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Abstract—Network coding is a technique which can be used
in wired and wireless networks to increase the throughput of the
networks and provide reliable transmissions. Also, it can be used
in distributed storage systems to store a large data on different
storages and provide fault tolerance against storage failures.
Using network coding, the set of packets that form a file can
be encoded to infinite number of packets, and a subset of these
coded packets is sufficient to retrieve the original data. In addition
to provide fault tolerance, network coding is an efficient tool to
protect the data from eavesdroppers. An eavesdropper is not able
to decode the coded packets and retrieve the original data unless
it has access to a sufficient number of coded packets. Increasing
the redundancy enhances the fault tolerance. However, it makes
the system more vulnerable against eavesdropper attacks. In this
work, we perform a trade-off between security of a distributed
storage system and its fault tolerance. We formulate the problem
as a mixed integer and linear programming, and propose two
linear programming optimizations to solve it.

Index Terms—Network coding, security, fault tolerance, data
storage, optimization, random linear network coding.

I. INTRODUCTION

These days we are witnessing a fast increase in the popu-
larity of the cloud computing and distributed storage systems.
These distributed storages are more convenient than the local
backup storages. Moreover, they are more reliable and secure
than the personal hard drives. The distributed storage systems,
such as Dropbox, GoogleDrive, and OneDrive, store the files
on multiple storages, which provides fault tolerance. In the
case that a few storages fail, the redundant stored files on the
other storages can be used to retrieve the original data. On the
other hand, these distributed storage systems store different
versions of the files in the case that they are modified.

One of the main challenges in distributed storage systems is
providing fault tolerance. In order to provide fault tolerance,
redundant data needs to be stored on multiple storages. It is
clear that adding more redundancy provides a higher level
of protection against storage failure. However, more redun-
dancy requires more storage, which increase the cost. There
are many existing work on fault-tolerant distributed storages
that addressed the problem finding the amount of required
redundancy to achieve a given level of fault tolerance. One of
the techniques that can be used to construct redundancy and as
a result fault tolerance is random linear network coding. In ran-
dom linear network coding, the original packets are coded with
each other linearly and using random coefficients. Assuming
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Fig. 1. Motivation example.

that we have m packets, we can potentially generate infinite
number of coded packets, and any m linearly independent
coded packets are sufficient to decode and retrieve the original
packets. The decoding is performed by solving a system of
linear equations using Gaussian elimination

Consider a scenario in which a large file needs to be stored
securely over a set of distributed networks. The networks
are not trustworthy, which means that an eavesdropper might
access to some of them. An straightforward way to prevent the
eavesdropper to reconstruct the original data from the subset of
the storages that are accessed is to use cryptographic methods.
For this purpose, the original data can be encrypted using
a secret key. Then, the encrypted data can be partitioned to
multiple packets and stored on the untrusted data storages.
However, the problem of the cryptographic methods is their
complexity.

For this reason, the work in [1], [2] propose a method
that relies on network coding rather than cryptography. The
main idea of the paper is that, random linear network coding
can provide fault tolerance and security at the same time.
In the case that the eavesdropper does not have access to a
sufficient number of coded packets, it cannot use Gaussian
elimination to decode the coded packets and construct the
original data. As a result, we only need to make sure that the
eavesdropper does not get enough coded packets. In this way,
we can achieve confidentiality without additional bandwidth
or storage space costs. In these work, only the authorized
users know the location of the data storages. Therefore, the
data storage locations plays the role of secret key that is
used in the cryptographic methods. The authors in [1] show
that this technique guarantee robustness against failures and
eavesdroppers at the same time.



In [1], [2], it is assumed that an eavesdropper have access
to at most a given number of data storages. Consequently,
it is easy to find a content distribution method that makes
sure that an eavesdropper cannot access to k coded packets.
However, if the eavesdropper get access to more number of
data storages, it will be able to retrieve the original data. In this
work, we consider a different model. We assume that we do not
know the number of data storages that can be accessed by an
eavesdropper. However, we know the vulnerability of each data
storage against eavesdropper attacks. It is clear that adding
more redundancy and storing more coded packets increases
the fault tolerance of the system. However, it also increases
the vulnerability of the system against eavesdroppers.

