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Abstract—With the rapid popularity of cameras on various
devices, video chat has become one of the major ways for
communication, such as online meetings. However, the recent
progress of face reenactment techniques enables attackers to
generate fake facial videos and use others’ identities. To protect
video chats against fake facial videos, we propose a new defense
system to significantly raise the bar for face reenactment-
assisted attacks. Compared with existing works, our system has
three major strengths. First, our system does not require extra
hardware or intense computational resources. Second, it follows
the normal video chat process and does not significantly degrade
the user experience. Third, our system does not need to collect
training data from attackers and new users, which means it can
be quickly launched on new devices. We developed a prototype
and conducted comprehensive evaluations. Experimental results
show that our system can provide an average true acceptance
rate of at least 92.5% for legitimate users and reject the attacker
with mean accuracy of at least 94.4% for a single detection.

Index Terms—TFace forgery, face liveness detection, real-time
video chat.

I. INTRODUCTION

In the past a few years, thanks to fast internet speeds and the
powerful processing capacity of personal electronic devices,
video chat has become a major form of communication.
Compared with text-based or audio-based communication,
video chat enables users to observe the real emotions and
activities of each other without physically being together,
which makes the information delivered more accurate and
the relationship establishment more efficient. Therefore, many
video chat software (e.g. Skype [1] and WebEx [2]) are
released for various applications, such as conference meeting,
interviewing, and making friends. Based on a report from
Statista, the estimated number of Skype users is expected to
be 1.67 billion in 2020 [3].

There are two major channels in real-time video chat: image
and audio. By default, both channels are regarded as real
information since they are generated in real-time, which is why
video chat is used as an alternative way to validate the identity
of a user in practice. However, since a malicious user can
easily get the victim’s videos and voice from social networks,
both channels can be well counterfeited with the development
of Al-assisted techniques. For example, the recorded voice
of the victim can be replayed to pass through current voice-
based authentication systems. Similarly, recent research in face
reenactment shows that the facial expressions on one face
can be transferred to any other face in real-time. These facts
enable the malicious user to easily use the victim’s identity,
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Fig. 1. Face forgery detection in real-time video chat.

which poses a serious threat to legitimate users. Even if the
voice replay attack can be efficiently countered by using voice
liveness detection techniques [4]—[7], attackers can still fool
legitimate users by generating fake image channels.

To defend against fake face videos, various face liveness
detection systems are designed using either artifact detection-
based methods [8]-[12] or challenge-response-based methods
[13], [14]. The basic assumption of the artifact detection-based
method is that fake facial images must have imperfect arti-
fact detections. By extracting proper features, the fake facial
images can be detected using various classification models.
However, in order to gain enough knowledge for building
a robust classifier, artifact detection-based methods have to
collect fake videos in advance, which usually involves sig-
nificant training. Moreover, artifact detection usually requires
lots of computation resources to achieve better feature ex-
traction and classification, which is not available on resource-
limited devices. Challenge-response-based methods are based
on the nature of human activities. For example, FaceLive
can detect the media-based facial forger by correlating the
head movement measured by motion sensors and head pose
change recorded in videos [13]. However, the face reenactment
attacker can still easily break FaceLive by faking the sensor
data since it can have enough knowledge of the target video.
Moreover, since the detection is done on the attacker side, the
attacker can even send the legitimate user a wrong detection
result. Recently, Tang et al. [14] proposed a new liveness
detection method by randomly flashing pre-designed pictures
(e.g. white and black scenes) on a screen and analyzing the
face-reflected light. Nevertheless, their work also relies on
a neural network for accurate classification. Moreover, the
flashing pictures replace the original video frames, which will
degrade the user experience between two legitimate users.

Considering the limitations of existing solutions, we propose
a defense system for real-time video chat against fake facial
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Fig. 2. An example of face reenactment techniques [16].

videos generated by face reenactment techniques. As shown in
Fig. 1, our system requires no extra sensors except the screen
and camera that are available on all videotelephony devices.
Specifically, the screen is used to emit light signals, and the
camera works as a sensor to measure the relative luminance
(simplified as luminance [15] in this paper) of the lights that
are reflected from the untrusted user’s face. The key insight
behind our system is that the luminance of the face-reflected
light is proportional to that of the screen light for a legitimate
user. Since the face reenactment attacker cannot generate
the real-time face reflection in a photo-realistic fashion, the
legitimate user can detect the face forgery by: 1) introducing
luminance changes in the transmitted video by changing the
area of light metering; 2) measuring the correlation between
the luminance changes of the screen light and face-reflected
light.

