, and a larger
cross-sectional area indicates a higher persuasiveness. This is
because a container with a higher fluid height and a larger
cross-sectional area can send out more fluid to change the rat-
ings of its neighbors. Once there exists a fluid height difference
between two connecting containers, fluid will gradually flow
from one container to the other. These kinds of fluid dynamics
represents how the users value their trusted friends’ ratings
in a time-evolving manner. To further incorporate the public
channel, we add an extra container (the container ab in Fig. 2)
into the system. This extra container connects to all the non-
raters, since the public channel can be seen by all the users.
We are very interested in the impact of the public channel,
compared to the impact of the trusted friends. For one user,
is the public channel more trustworthy than one of the trusted
friends? This question will be explored in our paper.

Our results and contributions are summarized as follows:

• We propose a clean-slate rating prediction method,
DynFluid, to capture the time-evolving rating in the
trust-based recommendation systems. DynFluid con-
siders both the influence from the public channel and
the ratings from trusted friends, which are likely to be
referred to for users to make their own ratings.

• We introduce the two concepts of persistency and per-
suasiveness, which reveal the users’ rating behaviors.
The fluid dynamics theory is used to model the rating
process. Users are mapped into containers, while the
trust relationships are mapped into directional pipes.
The rating, persistency, and persuasiveness of a user
is mapped into the fluid temperature, the fluid height,
and the container’s cross-sectional area, respectively.

• Real data-driven experiments in Epinions and Ciao are
conducted to evaluate the proposed DynFluid. The re-
sults are shown from different perspectives to validate
the efficiency and effectiveness of our approach.

The remainder of this paper is organized as follows: Section
II surveys related work. Section III states the model and then
formulates the problem. Section IV describes the DynFluid,
including its analogy insights and algorithmic properties. Sec-
tion V includes extensive real data-driven experiments. Finally,
Section VI concludes this paper.

II. RELATED WORK

In this section, we review the literature of trust models, trust
propagations, and ratings in the recommendation systems.

Trust models. Currently, a wide range of disciplines have
examined various issues related to trust [3]. However, there is
no consensus on how trust should be defined. In [4–6], trust
in a person is defined as a commitment to an action, based on
a belief that the future actions of that person will lead to a
good outcome. Here, trust is subjective and personalized. We
consider the trust to be asymmetric. A user may trust another
user more than he is trusted back. Another closely-related
concept is reputation, which is usually an objective measure.
One may trust a stranger if he/she has a strong reputation [7].

Trust Propagations. Generally speaking, the trust follows
the principle of transitivity [3]. Trusts among users form a
trusted graph. Sun et al. [8] gave an information-theoretic
framework on trust propagation by stating two axioms as
possible guiding principals: (1) concatenation propagation of
trust does not increase trust, and (2) multipath propagation of
trust does not reduce trust. The existing path-based propagation
methods include the Dempster-Shafer combination rule [9],
serial-parallel merge [10] using subjective logic, and path con-
catenation [11] from path algebra. Several models have been
proposed for graph-based propagation. Both MoleTrust [5] and
TidalTrust [4] are based on breadth-first search. TidelTrust se-
lects the strongest shortest path, while MoleTrust uses the hop
count (also called horizon) to control the length of the selected
path. However, these approaches are information-lossy, while
some more interesting approaches are graph analogy-based.
In [12], a generalized reliability theory is applied to a trusted
network with failure-prone elements. RelTrust [13] emulates
a trusted graph with a resistive network, using a logarithmic
function to map the trust values to the resistance values.

Ratings. In rating-based systems, the rating (or opinion)
of a user is usually represented as a numeric value on an
online website [1]. Anderson et al. [14] introduced a finite
integer set with {+,−, 0} representing positive, negative, and
neutral ratings. The predictions of positive ratings are more
useful than those of negative ratings. This is because only
products with predictions of positive ratings are recommended
to the users. In our model, the rating is measured by the fluid
temperature, which can be easily updated based on the fluid
dynamics theory. Zhu et al. [15] found that a person’s opinion
is significantly swayed by others’ opinions. Our DynTrust
takes the basic finding in [16] as a foundation: when new
opinions come, each person refines his opinion through rounds
of opinion exchanges with friends. The opinions in DynTrust
are treated unequally when they are mixed, where the user
characteristics are considered.