Consider the example shown in Figure 1. Assume that the
failure probability of storages s1, s2, and s3 equal 0.1. The
eavesdropping probability of storages s1 and s2 are equal
to 0.1. Moreover, the eavesdropping probability of storage
s3 is 0.2. A file which contains 4 packets is stored on
the 3 data storages. In Figure 1(a), we store 2 packets on
each of data storages s1 and s2. In this case, the file can
only be retrieved by a user when none of the storages s1
and s2 fails. If we define the reliability of the system as
the probability of successful data retrieval, that equals to
0.92 = 0.81. Moreover, an eavesdropper needs to access both
of s1 and s2 to retrieve the data. As a result, the probability
of eavesdropping is equal to 0.12 = 0.01. Now consider the
example in Figure 1(b), in which 2 packets are stored on each
of the three storages. In this case, accessing to any 2 out of
the 3 data storages is sufficient to retrieve the data by a user
of an eavesdropper. Consequently, the reliability of the system
equals 0.93+3×0.92×0.1 = 0.972. Also, the eavesdropping
probability equals 0.13+2×0.12×0.9 = 0.019. By comparing
this two cases, we find that adding more redundancy increases
the reliability of the data storage system. However, it also
increases the vulnerability of the system against eavesdropping
attacks.

This example shows that, as we increase the redundancy, the
storage system becomes more robust against storage failures.
On the other hand, more redundancy increase the vulnerability
of the storage system against eavesdropping attacks. As a
result, when we want to address both of the system reliability
and the security without using a cryptographic method, we
need to perform a trade-off between these two objectives. This
trade-off should consider the amount of the data redundancy
and the amount of stored data on each data storage. A data
storage might be reliable in terms of failure; however, that
might not be secure.

Motivated by the example in Figure 1, we study the problem
of fault-tolerant and secure distributed data storage in this
paper. In order to store redundant data, we apply random
linear network coding on the original data, and store the coded
packets on the storages. In order to address reliability and
security, we perform a trade-off between them. We formulate
the problem as a mixed integer and linear programming. It is
know that mixed integer and linear programming optimizations
are NP-hard in general. In order to reduce the complexity

of the optimization, we relax the mixed integer and linear
programming optimization to linear programming, which can
be solved in polynomial time. We evaluate our proposed
methods using simulations.

The remainder of this paper is organized as follows. In
Section II, we review the related work and provide a back-
ground on network coding and its applications. We discuss the
system model, assumptions, and our objective in Section III.
In Section IV, we present our secure and reliable data storage
method, which is a trade-off between security and reliability.
We present the simulation results in Section V. Section VI
concludes the paper.

II. RELATED WORK AND BACKGROUND

In this section, we review the related work and discuss the
preliminaries. Network coding is the core part of this work.
For this reason, we first discuss the related work on network
coding. Then, we provide a background on network coding.
We also discuss the some of the applications of network
coding, including security and reliability.

A. Network Coding Preliminaries

The authors in [3] proposed the idea of network coding [4]–
[6] for the first time. They show that network coding helps
to achieve the capacity of a single multicast session in wired
networks, which is equal to the min-cut max-flow between the
source node and the destination nodes. This can be achieved
by solving the bottleneck problem in wired networks. In [7],
it is shown that to achieve the capacity of a single multicast
problem, we can use linear network coding, in which the coded
packets are linear combination of the original packets. The
authors in [8] proposed random linear network coding for the
first time. The main idea in random linear network coding
is to use random coefficients to code the packets. The main
advantage of the random linear network coding is that each
intermediate node can perform coding independent of the other
nodes. As a result, the coding can be perform in a distributed
fashion. Also, it simplifies the coding process. The authors
in [8] show that a high probability the generated random linear
coded packets are linearly independent. An algebraic model of
the linear network coding is proposed in [9].