To achieve our goal, we solve three major challenges in
the design of our system. The first challenge is to robustly
extract the luminance information of face reflection from the
videos. To address this issue, we leverage the facial landmark
detection algorithm to locate the lower part of the nasal bridge
as the area of interest and calculate the luminance information
using only the color information within this area. Second, the
luminance signals are noisy and cannot be directly used for
correlation measurement. To solve this problem, we remove
the noise components using signal processing techniques and
extract the significant light change from filtered signals. The
last challenge is to extract useful features from the filtered
signal and build a classifier for robust and accurate detection.
In our system, we extract four features that describe the
luminance change behavior and trend from the filtered signal.
A local outlier factor-based classifier is trained on selected
features for the final decision.

Compared with existing works, our system has three major
strengths: 1) low-cost: our system does not require extra
hardware or intense computation resources; 2) good user
experience: since the luminance change in the transmitted
video is made by controlling the exposure level, both users
can still see each other’s faces with only limited loss of
video information; and 3) zero training effort: our system does
not need to collect training data from either a new user or
attackers, which means our system can be quickly launched
on new devices. We summarize our contributions as follows:

This is the first work where the luminance of face-
reflected light is used to defend against face reenactment
attackers.

We propose robust solutions for extracting luminance
signals from videos and finding significant luminance
changes from noisy luminance signals.

We extract four strong features from the filtered signals to
describe the luminance change behavior and trend. More-
over, we propose a local outlier factor-based classifier to
detect fake faces in videos without collecting training data
from either a new user or attackers.

We develop a prototype and conduct comprehensive eval-
uations. Experimental results show that our system can
provide an average true acceptance rate of at least 92:5%
for legitimate users and reject face reenactment attackers
with mean accuracy of at least 94:4% for each detection.

II. PRELIMINARY
A. Face Forgery using Face Reenactment

Deepfake (a portmanteau of “deep learning” and ‘“fake”)
is a type of techniques for human image synthesis based on
artificial intelligence. It is used to combine and superimpose
existing images and videos onto source images or videos using
machine learning techniques . Because of these capabilities,
Deepfake techniques have been used to create fake celebrity
pornographic videos, fake news, and malicious hoaxes. Face
reenactment is an example of Deepfake techniques. The goal
of face reenactment techniques is to animate the facial ex-
pressions of the target video by a source actor and re-render
the manipulated output video in a photo-realistic fashion.
Fig. 2 shows an example of the face reenactment technique
reported in [16]. We can see that the facial expression in
the source video is transferred to the person in the target
video with high quality. Compared with other real-time face
forgery techniques (e.g. face swapping), face reenactment
creates fewer artifacts while achieving high frame rates (up
to 47.5 Hz in [17]). For a legitimate user in video chat
scenarios, it is hard to detect face reenactment attacks with
high accuracy. Although face reenactment techniques have
made great success on face forgery, their nature also gives
us the insight to defend against them. Since face reenactment
techniques only focus on transferring the facial expression,
the luminance change of the output video is the same as
the target video, which means the attacker cannot have the
correlated luminance change of face-reflected light. Even if the
face reenactment attacker can use the source actor to observe
the luminance change and generate the change in the output
video, the extra computational overhead will largely reduce
the frame rate make real-time attacks unfeasible.