III. MODEL AND PROBLEM FORMULATION

In this paper, we focus on the rating prediction problem
in trust-based recommendation systems. Accurate predictions
can help the service provider recommend appropriate products
to the user for shopping potential. Generally speaking, the
rating of a user depends on his/her user experience, as well
as the ratings of other users. For example, users may refer to
the ratings of trusted friends upon their own ratings (i.e., the
opinion propagations among users). However, user experience
depends on many external unknown factors, and thus is hard
to predict. Therefore, we predict the rating of a user, based on
the ratings of his/her trusted friends and the public channel.
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Fig. 3. A motivational example to illustrate the analogy insights.

To model the rating behavior of a user, the concepts of
persistency and persuasiveness are introduced into our scheme.
Persistency denotes how much a user insists on his/her own
user experience. A user with a low persistency would like to
refer to the ratings given out by the other users (including
the trusted friends and the public channel). On the other hand,
persuasiveness denotes the convincingness of a user’s rating. A
user with a higher persuasiveness means that his/her ratings are
more likely to be referred to by the other users. Our scenario
is based on a directed graph G = (V,E), where V is a set
of nodes (i.e., users), and E ⊆ V 2 is a set of directed edges
(i.e., trust relationships). The edge eaa′ has the direction from
the node a to a′, indicating that a is trusted by a′, and thus a′

may refer to a’s rating before giving out his/her own rating.
The node set V can be divided into two subsets: a subset of
raters, R, and a subset of non-raters, N . The raters have given
out their ratings on the product, and they cannot change their
ratings anymore. The non-raters have not rated the product,
but they may refer to the existing ratings to give out their
own ratings, based on the persistency and persuasiveness of
the users. The objective of this paper is to predict the ratings
of non-raters in a time-evolving manner.

IV. DYNFLUID: ALGORITHM DETAILS

In this section, we describe the analogy insights of Dyn-
Fluid. Then, the fluid update principles are proposed, based
on the fluid dynamics theory. An algorithm overview is given
out. We also analyze DynFluid from different perspectives.

A. Analogy Insights

Our main idea is that the rating reference process (or
opinion propagation process) is analogous to the fluid flow. The
users are modeled as containers, while the trust relationships
among users are modeled as directional pipes (i.e., pipes with
one-way valves). All the containers are placed on the same
horizontal plane. The containers are large enough to hold the
fluid (the fluid will not overflow). Pipes are installed at the
bottom of the containers, and may have different pipe sizes (the
cross-sectional areas of pipes). For a pipe from a to a′, its pipe
size is denoted as waa′ , which represents the strength of the
corresponding trust relationship. A larger pipe size indicates a
higher level of trust. As shown in Fig. 2, the fluid temperature
in a container represents the rating of the corresponding
user. Then, the persistency and persuasiveness of a user are
represented by the fluid height and the cross-sectional area of
the corresponding container, respectively. For the user a, the
corresponding fluid temperature, fluid height, and the cross-
sectional area is denoted by ta, ha, and ca, respectively. A
higher fluid height indicates a larger persistency, while a larger
cross-sectional area indicates a higher persuasiveness.