The coefficients in random linear network coding are chosen
randomly over a finite field (Galois field). Also, the linear
operations are performed over a finite field. Each packet is
in the form of

∑m
j=1 αj × Pj . In this equation, Pj and αj

are the packets that are coded with each other and the random
coefficients, respectively. The packets that are coded with each
other can be plain packets (original packets) or coded packets.
An important property of linear network coding is that even
if coded packets are recoded with each other, the result will
be a linear coded packet. As a result, each intermediate node
can perform coding (recoding) on the received packets and
forward the coded packets. Each destination node will be
able to decode the received linearly coded packets once it
receives m linearly independent coded packers. For decoding



the codded packets, Gaussian can be used to solve a system
of linear equations.

B. Applications of Network coding
1) Reliable Transmission: One of the main applications of

network coding is in providing reliable transmissions in wired
and wireless networks. The simplest way to provide reliable
transmission is to use feedback messages. For this purpose,
ARQ (automatic repeat request) method [10] can be used.
Feedback messages has overhead, since for each set of packets,
the source node needs to stop transmitting packets and listen
to the feedback messages. This overhead becomes a major
problem in the case of multicast applications, which makes
ARQ almost impractical. One solution to reduce the number of
feedback messages is to use hybrid-ARQ methods [11], [12],
in which ARQ and forward error correcting codes (FEC) [13]–
[15] are combined. In FEC methods, redundancy is added to
the transmissions to fight with the transmissions error and
increase the success delivery rate. However, the hybrid-ARQ
methods do not eliminate the need for feedback messages

The main benefit of linear network coding is that all of
the coded packets contribute the same amount of information
to the destination nodes. As a result, it is not important
to know which packets have been received by a destination
node and which of them have been lost. Instead, in order to
provide reliable transmissions we need to make sure that the
destination node receives a sufficient number of coded packets.
The source node and the intermediate nodes keep transmitting
random linear network coded packets, until the destination
node decode the coded packets. Consequently, there will be
no need for feedback messages.

The application of network coding in providing reliable
transmissions and reducing the number of transmissions has
been received a lot of attention from the community. In [16]–
[20], network coding is used in one-hop multicasting applica-
tion to reduce the number of transmissions. The destination
nodes transmit feedback messages to inform the source node
about the lost packets. The source node uses network coding
in the retransmission phase to reduce the number of required
transmissions to deliver the missed packets. The idea is to
combine the packets that are missed by a destination node (set
of nodes) and has been received by the other nodes together.
As a result, each coded packet can deliver multiple lost packets
to different destination nodes. In this application, network
coding helps to reduce the number of required transmissions,
which results in increase in the throughput of the system.

2) Protocol Simplification: Network coding can be used
as a tool to simplify some protocols in wired and wireless
networks. For an instance, in per-ro-peer (P2P) networks [21]–
[23], large data is stored on a set of distributed devices.
In order to retrieve the original data, we need to download
different parts of the data from different devices. As a result,
we need to have a mechanism to track which the data that
is stored on each device, which is a major challenge in P2P
systems. When network coding is applied on the original data,
tracking the stored data becomes easier [24]. In this case,
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Fig. 2. System model.

instead of knowing which part of the data has been stored
on which peer, we need to know how many coded packets are
stored on the peer. In addition, network coding can simplify
content distribution over distributed storage systems. Many
content distribution problems are NP-complete, which means
they cannot be solved in polynomial time, e.g. the problems
in [25], [26]. Network coding can help to convert these prob-
lems to a flow maximization problem, which can be solved in
polynomial time with linear programming optimization [27],
[28]. The original problems without network coding were
integer programming optimizations.

3) Security: Network coding is a natural way to conceal
data from unauthorized users, since a sufficient number of
coded packets are required for decoding the coded packets.
Therefore, it can be used to provide a lightweight secure
data transmissions or data storages against eavesdroppers. If
we code m original packets together, any node including an
eavesdropper needs to collect m coded packets to be able
to decode the coded packets and retrieve the original data.
Assume that the eavesdropper has only access to m − 1
coded packets. In this case, Gaussian elimination will fail and
the eavesdropper cannot retrieve the original data. Not only
network coding can hide the original data from the malicious
nodes, but also can hide it from the intermediate relay nodes.
If we do not apply network coding on the original data, an
encryption method needs to be used to protect the data.