B. Light Metering of Digital Cameras

To achieve consistent and accurate exposures in the recorded
videos, the light meter is essential for current digital cameras.
In general, the camera controls the shutter speed and aperture
by predicting how much light is actually hitting the subject.
Current cameras provide users with various ways to meter
light. Among them, spot and multi-zone metering modes are
most used and widely available. In multi-zone metering, the
camera measures the light intensity at multiple points in the
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Fig. 3. Luminance of face-reflected light when screen light changes.

scene and then combines the results to find the setting for the
ideal exposure. Therefore, multi-zone metering can produce
balanced exposure for most scenes and is used as the default
mode for most cameras. Alternatively, with spot metering, the
camera will measure only a very small area of the scene. By
default, this small area is at the center of the scene, but the
user or application can easily select a different off-centre spot.
If the spot is moving from a relatively low-luminance area to
a high-luminance area, the camera will let less light in, which
leads to a diminished brightness in the darker area. Similarly,
if the spot is moving from a relatively high-luminance area
to a low-luminance area, the luminance of the scene rises.
Hence, by moving the metering spot between high-luminance
and low-luminance areas, the legitimate user can easily control
the overall luminance of its video. Since the exposure only
changes the brightness of each pixel, this method can reserve
partial information (e.g. the face of the legitimate user) in the
scene, which ensures a certain level of user experience.

C. Face Reflection of Screen Light

When the untrusted user watches the legitimate user’s facial
video, the camera can capture the screen light that is reflected
by the face of the untrusted user. Here, we model the face
reflection of screen light based on the Von Kries coefficient
law [18]. For a single type camera, a diagonal model can be
described as:

le(x) = Ec(X)

where X is a pixel on the face, C is the light with different
colors (red, green, and blue), . is the luminance of corre-
sponding color, E. is the illuminant spectral power distribution
of the screen light on X, and R is the reflectance of pixel X.
Therefore, if we focus on a pixel with the same reflectance
and change the light luminance, then we have:

le(x)’ _ Ec(X)'
() Ec(9’

where 1¢(x)? and Ec(x) are the luminance and illuminant
spectral power distribution after the change of screen light.
From this equation, we can observe that the luminance of the
face reflection is proportional to that of the screen light, which
serves as the basic insight of our system.

Rc¢(x), ¢ 2 fR; G; Bg, (1)

c 2 fR;G; By, 2)

D. Feasibility Study

To achieve our goal, we first show that the luminance of the
face-reflected light is highly correlated to that of the screen

light. Specifically, we made a video that flashes between white
and black with a frequency of 0.2 Hz and displayed this video
on a Dell 27-inch Light-emitting diode (LED) Monitor. We
asked a volunteer to sit in front of the monitor while using
the front camera of an iPhone 7 to record his facial video.
During the recording, the volunteer can freely move the head
as long as the whole face can be captured by the camera. Fig. 3
shows the faces when the screen shows black and white colors,
respectively. We can clearly observe that the luminance of
the face-reflected light increases when the color changes from
black to white. As a reference, the luminance value of the nasal
bridge increases from around 105 to around 132. Moreover,
this fact is true for all types of screens including LED, liquid
crystal display (LCD), and organic LED (OLED) since they
all reduce the amount of emitted light when displaying darker
scenes. This simple case implies that the luminance of the
face-reflected light does change proportionally to that of the
screen light, which shows the possibility of detecting fake
faces using the correlation between two luminance signals.

E. Challenges

Although we can observe the corresponding luminance
change of the face-reflected light while the screen’s color
changes between black and white, it is still challenging to
apply this insight to real video chat scenarios for fake forgery
detection. First, the face of the untrusted user will likely be
moving in the scene and can be partially occluded by other
objects (e.g. hair and sunglasses), which introduces extra noise
to the luminance signals of the face-reflected light. To address
this issue, our system only extracts the luminance information
from the lower part of the nasal bridge since this area can be
robustly located using the facial landmark detection algorithm
and is the least likely part to be obfuscated.

The second challenge is to obtain the luminance change
information from the noisy luminance measurements. The
raw luminance signals contain various types of noise. For
example, dynamic scenes in the video will introduce high-
frequency noise to the raw luminance signal of the screen light.
Additionally, the luminance change is weaker in practice than
in the ideal case in a feasibility study. To remove the noise
and robustly locate each luminance change, we designed a
series of filters and apply them on the raw luminance signals
in order.

The last challenge is to extract useful features from the
filtered signal and build a classifier for robust and accurate
face forgery detection. To solve this problem, we select four
features that describe when and how the luminance signal
significantly changes. To reduce the training cost while still
ensuring good performance, we build a strong classifier with-
out collecting training data from the attacker and new users
using the local outlier factor model.

