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Abstract—Task offloading is a popular approach in
distributed systems to optimize resource usage by splitting
the workload among devices in the network. This technique
is effective in reducing the workload on individual devices,
and helping achieve more efficient task execution by reduc-
ing execution time and conserving energy among devices.
In this paper, we propose a novel method to evaluate task
partitioning using a unique metric, effective processing rate
(EPR) for edge networks with homogenous devices. This
unique approach focuses on simplifying task offloading
based on the communication delay, task processing rate,
and the energy available in each device. It also discusses the
impact of extending offloading beyond one-hop neighbors
to two-hop neighbors and single-source versus multi-source
offloading. We also discuss the willingness to help factor
among one-hop and two-hop neighbors and its significance
in task offloading performance. An effective strategy to
meet these challenges is introduced and validated through
theoretical analysis and extensive simulations.

Index Terms—Delay, Edge Networks, Energy Efficiency,
Multi-Access Edge Computing, Resource Optimization,
Task offloading.

I. INTRODUCTION

Mobile phones, sensors, and communication technolo-
gies have become an integral part of modern life in the
last decades, thus marking the beginning of the digi-
tal era. These devices operate in diverse environments
and inherently produce massive amounts of data that
are delay-sensitive and need to be processed rapidly.
Conventionally, these computations are performed on
the cloud servers. However, transmission delay in data
and consequently high energy consumption due to the
distance between the source of data and the processing
unit pose problems [1]. Edge computing addresses this
by bringing computational resources closer to users [2].

Multi-access edge computing (MEC) is an extension
of edge computing that utilizes operator resources for
efficient data processing through wireless transmission
[3]. MEC lowers latency and increases energy efficiency
by decentralizing the processing. However, decentralized
remote task offloading may still lead to inefficiency,
especially when the applications require real-time pro-
cessing.
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Fig. 1: Task offloading from source to multiple process-
ing nodes, where (r, e) = (21,67) and d = 6.

Edge devices suffer from a host of constraints in the
form of computation power and battery life, while neigh-
boring resources may remain underutilized. Besides that,
edge resources alone might not be enough to meet strict
latency requirements. Based on this, we develop a task
offloading mechanism between neighboring devices to
allow for load sharing and enhance both energy and
execution efficiency. Figure 1 shows such an offloading
scenario from the source to other neighbors. The contri-
bution of this work is a new offloading strategy, which
tries to achieve optimal task processing time in an edge
network. The novelty is essentially the dynamic distri-
bution across multi-hop neighbors in order to reduce the
processing time and consider energy constraints.

This is a network-based approach in homogenous
resource-constrained devices that can be exemplified by
applications such as remote environmental monitoring, in
which wirelessly connected sensors offload tasks related
to data processing to edge servers. Examples include fire-
threat assessment and the detection of wildlife move-
ments. The latency sensitivity of these tasks demands a
distributed solution wherein the offloading of tasks to
multiple edge or cloud servers executes the task with
greater speed.

Task offloading involves distributing work among any
k-hop neighbors based on the EPR, including the node’s
delay, its processing capability. These will be divided
based on the availability of energy in the neighboring
nodes. It is quite simple in the case of one-hop neigh-
bors, but in the case of two-hop neighbors, there are a



number of paths with possibilities of energy constraints.
Distribution will need to be effective in case any node
is incapable of handling its own fraction of the task in
order to maintain the performance of the system. We also
investigate how a node’s willingness to help dictates the
task offloading among one-hop and two-hop neighbors.

II. BACKGROUND AND RELATED WORKS

Task offloading in edge computing has recently at-
tracted much attention since many applications call for
rapid data processing [4]. Traditional brute-force meth-
ods are impracticable to implement in large-scale net-
works since the complexity is exponential [5]. Therefore,
recent research has focused on algorithms that reduce the
search space to improve the efficiency, such as branch
and bound, which, though improving computation effi-
ciency, still scale poorly when the network size increases
[6]. This motivated the investigation of certain heuristic
approaches, such as a genetic algorithm, which balances
solution optimality and computational burden via an
iterative refinement of offloading strategies following the
principles of natural evolution [7]. Despite their benefits,
these methods generally require parameter fine-tuning
and may not always reach global optimality. This calls
for faster and simpler approaches.