To capture the analogy insights, a motivational example is
provided in Fig. 3, where we have two containers (users) of
a and a′. Then, we have four analogy insights. (1) The height
of the fluid in a′ is lower than that in a. Therefore, the fluid
in a flows into a′ through the one-way pipe, meaning that a′
refers to the rating given out by its trusted friend a. In other
words, a′ does not insist on its own user experience (i.e., a
low persistency), and thus it wants to refer to the ratings of its
trusted friend for its own rating. (2) Since a has a very small
cross-sectional area (i.e., a low persuasiveness), only a small
volume of fluid would eventually flow from a to a′ at the end.
This means that the rating of a is not very convincing, and
thus, it only slightly changes the rating of a′. (3) The fluid
from a mixes up with the existing fluid in a′, representing that
a′ refines its own opinion in a time-evolving manner. The fluid
temperature (the rating) of a′ is changed by the fluid from a.
(4) The pipe size has some impacts on the duration of the fluid
flowing time. If waa′ is large, then the fluid in a flows into a′

within a short time. This means that a′ updates its rating more
quickly, if a′ trusts a more. These four analogy insights show
that the fluid flow can capture the rating reference process (or
opinion propagation process) in a decent way.

B. Fluid Update Principles

Discrete Approach. In the real world, the fluid flow is a
continuous-time system, which is hard to compute. Hence, the
discrete approach is used in this paper. The continuous physical
time is discretized into a series of time slots. The duration of
each time slot is denoted as ∆t. To accurately capture the
continuous-time system, ∆t should be small enough. Fluid
flows are described as a set of partial differential equations.
We consider that the fluid update is performed synchronously
at the end of each time slot. The update process is shown in
Fig. 4, which corresponds to the previous example in Fig. 2.
Let R denote the total number of the fluid updates. At the
beginning of the ith time slot, we prepare the fluid update and
check whether the fluid will flow in each pipe, by comparing
the fluid heights of two connected containers. If there is a
directional pipe from a to a′, and the fluid height in a is higher
than that of a′, the fluid will flow from a to a′; if either of
the two conditions do not meet, no fluid will flow. The first
condition means that a is trusted by a′, and thus, the rating of
a may be referred to by a′. The second condition means that a′
has a low persistency, and thus a′ wants to refer to the rating
of a to give out its own rating. Then, we record the volume
and temperature of the flowing fluid. At the end of each time
slot, we mix up the flowing fluid and the remaining fluid in
each container as the fluid update.

Initialization. The fluid heights of all the non-raters are
initialized to be zero, since they have not rated the product
yet. The fluid height of each rater is initialized according to
the persistency of that rater (or a constant if this information
is not available). Meanwhile, the fluid temperatures of all the
raters are initialized according to their ratings, as shown in Fig.
2. The cross-sectional area of each user is initialized based on
the persuasiveness of that user (or a constant if this information
is not available). As for the public channel, it is modeled
as an extra container that connects to all the non-raters. The
initialization of the public channel is similar to that of the
raters, the only exception being that its fluid temperature is set
as the average fluid temperature among all the raters.
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Fig. 4. A discrete approach to compute the fluid flow.

Update Details. First, let us consider a single pipe, say the
pipe connecting a and a′, with cross-sectional area waa′ . This
scenario has been shown in Fig. 3. At the beginning of the ith

time slot, if a has more fluid than a′ (i.e., ha(i) > ha′(i),
where ha(i) is the fluid height of a at the ith time slot),
fluid will flow from a to a′ during this time slot of duration
∆t. Based on the fluid dynamics theory (typically Bernoulli’s
principle [17]), the speed of fluid flowing at the bottom of
a will be 2g

√
ha(i)− ha′(i). Here, g is the gravitational

acceleration, which is a constant. Hence, the volume of fluid
that flows from a to a′ in the ith time slot is:

saa′(i) = 2g
√
ha(i)− ha′(i)× waa′ ×∆t (1)

The insight behind Eq. 1 is that, if a′ has a lower persistency
and a is trusted more by a′, then the rating of a is more valu-
able to a′. In addition, the fluid temperature that corresponds to
saa′(i) is denoted as taa′(i), which is equal to the temperature
of the fluid in the container a.

