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Abstract—With the rapid popularity of cameras on various
devices, video chat has become one of the major ways for
communication, such as online meetings. However, the recent
progress of face reenactment techniques enables attackers to
generate fake facial videos and use others’ identities. To protect
video chats against fake facial videos, we propose a new defense
system to significantly raise the bar for face reenactment-
assisted attacks. Compared with existing works, our system has
three major strengths. First, our system does not require extra
hardware or intense computational resources. Second, it follows
the normal video chat process and does not significantly degrade
the user experience. Third, our system does not need to collect
training data from attackers and new users, which means it can
be quickly launched on new devices. We developed a prototype
and conducted comprehensive evaluations. Experimental results
show that our system can provide an average true acceptance
rate of at least 92.5% for legitimate users and reject the attacker
with mean accuracy of at least 94.4% for a single detection.

Index Terms—Face forgery, face liveness detection, real-time
video chat.

I. INTRODUCTION

In the past a few years, thanks to fast internet speeds and the
powerful processing capacity of personal electronic devices,
video chat has become a major form of communication.
Compared with text-based or audio-based communication,
video chat enables users to observe the real emotions and
activities of each other without physically being together,
which makes the information delivered more accurate and
the relationship establishment more efficient. Therefore, many
video chat software (e.g. Skype [1] and WebEx [2]) are
released for various applications, such as conference meeting,
interviewing, and making friends. Based on a report from
Statista, the estimated number of Skype users is expected to
be 1.67 billion in 2020 [3].

There are two major channels in real-time video chat: image
and audio. By default, both channels are regarded as real
information since they are generated in real-time, which is why
video chat is used as an alternative way to validate the identity
of a user in practice. However, since a malicious user can
easily get the victim’s videos and voice from social networks,
both channels can be well counterfeited with the development
of AI-assisted techniques. For example, the recorded voice
of the victim can be replayed to pass through current voice-
based authentication systems. Similarly, recent research in face
reenactment shows that the facial expressions on one face
can be transferred to any other face in real-time. These facts
enable the malicious user to easily use the victim’s identity,
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Fig. 1. Face forgery detection in real-time video chat.

which poses a serious threat to legitimate users. Even if the
voice replay attack can be efficiently countered by using voice
liveness detection techniques [4]–[7], attackers can still fool
legitimate users by generating fake image channels.

To defend against fake face videos, various face liveness
detection systems are designed using either artifact detection-
based methods [8]–[12] or challenge-response-based methods
[13], [14]. The basic assumption of the artifact detection-based
method is that fake facial images must have imperfect arti-
fact detections. By extracting proper features, the fake facial
images can be detected using various classification models.
However, in order to gain enough knowledge for building
a robust classifier, artifact detection-based methods have to
collect fake videos in advance, which usually involves sig-
nificant training. Moreover, artifact detection usually requires
lots of computation resources to achieve better feature ex-
traction and classification, which is not available on resource-
limited devices. Challenge-response-based methods are based
on the nature of human activities. For example, FaceLive
can detect the media-based facial forger by correlating the
head movement measured by motion sensors and head pose
change recorded in videos [13]. However, the face reenactment
attacker can still easily break FaceLive by faking the sensor
data since it can have enough knowledge of the target video.
Moreover, since the detection is done on the attacker side, the
attacker can even send the legitimate user a wrong detection
result. Recently, Tang et al. [14] proposed a new liveness
detection method by randomly flashing pre-designed pictures
(e.g. white and black scenes) on a screen and analyzing the
face-reflected light. Nevertheless, their work also relies on
a neural network for accurate classification. Moreover, the
flashing pictures replace the original video frames, which will
degrade the user experience between two legitimate users.

Considering the limitations of existing solutions, we propose
a defense system for real-time video chat against fake facial
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Fig. 2. An example of face reenactment techniques [16].

videos generated by face reenactment techniques. As shown in
Fig. 1, our system requires no extra sensors except the screen
and camera that are available on all videotelephony devices.
Specifically, the screen is used to emit light signals, and the
camera works as a sensor to measure the relative luminance
(simplified as luminance [15] in this paper) of the lights that
are reflected from the untrusted user’s face. The key insight
behind our system is that the luminance of the face-reflected
light is proportional to that of the screen light for a legitimate
user. Since the face reenactment attacker cannot generate
the real-time face reflection in a photo-realistic fashion, the
legitimate user can detect the face forgery by: 1) introducing
luminance changes in the transmitted video by changing the
area of light metering; 2) measuring the correlation between
the luminance changes of the screen light and face-reflected
light.