Task processing has commonly been modeled de-
terministically, assuming that tasks start processing in-
stantly when they arrive at the edge server [7], [8]. Works
such as [8], [9] have developed adaptive offloading
strategies that can achieve maximum revenue with en-
sured service quality by dynamically adjusting decisions
according to network conditions and requirements of
services. Other works, like [7], have developed a joint
optimization of offloading tasks and resource allocation
by framing it as a mixed-integer nonlinear programming
problem to minimize energy consumption [10]. These
methods, although effective, remain NP-hard and hence
very computationally expensive

Recent works have targeted efficiency improvement in
this direction. For example, [11] has presented an online
approach toward jointly optimum network selection and
job offloading in multi-dimensional resource-constrained
MEC networks, which is near-optimal. Another work
[12] modeled the problem of offloading as a generalized
allocation model with constraints about hop counts and
wireless communication ranges.

Our proposed approach is simpler and faster, enabling
quick decisions based on current network states and
available resources, avoiding the processing overhead
typical of more complex optimization methods. While
adaptive approaches like [13] adjust to network condi-
tions and service types, our method puts higher emphasis
on speed and simplicity, making it ideal for cases where
decision-making needs to be quick, at the possible cost

TABLE I: Variables and Parameters

Symbol Description
N Set of nodes in the network
G Directed graph representing the network, G = (V,E)

SN Set of source nodes
PN Set of processing nodes
T Total tasks from source in a single-source network
Ts Total tasks from source s in a multi-source network
ri Processing rate of node i

ei Energy capacity of node i

A Task allocation vector
P Total effective processing power
rij Effective processing rate for connection (i, j)

dij Total communication delay for connection (i, j)

S Shortest paths
tbusy Busy time vector for nodes

of ignoring fine optimizations brought by more advanced
methods in particular instances.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We model the edge network as a directed, connected
graph; every node may act either as a source node (SN),
in grey, or a processing node (PN), in white as illustrated
in Figure 1. Each node presents a communication delay d
with its neighborhood, modeled by the edges connecting
the nodes. The processing capacity of every node is
characterized by its task processing rate r and available
energy e. The network is composed of nodes in setsN ,
facilitating task processing by establishing direct and
two-hop connections. These connections belong to set
S, allowing for the offloading of tasks to neighbors or
via intermediate nodes.

B. Problem Formulation

The objective is to develop a task allocation strategy
that can minimize the completion time of all tasks given
the energy capacity for each node. A summary of the
variables and parameters utilized in the system model
is provided in Table I. Our approach is formulated as
an optimization problem under the following criteria
discussed below.

Assuming that the source node has enough energy es
to process the total task amount T which is a value, all by
itself in case its neighbors do not have sufficient energy
to process the allocated task. Here energy capacity ei
for any node i is directly calculated by the amount of
task the node can handle Ti. For a given total amount
of T tasks, we would like to compute a task allocation
vector, A, mapping the number of tasks to each node
considering processing rate, energy limitations, and com-
munication delays in a way that maximizes the network
processing efficiency. The task distribution is done by
calculating the EPR for each connection between SN



Fig. 2: Multi-source task offloading with shared process-
ing nodes.

and PN. The EPR rij for connection (i, j) must account
for communication delays, the nodes’ processing rate,
and is given by the equation:

rij =
1

dij +
1
rj

+ tbusyi

where dij signifies the cumulative delay over the con-
nection. For multi-hop connections, dij is the sum of
delays over the shortest path. rj is the processing rate
of the processing node j and tbusyi is the time the node
remains occupied for multi-source task offloading.

The aim is to minimize the maximum completion time
across the network, defined by the optimization problem:

min max
(i,j)∈N

(
Aij

rij
+ dijAij

)
where Aij is the allocated task to PN j from SN i.