III. SYSTEM DESIGN
A. Adversary Model

In our adversary model, the attacker aims to impersonate
others using face reenactment while video chatting with vic-
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Fig. 4. System architecture.

tims. The capability of the face reenactment attacker is limited
in the sense that: 1) the attacker has already or is able to set
up a video chat connection with the victim; 2) the attacker
can generate fake facial videos with high quality in real-time
using any face reenactment technique; and 3) the attacker can
redirect the input stream of the current video chat software
(e.g. Skype) from the camera to the fake facial videos using
a virtual web camera. When these tasks are performed, we
suppose the victim cannot visibly identify the fake facial video
as a forgery. Note that the adversary model we considered is
much stronger than traditional models where attackers replay
the fake facial videos using another screen because the facial
videos are directly fed to video software without any loss and
interference.

The objective of our system is to significantly raise the
bar for such face reenactment attacks. To break our defense
system, the attacker needs to reconstruct the face-reflected
light on the fake face with high quality based on the relative
locations of the head, camera, and the screen in real-time. For
this, the attacker has to: 1) introduce an extra image processing
layer for each frame to reconstruct the face-reflected light; and
2) have enough computation resources to ensure the real-time
attack. Therefore, our system is difficult to attack.

B. System Architecture

The key idea underlying our system is to measure the
luminance correlation between the screen light and the face-
reflected light. When a legitimate user is using videotelephony
with an untrusted user, the camera can capture the screen light
that is reflected by the untrusted user’s face. By comparing the
luminance of the screen light and the face-reflected light, we
can determine if the face is from a real person or generated by
face reenactment techniques. There are two major phases for
using our system: a training phase and a detection phase. In
the training phase, our system will learn the decision strategy
based on the knowledge in the legitimate users’ data. After
that, our system is ready to be used for detection. Our detection
methods can be triggered multiple times during the real-time
video chat. If the untrusted user is detected as an attacker, an
alert will be sent to the legitimate user to avoid further loss.

Fig. 4 shows the detailed process of our system in five steps.
A legitimate user Alice wants to validate whether the facial

video sent from the untrusted user Bob is real or fake. To do
this, Alice records her own facial videos using a camera in step
1 and sends the real-time facial video via the internet to Bob
in step 2. On Bob’s side, his device receives Alice’s video and
displays it on his screen, which means that the luminance of
the screen light largely depends on the content in Alice’s video
in real-time. At the same time, as illustrated in step 3, Bob is
recording his facial video whose luminance change should be
influenced by not only the ambient light in Bob’s environment
but also his screen light. By receiving Bob’s video in step 4,
Alice can get the luminance information of both Bob’s screen
light and Bob’s face-reflected light. In our system running on
Alice’s device, we first extract the luminance information in
both videos and apply filters to the raw signals to extract only
significant light changes.

IV. LUMINANCE EXTRACTION

The goal of our system is to detect the liveness of the face
in the video by measuring the correlation between luminance
signals of the screen light and face-reflected light. Therefore,
we first need to robustly extract these two types of luminance
information from the two videos. Since we are only interested
in the overall luminance of the screen light, we first compress
each frame of the transmitted video into a single pixel, and
use the luminance value of the compressed pixel to represent
the overall luminance of the transmitted video. The luminance
of a pixel is defined as:

C = 0:2126R + 0:7152G + 0:722B, 3)

where C is the luminance value calculated using linear Red
Green Blue (RGB) values. The coefficient of each color is
assigned based on the human visual perception of brightness.
However, not all facial parts can be used to measure
luminance changes. For example, the user may blink the eyes
or talk during the recording. Such activities will introduce
a lot of variances between neighboring frames. Also, users
may wear glasses that reflect lights from other sources, which
will introduce much noise to the luminance measurements.
Based on our preliminary study, we find that the lower part
of the nasal bridge has the most stable images and is hard to
be occluded in most cases. Moreover, the luminance changes
caused by different screen lights at this area are easy to detect.
Therefore, we extract only the lower part of the nasal bridge
from each frame of the video for luminance measurement.
When a legitimate user receives the video from the untrusted
user, our system extracts frames with a sample rate of 10 Hz.
For each frame, we detect the location of the lower part of
the bridge by using a facial recognition API for Python [19].
As shown in Fig. 5, the facial recognition API can report four
locations on the nasal bridge and five locations on the nasal
tip. Since the sampled frames can vary in size depending on
camera hardware, we use the locations of the nasal bridge and
nasal tip to extract the interested area. As shown in Fig. 5,
given the coordinates of the nasal bridge (a1;b;) and nasal tip
(az; by), the side length of the interested area is | = jby  byj.
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Fig. 5. Facial feature localization and interested area extraction.
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Fig. 6. The spectrum of luminance signals w/ and w/o screen light change.