Let sa(i) denote the volume of the fluid in a at the ith

time slot. Then, for the (i + 1)th time slot, the volume of the
fluid in a can be calculated as:

sa(i + 1) = sa(i)−
∑

a′∈N+
a

saa′(i) +
∑

a′∈N−a

sa′a(i) (2)

where N+
a and N−a are the outgoing and incoming neighbors

of a, respectively. The fluid height in a can be calculated by
ha(i+ 1) = sa(i+ 1)/ca, where ca is the cross-sectional area
of the container a. The cross-sectional area of a represents
its persuasiveness, which has an impact on the final ratings of
its outgoing neighbors. This is because a larger cross-sectional
area will lead to a smaller fluid height change, after the current
update. If a has a larger cross-sectional area, more fluid will
eventually flow into its outgoing neighbors.

Let ta(i) denote the temperature of the fluid in a at the
ith time slot. According to the fluid mixing formula [17], the
fluid temperature after being mixed up is:

ta(i + 1) =

[sa(i)−
∑

a′∈N+
a

saa′(i)]·ta(i)+
∑

a′∈N−a

[sa′a(i)·ta′a(i)]

sa(i + 1)
(3)

Eq. 3 is essentially
∑

(volume · temperature)/
∑

volume. The
first part of the numerator represents the remaining fluid in
container a, while the second part corresponds to the incoming
fluid flowing from the other containers. The denominator is the
volume of the mixed fluids, as shown in Eq. 2.

Algorithm 1 DynFluid
Input: The directed graph G and the existing ratings;

The parameters for the initialization;
∆t, R, and g for the fluid flow update;

Output: The predicted ratings of the non-raters;

1: Associate each node in G with a container;
2: Associate each edge in G with a directional pipe;
3: Add an extra container (i.e., public channel) that connects

to all the non-raters’ containers.
4: Initialize the fluid height and temperature in each container;
5: for i = 0 to R− 1 do
6: for each pipe from a to a′ do
7: if ha(i) > ha′(i) then
8: Calculate the volume and temperature of the out-

going flowing fluid, based on Eq. 1;
9: for each rater’s container and the extra container do

10: Inject additional fluid to maintain the fluid height and
temperature;

11: for each non-rater’s container do
12: Mix up the incoming flowing fluid, as to update the

fluid height and temperature, based on Eqs. 2 and 3;
13: return the fluid temperature in the non-rater’s container.

Considering that the raters have given out their ratings (i.e.,
they no longer update their ratings), the fluid heights of the
raters are fixed. This can be viewed as giving additional fluid
injections to the raters. The raters will no longer refer the
ratings of the other users, and their ratings are only referred to
by the non-raters. As for the public channel, its fluid height is
also fixed. If a user has given out his/her rating, then this user
can no longer change his/her rating on the public channel.

C. Algorithm Overview and Time Complexity Analysis

The pseudocode of DynFluid is shown in Algorithm 1.
Lines 1 and 2 associate nodes and edges in G with containers
and pipes, respectively. In line 3, an extra container is added
to represent the public channel. Line 4 shows the initialization
process. Lines 5 to 12 show the discrete approach for calculat-
ing the fluid flow. The continuous physical time is discretized
into R time slots, i.e., R rounds of fluid updates. In each round,
we first calculate the volume of the flowing fluid in each pipe,
as shown in lines 6 to 8. In lines 9 and 10, we inject additional
fluid to the containers that correspond to the raters and the
public channel. At the end of each round, we update the fluid
in the non-raters’ containers (lines 11 and 12). Finally, in line
13, the fluid temperature in the non-rater’s container is returned
as the predicted rating.

The intialization of Algorithm 1 (lines 1 to 4) takes a time
complexity of O(V + E). Each round of fluid update in lines
5 to 12 also takes a time complexity of O(V +E). Since fluid
updates have R rounds, the total time complexity of Algorithm
1 is O(R · (V + E)). Considering that social networks are
generally sparse and R should be a small constant, the pro-
posed DynFluid could be very efficient for real-world rating
predictions that involve millions of users.