The allocation strategy is subject to the following
constraints:

1) The sum of tasks allocated must not surpass the
initial task amount T :∑

(i,j)∈N

Aij = T

2) The source node must have enough energy to
process all tasks by itself:

T ≤ es

IV. ALGORITHM OVERVIEW

A. Single-Source Resource Optimized Task Allocation
(SSROTA)

The SSROTA algorithm will divide the tasks optimally
among the connected nodes in the network such that all

Algorithm 1 Single Source Resource Optimized Task
Allocation
Require: N , T , {ri}, {ei}, {di}, G = (V,E)
Ensure: A

1: Initialize P ← 0
2: Initialize shortest paths S ← Dijkstra’s algorithm

applied to G
3: for all connections (i, j) ∈ E do
4: Calculate total delay dij as the sum of delays over

the shortest path from i to j using S
5: rij ← 1

dij+
1
rj

6: Update P ← P + rij
7: while there is remaining task T > 0 do
8: for all nodes j ∈ V reachable from source and

ej > 0 do
9: Talloc ← min

(
rij×T
P ′ , ej

)
10: Update T ← T − Talloc

11: Update ej ← ej − Talloc

12: if ej = 0 then
13: Mark node j as inactive and remove from V
14: Recalculate P for remaining active nodes by

reiterating steps 3 to 6
15: return Task allocation vector A

nodes finish their respective sub-tasks almost at the same
time, minimizing the total execution time. The top part
of Figure 2 where node A is the SN divides the total task
into four parts based on the EPR of each PN. The white
boxes are defined by the task-processing capability of
each node. The wider the box, the greater the processing
capability. Dashed boxes are used to depict how tasks are
propagated from A to the destination nodes B, C, E, and
F . All nodes start processing their tasks after receiving
the entire allotted portion.

The algorithm initializes the distribution priority of the
nodes, referred to as P , to zero. It calculates an effective
processing rate for each connection, considering a direct
connection delay between nodes in the case of one-
hop connections. For multi-hop connections, the delay
is considered along the shortest path starting from the
processing node to the source node.

Once the initial effective rate and energy capacities
are calculated, it conveys all the tasks proportionally
based on the practical connection rate over total priority
P . It updates the residual energy at every connection,
considering the task allocated there. If a node becomes
out of energy, then it marks the node as inactive and
recalculates P . Thus, the process keeps repeating until
all the tasks are allocated or active connections are left.
This way, the SSROTA algorithm ensures that all the
nodes complete their tasks at the same time.



Fig. 3: Task redistribution when node runs out of energy.

B. Multi-Source Resource Optimized Task Allocation
(MSROTA)

The MSROTA algorithm efficiently distributes tasks
from multiple sources across a network’s nodes, ensuring
all nodes complete processing simultaneously, reducing
overall execution time. Each node i has resources ri,
energy ei, and delay di from the source. Task execution
on a PN starts after receiving the full task allocation.

The multi-source algorithm updates EPR in real time
based on node utilization, adapting to changes in avail-
ability. Once a PN is occupied, it remains locked for
other sources until free, and its busy time is included
in the delay calculation for subsequent tasks. After all
PNs receive their tasks, processing begins, maximizing
resource use and minimizing completion time.

For instance, in Figure 2, source D offloads tasks to
nodes B, C, and F , shared with source A. These nodes
remain locked until completing tasks from A, while node
G handles a larger portion from D if it has enough
energy. If a node depletes its energy, remaining tasks
are redistributed among active nodes, as shown in Figure
3. Initially, node C runs out of energy. The incomplete
task is reallocated to nodes B, E, and F based on the
recalculated EPR. Depleted nodes are marked inactive,
and the process continues until all tasks are allocated or
no active nodes remain.