To achieve our goal, we solve three major challenges in
the design of our system. The first challenge is to robustly
extract the luminance information of face reflection from the
videos. To address this issue, we leverage the facial landmark
detection algorithm to locate the lower part of the nasal bridge
as the area of interest and calculate the luminance information
using only the color information within this area. Second, the
luminance signals are noisy and cannot be directly used for
correlation measurement. To solve this problem, we remove
the noise components using signal processing techniques and
extract the significant light change from filtered signals. The
last challenge is to extract useful features from the filtered
signal and build a classifier for robust and accurate detection.
In our system, we extract four features that describe the
luminance change behavior and trend from the filtered signal.
A local outlier factor-based classifier is trained on selected
features for the final decision.

Compared with existing works, our system has three major
strengths: 1) low-cost: our system does not require extra
hardware or intense computation resources; 2) good user
experience: since the luminance change in the transmitted
video is made by controlling the exposure level, both users
can still see each other’s faces with only limited loss of
video information; and 3) zero training effort: our system does
not need to collect training data from either a new user or
attackers, which means our system can be quickly launched
on new devices. We summarize our contributions as follows:
• This is the first work where the luminance of face-

reflected light is used to defend against face reenactment
attackers.

• We propose robust solutions for extracting luminance
signals from videos and finding significant luminance
changes from noisy luminance signals.

• We extract four strong features from the filtered signals to
describe the luminance change behavior and trend. More-
over, we propose a local outlier factor-based classifier to
detect fake faces in videos without collecting training data
from either a new user or attackers.

• We develop a prototype and conduct comprehensive eval-
uations. Experimental results show that our system can
provide an average true acceptance rate of at least 92.5%
for legitimate users and reject face reenactment attackers
with mean accuracy of at least 94.4% for each detection.

II. PRELIMINARY

A. Face Forgery using Face Reenactment

Deepfake (a portmanteau of “deep learning” and “fake”)
is a type of techniques for human image synthesis based on
artificial intelligence. It is used to combine and superimpose
existing images and videos onto source images or videos using
machine learning techniques . Because of these capabilities,
Deepfake techniques have been used to create fake celebrity
pornographic videos, fake news, and malicious hoaxes. Face
reenactment is an example of Deepfake techniques. The goal
of face reenactment techniques is to animate the facial ex-
pressions of the target video by a source actor and re-render
the manipulated output video in a photo-realistic fashion.
Fig. 2 shows an example of the face reenactment technique
reported in [16]. We can see that the facial expression in
the source video is transferred to the person in the target
video with high quality. Compared with other real-time face
forgery techniques (e.g. face swapping), face reenactment
creates fewer artifacts while achieving high frame rates (up
to 47.5 Hz in [17]). For a legitimate user in video chat
scenarios, it is hard to detect face reenactment attacks with
high accuracy. Although face reenactment techniques have
made great success on face forgery, their nature also gives
us the insight to defend against them. Since face reenactment
techniques only focus on transferring the facial expression,
the luminance change of the output video is the same as
the target video, which means the attacker cannot have the
correlated luminance change of face-reflected light. Even if the
face reenactment attacker can use the source actor to observe
the luminance change and generate the change in the output
video, the extra computational overhead will largely reduce
the frame rate make real-time attacks unfeasible.

B. Light Metering of Digital Cameras

To achieve consistent and accurate exposures in the recorded
videos, the light meter is essential for current digital cameras.
In general, the camera controls the shutter speed and aperture
by predicting how much light is actually hitting the subject.
Current cameras provide users with various ways to meter
light. Among them, spot and multi-zone metering modes are
most used and widely available. In multi-zone metering, the
camera measures the light intensity at multiple points in the
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Fig. 3. Luminance of face-reflected light when screen light changes.

scene and then combines the results to find the setting for the
ideal exposure. Therefore, multi-zone metering can produce
balanced exposure for most scenes and is used as the default
mode for most cameras. Alternatively, with spot metering, the
camera will measure only a very small area of the scene. By
default, this small area is at the center of the scene, but the
user or application can easily select a different off-centre spot.
If the spot is moving from a relatively low-luminance area to
a high-luminance area, the camera will let less light in, which
leads to a diminished brightness in the darker area. Similarly,
if the spot is moving from a relatively high-luminance area
to a low-luminance area, the luminance of the scene rises.
Hence, by moving the metering spot between high-luminance
and low-luminance areas, the legitimate user can easily control
the overall luminance of its video. Since the exposure only
changes the brightness of each pixel, this method can reserve
partial information (e.g. the face of the legitimate user) in the
scene, which ensures a certain level of user experience.