D. Convergence Analysis

In this subsection, we focus on the convergence of the
proposed DynFluid. First, we have the following theorem:



Theorem 1: If we use a constant value (denoted by h)
to initialize the fluid heights of all the raters and the public
channel, then the fluid heights of all the non-raters will always
be no larger than h, during the fluid updating process.

Proof: We proof this theorem by contradiction. Suppose
there is a non-rater a, whose fluid height ha is larger than h.
There are two possible cases for explaining a’s fluid height.
The first case is that the fluid in a comes directly from a rater
(or the public channel) a′, where ha′ > ha > h. However, the
fluid heights of all the raters (or the public channel) are h, since
they only give out their fluids to non-raters. Therefore, the
first case contradicts the assumption, which should be invalid.
The second case is that the fluid in a comes directly from
a non-rater. However, working iteratively with this case will
eventually result in a non-rater whose fluid comes directly from
a rater. Therefore, the second case will reduce to the first case,
which is not valid by contradiction. �

Theorem 2: If we use a constant value (denoted by h)
to initialize the fluid heights of all the raters and the public
channel, then, after a time period that is sufficiently long, the
fluid heights of all the non-raters will be h.

Proof: Suppose there is a non-rater a. According to Theo-
rem 1, we have ha ≤ h. If ha = h for any non-rater a, then
the proof completes. If ha < h, we also have two cases. The
first case is that the fluid in a comes directly from a rater (or
the public channel) a′. This means that ha′ = h > ha. Since
there is a pipe from a′ to a, the flowing fluid in this pipe will
eventually fill up the height gap between a′ and a, meaning
that we have ha = h after a sufficiently long time period. The
second case is that the fluid in a comes directly from a non-
rater. Iteratively doing this case will eventually reduce this case
to the first case, since the fluids of all the non-raters originate
from the raters and the public channel. �

Theorems 1 and 2 show that the DynFluid will converge
after certain rounds of fluid updates. It can be explained by the
rating reference process in the real world. Initially, a user has
no idea about the given product. Upon referring to the ratings
of the other users, this user formulates and refines his/her
own rating in a time-evolving manner. During this process,
the opinion of a person becomes more and more mature,
indicating increased persistency. Therefore, this phenomenon
is consistent with our real-world experiences.

E. Algorithm Properties

In this subsection, we study the properties of the proposed
DynFluid. First, we have the following property:

Property 1: In DynFluid, the opinion influence from a
user, a, to another user, a′, decays monotonously with respect
to the hop-count distance from a to a′.

This property indicates that a user is influenced more by
his/her trusted friends and the public channel than strangers.
In DynFluid, the 1-hop neighbor of a non-rater can pass their
fluids directly to this non-rater, during the 1st round of fluid
updates. Meanwhile, the k-hop neighbor can only pass his/her
fluids to that non-rater during the kth round of fluid updates.
The fluids from close neighbors arrive at the non-rater earlier
(in terms of the discrete time slot) with a larger volume, since
the fluid height of the non-rater is lower at an earlier time.

The fluid from strangers arrives at that non-rater later with a
smaller volume, since the fluid height of the non-rater becomes
higher at a later time. The ratings of trusted friends and the
public channel are more valuable than the strangers’ ratings.
Then, another property of DynFluid is:

Property 2: In DynFluid, the certainty of the rating pre-
diction for a non-rater can be measured by the fluid height (or
persistency) of that non-rater.

This property states that the certainty of the rating predic-
tion is highly related to the persistency of the corresponding
non-rater. DynFluid shows how a user refines its rating in a
time-evolving manner. At the beginning, the user has a low
persistency, and thus he/she receives multiple opinions from
his/her trusted friend and the public channel. As time goes by,
the opinion of a user becomes more and more mature, indi-
cating that the persistency of that user gets higher and higher.
Therefore, the rating of a user with a higher persistency is more
stable than the one with a lower persistency, representing that
the certainty can be measured by the persistency.

V. EVALUATIONS

In this section, real data-driven experiments are conducted.
After presenting the basic settings, we compare DynFluid with
state-of-the-art approaches.