C. Algorithm Extension for Willingness to Help

As an extension to the algorithms, we discuss the
impact of willingness to help among neighbors. As we
traverse deeper into the network, despite choosing the
shortest path, the delay increases between SN and PN.
Moreover, the chances of nodes sharing multiple parents
or sources increases the delay in multi-hop networks

Algorithm 2 Multi-Source Resource Optimized Task
Allocation
Require: N , Ts, {ri}, {ei}, {di}, G = (V,E)
Ensure: A

1: Initialize P ← 0
2: Initialize shortest paths S ← Dijkstra’s algorithm

applied to G
3: Initialize busy time vector tbusy ← 0 for all nodes

i ∈ V
4: for all connections (i, j) ∈ E do
5: Calculate total delay dij as the sum of delays over

the shortest path from i to j using S
6: rij ← 1

dij+
1
rj

7: Update P ← P + rij
8: for all sources s ∈ S do
9: while there is remaining task Ts > 0 do

10: for all nodes j ∈ V reachable from source s
and ej > 0 do

11: Calculate effective processing rate rij ←
1

dij+
1
rj

+Tbusyj

12: Talloc ← min
(

rij×Ts

P ′ , ej

)
13: Update Ts ← Ts − Talloc

14: Update ej ← ej − Talloc

15: Update Tbusyj
← Tbusyj

+ Talloc

16: if ej = 0 then
17: Mark node j as inactive and remove from

V
18: Recalculate P for remaining active nodes by

reiterating steps 4 to 7
19: return Task allocation vector A

[14]. All these factors make a node less likely to be
effective in task processing, which we call willingness
to help. This is a function of the effective processing rate
that can be defined as:

rij = λ/ (dij + 1/rj)

where λ is a scaling factor between 0 and 1 that repre-
sents a node’s willingness to assist in task completion.

D. Algorithm Analysis

Theorem 1. The algorithm converges to optimal task
allocation for any number of hops.

Proof: Suppose, for contradiction, that the algorithm
does not yield the optimal task allocation. This would
imply the existence of another allocation A′ with either
lower total delay or higher resource utilization than the
allocation A produced by the algorithm.

Algorithm 1 starts by initializing the shortest paths S
using Dijkstra’s algorithm, ensuring the shortest paths
from the source to all nodes in graph G. For each



(a) Network with µr =
10, 20, 30 and P = 0.6.

(b) Network with µr =
10, 20, 30 and P = 0.3.

(c) Network with µd =
5, 10, 15 and P = 0.6.

(d) Network with µd =
5, 10, 15 and P = 0.3.

(e) Network with µr =
10, 20, 30.

(f) Network with µd =
5, 10, 15.

(g) Dense network with P =
0.6.

(h) Sparse network with P =
0.3.

Fig. 4: Task offloading performance with a fixed task size TA = 50, varying node count, mean delay µd, and mean
computation power µr (a)–(d). Multi-source task offloading with TA = 50, P = 0.5, and varying µr, µd (e) and
(f). Two-source offloading vs. common nodes and increasing network size (g) and (h).

edge (i, j), it computes the total delay dij for multi-hop
connections. The EPR is then calculated and the total
effective resource P is updated. Tasks are allocated to
reachable nodes based on:

Talloc = min
(
T × rij

P
, ej

)
The allocation is optimal as it minimizes delay and
balances resource utilization. Any alternative allocation
A′ would increase delay or reduce resource efficiency,
contradicting the assumption. Therefore, it provides the
optimal task allocation for any number of hops.

This can be visualized as dividing water (tasks) among
containers (nodes) via pipes, where each container has
different capacities (energy) and pipes have different
flow rates (delay and resource contribution). The algo-
rithm finds the best path to each container, ensuring
efficient flow without spillage (delay). If another method
of distributing the water resulted in lower delay or
better resource use, it would mean our algorithm missed
a more efficient option. However, since our approach
continuously chooses the most efficient paths, no better
allocation exists, proving it is optimal.

E. Complexity Analysis

For SSROTA, Dijkstra’s algorithm initializes the short-
est paths with O(N2) for dense graphs and O(N logN)
for sparse graphs. Calculating delays and processing
rates takes O(E), and the task allocation loop adds
O(N3) for dense graphs and O(N2) for sparse graphs,
resulting in overall complexities of O(N3) (dense) and
O(N2) (sparse).