III. SYSTEM MODEL

We consider a distributed data storage system, which con-
tains n storages. Each of these data storages might fail with a
given probability. The failure can be due to different reasons,
such as power limitation, hardware problem, or high workload.
We represent the failure probability of the ith data storage as
ϵi. Moreover, each data storage is subject to eavesdropping
attack. We represent the probability that an eavesdropper can
have access to the contents of the ith data storage as γi. We
have a large file with size m packets, and we want to store
the file on the data storages. The system setup is shown in
Figure 2.



TABLE I
THE SET OF SYMBOLS USED IN THIS PAPER.

Notation Definition
m Number of packets in the original file
n Number of data storages
ϵi Failure probability of the ith storage
γi Access probability of the eavesdropper to the

ith data storage
sj The jth subset of the storages
pj Failure probability of the storages in set sj
qj Access probability of the eavesdropper to the

data storages in set sj
xi Portion of stored file on the ith storage
yj Boolean variable which shows whether set sj

stores m coded packets
U Utility function
u1/u2 The security/fault tolerance of the system
α1/α2 The assigned weights to security/fault tolerance
t1/t2 Threshold for security/fault tolerance

In order to provide fault tolerance, random linear network
coding is applied on the original file, and network coded
packets are stored on the data storages. For this purpose, the
file is divided into m packets, and random linear network
coding is performed among the m packets to generate coded
packets. In this way, we can store redundant coded packets. A
user needs to have access to any m coded packets to be able
to decode the coded packets and retrieve the original file.

Our objective is to perform a trade-off between the reliabil-
ity and the robustness against the eavesdropper. A data storage
that is robust against failure, might not be as secure as the other
data storages. Moreover, in order to make the system more
robust against failures, we need to add more redundancy and
store the file on more number of data storages. However, more
number of data storages make the system more vulnerable
against eavesdroppers, since there is a higher chance that an
eavesdropper can access m coded packets.

We represent the probability that the eavesdropper and an
authorized user can retrieve the original file as u1 and u2,
respectively. We use α1 and α2 as tunable weights to perform
a trade-off between u1 and u2. In our model, variable xi

represents the portion of the file store on storage si. The set
of subsets of the storages is denoted as R, and the jth subset
in represented as Rj . Boolean variable yj = 1 means that the
stored data on the storages in Rj are greater than m, which
is sufficient to retrieve the original file. The set of notations
used in this work are shown in Table I.

IV. SECURE DATA STORAGE

As discussed in the previous section, our objective is to
perform a trade-off between security and reliability. In this
section, we first formulate out problem as a mixed integer
and linear programming optimization. We then propose our

methods to find a secure and fault tolerance method to store
the file on the data storages.

A. Formulation

We formulate our problem in the following three cases.

• Case 1: We define the objective function as a function
of fault tolerance and security, and optimize them at the
same time.

• Case 2: We fix the fault tolerance into a specific threshold,
and set it as a constraint of the optimization. This
threshold is the minimum required fault tolerance that
is required for a given storage system. We then minimize
the eavesdropping probability such that the fault tolerance
constraint is meet.

• Case 3: This is the opposite of Case 2. We define
a eavesdropping probability threshold and set it as a
constraint. Then, we maximize the fault tolerance, such
that the eavesdropping probability constraint is meet.

1) Case 1: Our objective is to perform a trade-off between
security and fault tolerance. Storing more redundant data on
each data storage makes the system more robust gainst storages
failure. On the other hand, it increase the vulnerability of the
system against eavesdropping attacks.

We define the objective function as U = α1u1−α2u2. Here,
u1 is the probability that the eavesdropper can retrieve the
original file. Moreover, u2 is the reliability of the data storage
system, which is defined as the probability that a authorized
user can retrieve the original file. Also, α1 and α2 are the
tunable weights that are assigned to u1 and u2. The purpose
of these weights are to perform a trade-off between the security
and the reliability of the system.