A. Basic Settings

Dataset information. In our experiments, the datasets of
Epinions and Ciao [18] are used. These two datasets are
collected online from www.epinions.com and www.ciao.com.
The former one is a general consumer review site established
in the United States. Users in Epinions could read new and old
reviews about a variety of products to help them decide on a
purchase. The later one is very similar to Epinions, but is more
frequently used in the European Union. These two datasets
include the directional trust relationships among users, as well
as the users’ ratings (recorded as rating scores from 1 to 5) on
some products. The distributions of rating scores in Epinions
and Ciao are shown in Fig. 5. It can be seen that users are more
likely to give out high ratings. More than 40% of rating scores
are 5 (the highest rating score). This phenomenon would have
some impacts on our performance metric selection. Then, the
Epinions dataset consists of 49,290 users who rated a total of
139,738 different products. The total number of issued trust
relationships is 487,181. The Ciao dataset consists of 2,248
users who rated a total of 16,861 different products. The total
number of issued trust relationships is 57,544.

Since the ratings on a specified product are generally sparse
with respect to the graph size, a user may not have a trusted
friend who has rated the same product as he/she did. Therefore,
we do not run experiments directly on the whole dataset.
Alternatively, given a product, we extract subgraphs to test
rating predictions: if a user does not rate that product, or this
user does not have a trusted friend who has rated that product,
then this user is not considered in our experiments; otherwise,
we generate a subgraph centered on that user to predict his/her
rating. This subgraph is composed of all neighbors of that user
within a certain hop count. We use the 1-hop, 2-hop, and 3-hop
subgraphs. A larger subgraph provides more information, and
thus a better performance should be obtained by the DynFluid.
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Fig. 5. The distribution of the rating scores.

Performance metric. To measure the prediction errors of
the proposed DynFluid, the leave-one-out method [19] is used.
For the generated subgraph of a specific user, the groundtruth
rating of that user is masked and then predicted based on the
generated subgraph. We compare the predicted rating with the
masked groundtruth rating, the difference between which is
the prediction error. To measure the prediction errors among
different subgraphs and different products, we adopt the root
mean squared error (RMSE) [6], which is the root of the mean
squared prediction error among all the generated subgraphs
and all the products. RMSE represents the standard deviation
of the differences between predicted ratings and groundtruth
ratings. A smaller RMSE indicates a better prediction.

The second performance metric used in our experiments is
the classic F-score, which is the harmonic mean of precision
and recall. In our experiments, it is defined as follows:

F-score =
2TP

2TP + FP + FN
(4)

When the groundtruth is that the corresponding user has a
rating score of no less than three (called positive rating), TP
and FP (true and false positive cases) are the numbers of
correct and incorrect predictions, respectively. Then, the false
negative case, FN , is the number of incorrect predictions,
when the groundtruth is that the corresponding user has a
rating score of less than three (called negative rating). Note
that a larger F-score indicates a better prediction.

Default parameters. In our experiments, the subgraph
for rating predictions is generated in default by all neighbors
within 3 hops of a given user (also called 3-hop subgraph).
Unless specified, we use ∆t = 0.1 as the duration of each
time slot and R = 10 as the rounds of fluid updates. The
fluid heights of all the raters and the public channel are 10.
The cross-sectional areas of all the containers are 1. The fluid
temperature of each rater is initialized to be its rating score.

B. Comparisons with the Other Methods

In this subsection, we compare DynFluid with the other
state-of-the-art algorithms in terms of RMSE and F-score.
Comparison algorithms include TidalTrust [4], MoleTrust [5],
Random Walk [6], PageRank [14], and FluidRating [16]. (1)
TidalTrust finds all trusted raters through the shortest path
to the given user, and then aggregates their ratings as the
predicted rating of that given user. (2) MoleTrust has two
steps [20]. In the first step, it takes two given nodes (source
and destination) as the input and then builds a directed trust
graph from the source to the destination. In the second step,
it walks through the directed trust graph and calculates the

trust values of the visited nodes. The rating of the destination
node serves as the predicted rating of the source node. (3)
Random Walk aggregates the ratings of users arriving by
random walks from a given user as the predicted rating of
that given user. We set the same threshold on the number of
steps in a random walk as [6]. (4) PageRank computes the
user’s reputation for trust propagations. We take its result when
it converges. (5) FluidRating is the foundation of this work.
However, FluidRating does not consider the public channel,
which is really impactful for the rating predictions.