For MSROTA, the initialization and calculation steps
are similar, with an additional outer loop over sources S.
This gives overall complexities of O(S×N3) for dense
graphs and O(S ×N2) for sparse graphs.

V. EXPERIMENTAL SIMULATION AND EVALUATION

We generated random graphs with 10 to 50 nodes in
both dense and sparse configurations using NetworkX.
Each node was sampled from uniform distributions: 10-
30 for r, 1-100 for e, and 5-15 for d. A 95% confidence
interval was calculated for each property to ensure
variability.

Edges were generated using the Erdős-Rényi model,
with edge probability varied from 0 to 1 to simulate
both dense and sparse graphs. For each sample, the
total number of edges and their confidence interval were
calculated to measure connectivity. The graph’s structure
was probabilistically determined, and only one-hop and
two-hop nodes were considered for task offloading.

A. Single-Source Offloading Analysis

Figure 4a shows task execution times in a dense graph
(T = 50, density 0.6, µd = 5, σd = 1, σr = 5). Exe-
cution times decrease as node count increases (10–50)
across resource rates (µr = 10, 20, 30) for one-hop,
two-hop, and k-hop types, demonstrating scalability. For
µr = 10, one-hop time drops from 73.16 to 7.58 as nodes
increase from 10 to 50.

Figure 4b depicts similar trends in a sparse graph
(density 0.3), confirming the algorithm’s adaptability in
reducing execution time across different node counts and
resource rates.



(a) Dense network with P =
0.6

(b) Sparse network with P =
0.3

Fig. 5: Task offloading for one hop, two hop and two
hop with λ = 0.2, 0.4, 0.6, 0.8 .

Figure 4c compares execution times for varying
delays µd, showing that increasing node count reduces
times across all delay levels, with multi-hop strategies
outperforming one-hop, especially in dense graphs.

Figure 4d reflects consistent results in sparse graphs,
reinforcing the algorithm’s effectiveness in minimizing
execution time for both dense and sparse configurations.

B. Multi-Source Offloading Analysis

Figure 4e and 4f show task execution times for multi-
source offloading (T = 50, P = 0.5) with varying mean
delays µd and resource rates µr. Increasing sources and
delays µd = 5, 10, 15 lead to higher execution times,
especially for one-hop tasks, while k-hop tasks perform
better. Similar trends can be seen with resource rates
µr = 10, 20, 30, where k-hop tasks minimize execution
times as resources improve.

Figure 4g compares task completion in a dense
network with two-source offloading across varying node
counts (10-50) and 0-5 common nodes. Fewer common
nodes lead to lower completion times, but as network
size grows, execution times decrease due to better load
distribution. Fig. 4h shows similar trends in sparse net-
works, where higher common nodes increase completion
times, but larger networks improve load handling.

C. Willingness to Help Analysis

In resource-optimized task allocation, λ is crucial,
especially as tasks move further from the source. Figure
5a and 5b show that in dense networks, increasing λ
from 0.0 to 1.0 reduces execution times, with two-
hop offloading outperforming one-hop. Sparse networks
show a similar trend, though with higher overall times
due to fewer nodes. Higher λ improves load balancing
and execution times, particularly in dense networks with
more neighbors.

VI. CONCLUSION

In this paper, we presented a resource-aware task
offloading technique for edge networks using the EPR
metric to simplify task partitioning that considers com-
munication delay, processing rate, and node energy.

We extended the offloading from one-hop to two-hop
neighbors and compared these with the k-hop scenario.
Both single-source and multi-source offloading scenarios
were analyzed. Simulation results prove that our algo-
rithm reduces task execution time by optimizing task
offloading, making it efficient and scalable for dense and
sparse networks. The results point to the fact that nodes
that lie farther away from the source may not be effective
since the delay overhead caused by it is so huge. This
method introduces the practicality of two-hop offloading.
In general, this research provides a practical and efficient
solution for the maximum use of resources and minimum
execution time of tasks through optimal offloading.
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