In order to retrieve the original file, the eavesdropper need
to receive m linearly independent coded packets. Then, it can
use Gaussian elimination to decode the coded packets. In the
case that the size of the finite field is sufficiently large, any
m out of the random linear coded packets will be linearly
independent and sufficient to retrieve the original file with a
hight probability [8]. Assume that R is the set of subsets of
the data storages. We represent the jth subset in R as Rj .
We use boolean variables yj and zj to shows whether the
eavesdropper and a user can retrieve the original file from the
set of storage nodes in Rj . In the case that at least m coded
packets are stored on the set of storages in Rj , yj and zj
have a values equal to 1; otherwise, they equal 0. As a result,
the probability that and eavesdropper and a user can use the
set of data storages in Rj ro retrieve the file equal qjyj and
pjzj , respectively. The portion of the file that is stored on data
storage si is equal to xi. We can formulate our problem as
the following optimization problem:

min U =
∑

Rj∈R

α1qjyj − α2pjyj (1)

s.t yj ∈ {0, 1} ∀ Rj ∈ R (2)



The probability that storage si fails is equal to ϵi. As a
result, the probability that the storages in Rj do not fail and
the rest of the storages fail can be calculated as:

pj =
∏

sk∈Rj

(1− ϵk)
∏

si /∈Rj

ϵi (3)

Moreover, the probability that an eavesdropper can have access
to storage si equals γk. Therefore, the probability that an
eavesdropper has only access to the set of storages in Rj can
be calculated as follows:

qj =
∏

sk∈Rj

γk
∏

si /∈Rj

(1− γi) (4)

2) Case 2: In the second scenario, our goal is to minimize
the vulnerability of the storage system against eavesdropping.
We also want to achieve a certain level of fault tolerance. We
show this threshold as t2. In this case, we can formulate the
problem as the following mixed integer and linear program-
ming:

min U =
∑

Rj∈R

qjyj (5)

s.t
∑

Rj∈R

pjyj ≥ t2 (6)

yj ∈ {0, 1} ∀ Rj ∈ R (7)

here, the objective function is minimizing
∑

Rj∈R qjyj , which
is the probability of successfully decoding the coded packets
by the eavesdropper. Moreover, Constraint (6) ensures that the
reliability of the data storage system is not less than threshold
t2. In Constraint (6),

∑
Rj∈R pjyj is the probability that the

original file can be retrieved from the storages.
3) Case 3: In the third case, our objective is to maximize

the system fault tolerance against failures. However, we need
to make sure that the vulnerability of the system is not more
that a threshold, denoted as t1. The mixed integer and linear
programming in this case is as follows:

max U =
∑

Rj∈R

pjyj (8)

s.t
∑

Rj∈R

qjyj ≤ t1 (9)

yj ∈ {0, 1} ∀ Rj ∈ R (10)

where, the objective function is
∑

Rj∈R pjyj . Also, we have
Constraint (6) to make sure that the probability of sucessful
eavesdropping is not greater than t1.

B. File Distribution Scheme

1) Relaxation to Linear Programming: The optimization
in the previous section is and mixed integer and linear pro-
gramming. In general, there is no polynomial solution for
mixed integer and linear programming. In contrast, there are
efficient solutions in polynomial time for linear programming
optimizations. One of the techniques that can be used in order
to make a mixed integer and linear optimization easier to solve,

is to relax it to linear programming. For this purpose, we can
relax variable yj to a variable zj with real values. In this case,
our optimization becomes:

min U =
∑

Rj∈R

α1qjzj − α2pjzj (11)

s.t zj =
∑

i:si∈Rj

xi ∀ Rj ∈ R (12)

zj , xi ∈ (0, 1) ∀ Rj ∈ R, si ∈ S (13)

We denote this optimization as LP1. This optimization can
be solved using standard optimization techniques such as
gradient approach. The complexity of the solutions for linear
programming problems is a polynomial function of number
of its variables and constraints. As a result, in the case that
we have a large number of storages, the time complexity
of finding its optimal solution becomes exponential. For this
purpose, instead of solving the above optimization, we use its
approximation as follows:

min U =
∑

si∈S

α1γixi − α2(1− ϵj)xi

s.t xi ∈ (0, 1) ∀si ∈ S

We denote this optimization as LP2.
For the second case, the linear programming optimization

becomes:

min U =
∑

Rj∈R

qjzj (14)

s.t
∑

Rj∈R

pjzj ≥ t2 (15)

zj =
∑

i:si∈Rj

xi ∀ Rj ∈ R (16)

zj , xi ∈ (0, 1) ∀ Rj ∈ R, si ∈ S (17)