The comparison results are shown in Figs. 6 and 7. The
former one shows the results with the RMSE metric and the
later one shows the results with the F-score metric. A smaller
RMSE means a better result, while a larger F-score means a
better result. Fig. 6(a) and 6(b) show the results for Epinions
and Ciao, respectively. The left part of Fig. 6(a) is the result for
the subgraphs that are generated by all neighbors within 1 hop
of the given user, while the middle and right parts are those
within 2 and 3 hops, respectively. DynFluid outperforms all the
other algorithms, since it considers the ratings of the trusted
friends and the public channel. In contrast, MoleTrust and
TidalTrust do not consider the analogy of trust propagations,
and thus, they have worse performances. For a 1-hop subgraph,
DynFluid has a more than 10% improvement with respect to
all the other methods. For a 3-hop subgraph, DynFluid has
a more than 5% improvement over FluidRaing, and an over
10% improvement compared to the other methods. DynFluid
performs better for subgraphs of neighbors within 3 hops than
those within 1 hop. When the subgraph is larger, users can
refer to more rating scores from their trusted friends and make
a better rating. Another observation is that the performance
gap between DynFluid and FluidRating is smaller, when the
generated subgraph is larger. This is because a larger subgraph
brings more information on the public channel. The results in
Ciao are similar to those in Epinions. However, the overall
RMSE in Ciao is lower than that in Epinions (about 10%
lower). The rating scores in Ciao are more predictable.

Fig. 7 shows the comparasion results with the F-score
metric. Fig. 7(a) and 7(b) show the results for Epinions and
Ciao, respectively. In Fig. 7(a), DynFluid has a significant
performance improvement, compared to Random Walk (about
a 15% higher F-score). For the other methods, a performance
improvement that is larger than 5% is also obtained by
DynFluid. According to the definition of F-score, DynFluid can
accurately predict the true positive case, where the groundtruth
is that the corresponding user has a rating score of no less than
three (positive rating). Note that the true positive case is the
most important case for DynFluid, since its motivation is the
trust-based recommendation. If a user is predicted to have a
high rating on a specified product, then the service provider can
recommend this product to that user for the shopping potential.
Although F-score does not consider the true negative case, this
case is not important for recommendations. This is because
the service provider should not recommend a product to a
user, if this user is predicted to have a negative rating on that
product. DynFluid has a F-score of about 85%, when we use
the 3-hop subgraph. Therefore, DynFluid is qualified for trust-
based recommendations. Meanwhile, the F-score of DynFluid
in Ciao is a little bit higher than that in Epinions, indicating that
the rating scores in Ciao are more predictable in the F-score
metric. This is in consistent with that in the RMSE metric.
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Fig. 6. Compare DynFluid with the other methods, in terms of the RMSE metric.
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Fig. 7. Compare DynFluid with the other methods, in terms of the F-score metric.

C. The Impact of The Public Channel

In the previous subsection, we compare DynFluid with the
other state-of-the-art methods. One important factor for the
outstanding performance of the DynFluid is that it considers
the public channel for rating predictions. Here, we conduct
additional experiments to further understand the impact of the
public channel. Instead of the default setting where the fluid
height of the public channel is initialized to be 10, we tune
the fluid height of the public channel, as to observe the RMSE
variance of the DynFluid. Note that the fluid heights of all the
raters are set to be 10. A higher fluid height of the public
channel means that it has a larger impact on the users.