A square whose center is (a;;b;) is extracted from the frame
to calculate the luminance. We use the same methods to get
the luminance information from the area of interest. Fig. 7(a)
shows the luminance signal generated from the lower part of
the nasal bridge, and we can see significant rising edge and
falling edge appear when the luminance of the screen light
significantly changes (green areas).

V. PREPROCESSING

As shown in Fig. 7(a), the raw luminance signals contain
various noise. For the transmitted video, the noise is mainly
from the object movement in the scene. For the face reflection
in the received video, the noise can be introduced by external
light sources. Moreover, the inaccurate face localization can
lead to jittering in the interested area, which further influences
the luminance extraction of the face reflection. Hence, the raw
luminance signals need to be filtered before being used for
feature extraction.

Fig. 6 illustrates the spectrum of the luminance signals
of the face-reflected light. It is clear that high-frequency
noise exists across whole frequency bands, while screen light
changes influence the luminance of the face-reflected light
with low frequency under 1 Hz. Based on this observation,
we first use a low-pass filter with a cut-off frequency of 1 Hz.
As shown in Fig. 7(a), most high-frequency components are
removed while the overall trend is reserved. In our system, we
only consider significant luminance changes in both luminance
signals for two reasons. First, only significant luminance
changes in the transmitted video can generate luminance
changes in the interested area of the received video. Second,
the significant luminance changes in the received video are
robust to noise and easier to detect. However, it is hard to
locate each significant luminance change in the filtered signal
since low-frequency noise still exists. To locate all significant
light change in the filtered signal, we leverage a moving
window with length of 10 samples and calculate the short-
time variance within each window. The basic insight is that
the low-frequency noise within a window only generates a low
variance. Moreover, the variance value in the moving window
can reach a local maxima in two cases: 1) the luminance
rapidly increases to a high value; and 2) the luminance drops

—Raw signal
—Filtered signal

Luminance
~
©
o

N
~
o

o——T—

20 40 60 80 100 120 140 160
Sample index

(a) The raw and filtered luminance signal

30 " "
Split to two small peaks
820 |
c
8
c
>10 Cut-off threshold: 2

Sample index

(b) Variance signal

[«2]

Significant Iﬁminancé change

IS
T

N
0

Root mean square

o
o

20 40 60 80 100 120 140 160
Sample index

(c) Smoothed variance signal
Fig. 7. Preprocessing of luminance signals.

to a much lower value. Therefore, each significant luminance
change can be located by finding the local maxima in the
variance signal.

Nevertheless, the variance signal cannot be directly used
for locating significant light change. As shown in Fig. 7(b),
low-frequency noise can either generate small spikes in the
variance signal or split a significant luminance change into
multiple lower, neighboring peaks. To remove small spikes,
we apply a threshold filter on the variance signal with a
cut-off threshold of 2. To group neighboring lower peaks
into one significant luminance change, we further smooth the
variance signal by applying a moving window with a length
of 30 samples and calculating the root-mean-square value in
each window. Then, we leverage a Savitzky-Golay filter [20]
with a window length of 31 samples using polynomial fitting
and a moving average filter with a window length of 10
samples to further smooth the signal, and the result is shown
in Fig. 7(c). Finally, the traditional peak finding algorithm is
applied on each smoothed variance signal respectively. Since
the luminance variation range of the screen light is much larger
than that of the face-reflected light, the minimal prominence
of the peaks is set to 10 and 0.5 for the screen light and face-
reflected light, respectively.

VI. FEATURE EXTRACTION

In order to detect a fake face in the video, we need to extract
proper features that can describe the correlation between two
relative luminance signals. In our system, we consider both the
similarities of luminance change behaviors and the correlation
of luminance change trends. The luminance change behavior
is a vector where the value of each element is the time