In order to maximize the fault tolerance of the system and
meet the security threshold, we can formulize the problem as
the following linear programming optimization:

min U =
∑

Rj∈R

pjzj (18)

s.t
∑

Rj∈R

qjzj ≥ t1 (19)

zj =
∑

i:si∈Rj

xi ∀ Rj ∈ R (20)

zj , xi ∈ (0, 1) ∀ Rj ∈ R, si ∈ S (21)

2) Greedy Algorithm: In order to further reduce the com-
plexity of the distribution algorithm, heuristic methods such
as greedy algorithms can be used. Here, we discuss the high-
level idea for a greedy approach that can be used to perform a
trade-off between security and reliability in distributed storage
systems. We first calculate gi = (1 − ϵi)/γi for each data
storage si. This metric shows the rate of the reliability of
a data storage to its vulnerability against eavesdroppers. A



Algorithm 1 Search for Optimal Coding Scheme
1: For each storage si gi = (1− ϵi)/γi
2: for Each storage sj in decreasing order of gj do
3: Set xi = f(ϵi, γi,α2,α1)
4: end for

higher value for gi means that the storage si is a better choice
to store the coded packets, since si is more robust against
failures and eavesdroppers. We then sort the data storages in
decreasing order of their gi, and fill them in this order.

The factors that can effect the amount of stored data of each
storage si are ϵi, γi, α1, and α2. As a result, we need to have
a function to these parameters to calculate xi for each storage.
For this purpose, we store xi = f(ϵi, γi,α2,α1) portion of the
file on storage si. Here, f(.) is a function of ϵi,γi,α2, and α1.
In the case that the reliability of the system is more important
for us, the files should be distributed on more reliable storages.
Also, xi for the more reliable storages should be greater. In
contrast, in the case that the security is more important, the
data should be stored on more secure storages. It should be
noted that we just want give an idea of a possible greedy
solution. Therefore, we do not discuss the details of function
f(.), and we leave it for future work. The hight-level idea of
the greedy solution is shown in Algorithm 1.

V. EVALUATIONS

In this section, we evaluate our proposed proposed secure
storage system through simulation results. We discuss discuss
the setting in the simulations. We then present the simulation
results. At the end, we summarize our finding from the
simulation runs.

A. Simulation Setting

In order to evaluate our methods, we implemented a sim-
ulator in the Matlab environment. In our simulations, we use
the Linprog tool of Matlab to find the solution of our proposed
liner programming optimization. In order to use Linprog, we
need to change the equality constraints to inequality equations.
For this purpose, we modify Equation (19) to two equations
zj ≤

∑
i:si∈Rj

and zj ≥
∑

i:si∈Rj
.

We run all of the simulations on 100 random networks. For
each network, the reliability and the eavesdropping probability
of each storage is selected randomly from a given range, which
will be mentioned for each presented plot. We compare the
optimal solutions of the mixed integer-linear programming
and the two relaxed linear programming optimizations. In the
simulations, we measure the effect of the following metrics
on reliability and the security of the proposed methods:

• α1: is the weight that is assigned to the security. The
higher values of α1 means that the security has more
important role in the utility. As a result, for a higher
α1, our solutions find a content distribution that results
in more secure data storage, which might be less fault
tolerance.
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0.1 0.12 0.14 0.16 0.18

R
el
ia
bi
lit
y

0.4

0.5

0.6

0.7

0.8

0.9

1

LP1,α1=0.5
LP1,α1=0.6
LP2,α1=0.5
LP2,α1=0.6

(a)
α2

0.1 0.12 0.14 0.16 0.18

Se
cu
rit
y

0.5

0.6

0.7

0.8
LP1,α1=0.5
LP1,α1=0.6
LP2,α1=0.5
LP2,α1=0.6

(b)

Fig. 3. The effect of α2 on the reliability and the security of the data storage.
ϵi ∈ [0, 0.1], γi ∈ [0, 0.5]. (a): measuring the reliability of the system. (b):
Measuring the security of the system.

• α2: is the weight that we assign to the fault tolerance. A
high value for α2 results in more fault-tolerant distributed
data storage.