The results are shown in Fig. 8, where we conduct the
above experiments for DynFluid in subgraphs generated by
all neighbors within 1 hop, 2 hops, and 3 hops, respectively.
Fig. 8(a) and 8(b) show the results for Epinions and Ciao,
respectively. In both the two datasets, the RMSE of DynFluid
first decreases and then increases, with respect to the initial
fluid height of the public channel. When the initial fluid height
of the public channel is 1, the DynFluid mainly uses the ratings
of the trusted friends for rating predictions, leading to a high
RMSE. In other words, if the impact of the public channel is
ignored, then the rating prediction becomes inaccurate. On the
other hand, when the initial fluid height of the public channel
is 100, the DynFluid mainly considers the public channel for
rating predictions, which also leads to a high RMSE. This
means that the ratings of the trusted friends are also not
negligible. Note that the RMSE of the DynFluid goes to the
minimum, when the initial height of the public channel is set
to be about 10 to 20. Meanwhile, the initial heights of all the
raters are 10. This observation implies that the public channel
helps to improve the accuracy of the prediction. We also find
that the impact of the public channel is more significant in
1-hop subgraphs than that in 3-hop subgraphs.

D. The Impact of The Persistency and Persuasiveness

In the previous experiments, we use, by default, a fixed
value of 10 to initialize the fluid heights of all the raters.
The cross-sectional areas of all the containers are set to be
1. This means that we consider all the users to have identical
persistency and persuasiveness, which may not be true in the
real world. In this subsection, we initialize the fluid heights
and the cross-sectional areas in a personalized way, as to see
the impact of the persistency and persuasiveness. We estimate
those two characteristics of a user through the total number
of ratings (on different products) given out by that user. If
a user has rated more products, we consider that user to
have a higher persistency and persuasiveness, through a linear
mapping process. This is because the user is more likely to
insist on his/her own opinions and is more likely to be an
authority on the product for the other users.

First, we conduct experiments to observe the impact of
the non-identical persistency, while the persuasiveness remains
identical. The experimental results are shown in Fig. 9. It can
be seen that the DynFluid with personalized persistency has a
better performance than the DynFluid with the default setting
(about 5% lower RMSE in both Epinions and Ciao). If we
initialize the persistency to be identical, then a larger initial
value or a smaller initial value has a very limited impact on
the converged RMSE of the DynFluid. The variance caused
by different initial values is less than 3%. This is because a
higher fluid height also leads to a larger volume of flowing fluid
as a self-regulation in the fluid flow system. DynFluid with
personalized persistency has a slower convergence speed than
that with identical persistency. This is because the user with
a low persistency needs more time to refine his/her opinions.
We also conduct experiments to observe the impact of the non-
identical persuasiveness, while the persistency is identical. The
experimental results are shown in Fig. 10. It can be seen that
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Fig. 8. The impact of the public channel.
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Fig. 9. The impact of the user persistency.
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Fig. 10. The impact of the user persuasiveness.

the DynFluid with personalized persuasiveness has a better
performance (more than 5% lower RMSE) than the DynFluid
with the default setting. If we initialize the persuasiveness to
be identical, then its initial value has some impacts on the
converged RMSE of the DynFluid. A too-large initial value
leads to a performance degradation, since larger cross-sectional
areas can weaken the impact of flowing fluid. We also find that
the DynFluid with personalized persuasiveness has a slower
convergence speed than that with identical persistency. This is
because the user with very high persuasiveness continues to
express his/her opinion to his/her friends.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we focus on the rating prediction problem in
trust-based recommendation systems. The key observation is
that the rating of a user depends on his/her user experience, as
well as the ratings of other users. This paper proposes a novel
rating prediction scheme called DynFluid, based on the fluid
dynamics theory. DynFluid analogizes the rating reference
among the users to the fluid flow among containers: each user
is represented by a container; the rating of a user is mapped to
be the fluid temperature. Two user characteristics, persistency
and persuasiveness, are incorporated into DynFluid. Real data-
driven experiments validate the performance of our DynFluid.
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