• ϵ: we measure the effect that the failure probability has
on the fault tolerance and the security of the storage.

• γ: by changing the range of γ, we evaluate the effect of
eavesdropping probability on the security of the system.

In the simulations, we evaluate the reliability and the
security of our proposed method in different scenarios.

B. Simulation Result
In the first experiment, we measure the reliability of the

data storage. We define the reliability (fault tolerance) as the
probability that the non-failed data storages are sufficient to
retrieve the original data. For this purpose, the number of
stored coded packets on the remaining data storages should
be more than or equal to m. In other words, the summation of
xi for the working data storages should be at least 1. We set
the failure probability of each data storage to a random value
in the range of [0, 0.1]. Also, the eavesdropping probability
of each data storage (γ )is in a range of [0, 0.5]. Figure 3(a)
shows the result of our simulations.

In Figure 3(a), we compare the LP1 and LP2 methods in
the cases of α1 = 0.5 and α1 = 0.6. The figure shows that
the reliability of all of the methods increase as we increase
α1. The reason is that, in the objective function of both
of the optimizations, α1 is the weight of reliability. As a
result, when we increase α1, each data storage stores more
coded packets. In this way, if a set of data storages fail,
there is a higher chance that the rest of data storages have
a sufficient number of coded packets to retrieve the original
data. Moreover, Figure 3(a) depicts that the reliability in the
case of α1 = 0.6 is less that with α1 = 0.5. The reason is
that, a greater α1 gives more importance to the security of the
system. The figure shows that in general, the reliability of the
LP2 method is more than that of the LP1 method. It should
be noted that the time complexity of the LP2 method is less
than that of the LP1 method.

In the next experiment, we measure the security of the data
storage system. We define the security of the data storage
system as the probability that an eavesdropper can access to



α1

0.5 0.6 0.7 0.8 0.9

R
el
ia
bi
lit
y

0.2

0.4

0.6

0.8

1

LP1,α2=0.1
LP1,α2=0.2
LP2,α2=0.1
LP2,α2=0.2

(a)
α1

0.5 0.6 0.7 0.8 0.9
Se
cu
rit
y

0.4

0.5

0.6

0.7

0.8

0.9

1

LP1,α2=0.1
LP1,α2=0.2
LP2,α2=0.1
LP2,α2=0.2

(b)

Fig. 4. The effect of α1 on the reliability and the security of the data storage.
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a set of data storages that have a sufficient number of coded
packets to retrieve the original data. In Figure 3(b), α1 = 0.5
and α1 = 0.6. Also, the failure and eavesdropping probability
of each storage is selected randomly in the ranges of [0, 0.1]
and [0, 0.5], respectively. The figure shows that as we increase
α2, the security of the data storage system decreases. Because,
as we increase α2, the reliability plays a more important role
in the objective function. Consequently, in order to minimize
the objective function, more coded packets need to be stored
on the data storages. In this case, the probability that an
eavesdropper can collect a sufficient number of coded packets
from the data storages that are accessed increases. Figure 3(b)
shows that, the LP1 method provides more security compared
to the LP2 method. It can be inferred from Figures 3(a) and
(b) that, as the reliability of a data storage system increase,
its security decreases. Also, a more secure data storage is less
robust against failures.

In the next experiment, we measure the effect of α1 on the
reliability of the data storage system. We select the failure
probability of each data storage randomly in the range of
[0, 0.1]. Also, the eavesdropping probabilities are in the range
of [0, 0.5]. We change α1 from 0.5 to 0.9, and show the result
in Figure 4(a). The figure depicts that, as we increase α1, the
reliability of the system decreases. This is because, a greater
α1 results in less stored coded packets on the data storages.
Consequently, the system will be less resilient to the storage
failures, which reduces the system reliability. In the case that
α2 = 0.2, the system is more reliable compared to the case
with α2 = 0.1. Also, the reliability of the system in the cases
of LP1 and LP2 methods are very close.

In Figure 4(b), we change α1 from 0.5 to 0.9, and measure
the security of the system. We select the failure probability
of each data storage randomly in the range of [0, 0.1]. Also,
the eavesdropping probabilities are in the range of [0, 0.5]. We
run the simulations in the cases of LP1 and LP2 methods with
α2 = 0.1 and α2 = 0.2. As we expected, the security of the
system increase as we increase α1. This is because of less
stored coded packets on each data stored when α1 increases.
However, as Figure 4(a) shows, the reliability decreases as
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we increase α1. Figure 4(b) shows that, the security of the
LP1 and LP2 methods are very close to each other. Moreover,
α2 = 0.1 results in a more secure data storage.

In order to evaluate the effect of data storage failure
probability on the reliability of the system, we change the
range of failure probability from [0, 0.1] to [0, 0.5] and measure
the reliability of the system. The eavesdropping probability of
each data storage is in the range of [0, 0.5]. Moreover, α1 is
equal to 0.1. The simulation is run in the cases of α1 = 0.5
and α1 = 0.6 for the LP1 and LP2 methods. The results of the
simulations are plotted in Figure 5(a). It is clear that a higher
data storage failure should result in a less data storage system,
which is confirmed in the figure. The reliability of the LP1 and
LP2 methods are very close. In addition, α1 = 0.5 results in
a more reliable data storage compared to that of α1 = 0.6.

In our last experiment, we evaluate the effect of data
storage failure probability on the security of the system. In
Figure 5(a), the eavesdropping probability is selected in the
range of [0, 0.5]. Also, α2 is set to 0.2. We change the failure
probability of the range of storage probability from [0, 0.1] to
[0, 0.5], and measure the reliability of the distributed storage
system. The figure shows that there is not huge gap between
the reliability of the LP1 and LP2 methods. Moreover, as we
increase α1 from 0.5 to 0.6, the reliability of the LP1 and
LP2 methods decrease. For α1−0.5, the reliability of the LP1
method is more than 0.98, which is very close to the reliability
of the LP2 method.

In the last experiment, we measure the effect that the storage
failure probability has on the vulnerability of the system
against eavesdropper attacks. We select the eavesdropping
probability randomly from the range of [0, 0.5]. In addition, α2

is set to 0.2. We increase the range of storage reliability from
[0, .01] to [0, .05], and evaluate the security of the system. It
might be strange that the security of the system increase as we
increase the failure probability. The reason is that, when we
increase the storage failure probability, there are two ways to
minimize the objective function. One approach is to increase
the redundancy to increase the reliability of the system. The
second approach is to reduce the redundancy in order to in



enhance the security. Since the failure probability is becoming
high, increasing the redundancy has a greater negative effect
on the security of the system. Since α1 is high, increasing
the redundancy cannot compensate the negative impact on the
security of the system. As a result, the assigned redundancy
cannot be hight, which increase the security of the system.

C. Simulation Summary
We can summarize the our finding from the simulation

results in this section as follows:
• The reliability of the distributed data storage and its

vulnerability have negative correlation. As the reliability
of the system increases, its security decreases.

• The reliability and the security of the LP1 and LP2
methods are very close to each other. Specially, in the
case that the storage failure probability is low.

• As the failure probability of the storages increase, the
security of the system increases as well.

VI. CONCLUSION

Random linear network coding is a method which is used in
wired and wireless networks to increase the throughput of the
networks and provide reliable transmissions. Another applica-
tion of network coding is in distributed storage systems to store
a large data on different storages and provide fault tolerance
against storage failures. Using random linear network coding,
the set of packets can be encoded to infinite number of packets,
and a subset of these coded packets are enough to retrieve
the original data. In addition to provide fault tolerance and
enhancing the reliability of the system, random linear network
coding can be used to protect the data from eavesdropper. An
unauthorized user is not able to decode the coded packets and
retrieve the original data unless it has access to a sufficient
number of coded packets.

In this work, we use random linear network coding to
design a fault-tolerant and secure data storage. Increasing
the redundancy enhances the fault tolerance of a distributed
data storage. On the other hand, it makes the system more
vulnerable against eavesdropper attacks, since the more is the
redundancy the more is the probability that an eavesdropper
can access a sufficient number of coded packets. In this work,
we perform a trade-off between security of a distributed stor-
age system and its fault tolerance. We formulate the problem
as a mixed integer and linear programming, and relax it to
linear programming, which can be solved in polynomial time.
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