C. Face Reflection of Screen Light

When the untrusted user watches the legitimate user’s facial
video, the camera can capture the screen light that is reflected
by the face of the untrusted user. Here, we model the face
reflection of screen light based on the Von Kries coefficient
law [18]. For a single type camera, a diagonal model can be
described as:

Ic(x) = Ec(x)×Rc(x), c ∈ {R,G,B}, (1)

where x is a pixel on the face, c is the light with different
colors (red, green, and blue), Ic is the luminance of corre-
sponding color, Ec is the illuminant spectral power distribution
of the screen light on x, and Rc is the reflectance of pixel x.
Therefore, if we focus on a pixel with the same reflectance
and change the light luminance, then we have:

Ic(x)
′

Ic(x)
=
Ec(x)

′

Ec(x)
, c ∈ {R,G,B}, (2)

where Ic(x)
′ and Ec(x)

′ are the luminance and illuminant
spectral power distribution after the change of screen light.
From this equation, we can observe that the luminance of the
face reflection is proportional to that of the screen light, which
serves as the basic insight of our system.

D. Feasibility Study

To achieve our goal, we first show that the luminance of the
face-reflected light is highly correlated to that of the screen

light. Specifically, we made a video that flashes between white
and black with a frequency of 0.2 Hz and displayed this video
on a Dell 27-inch Light-emitting diode (LED) Monitor. We
asked a volunteer to sit in front of the monitor while using
the front camera of an iPhone 7 to record his facial video.
During the recording, the volunteer can freely move the head
as long as the whole face can be captured by the camera. Fig. 3
shows the faces when the screen shows black and white colors,
respectively. We can clearly observe that the luminance of
the face-reflected light increases when the color changes from
black to white. As a reference, the luminance value of the nasal
bridge increases from around 105 to around 132. Moreover,
this fact is true for all types of screens including LED, liquid
crystal display (LCD), and organic LED (OLED) since they
all reduce the amount of emitted light when displaying darker
scenes. This simple case implies that the luminance of the
face-reflected light does change proportionally to that of the
screen light, which shows the possibility of detecting fake
faces using the correlation between two luminance signals.

E. Challenges

Although we can observe the corresponding luminance
change of the face-reflected light while the screen’s color
changes between black and white, it is still challenging to
apply this insight to real video chat scenarios for fake forgery
detection. First, the face of the untrusted user will likely be
moving in the scene and can be partially occluded by other
objects (e.g. hair and sunglasses), which introduces extra noise
to the luminance signals of the face-reflected light. To address
this issue, our system only extracts the luminance information
from the lower part of the nasal bridge since this area can be
robustly located using the facial landmark detection algorithm
and is the least likely part to be obfuscated.

The second challenge is to obtain the luminance change
information from the noisy luminance measurements. The
raw luminance signals contain various types of noise. For
example, dynamic scenes in the video will introduce high-
frequency noise to the raw luminance signal of the screen light.
Additionally, the luminance change is weaker in practice than
in the ideal case in a feasibility study. To remove the noise
and robustly locate each luminance change, we designed a
series of filters and apply them on the raw luminance signals
in order.

The last challenge is to extract useful features from the
filtered signal and build a classifier for robust and accurate
face forgery detection. To solve this problem, we select four
features that describe when and how the luminance signal
significantly changes. To reduce the training cost while still
ensuring good performance, we build a strong classifier with-
out collecting training data from the attacker and new users
using the local outlier factor model.

III. SYSTEM DESIGN

A. Adversary Model

In our adversary model, the attacker aims to impersonate
others using face reenactment while video chatting with vic-
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Fig. 4. System architecture.

tims. The capability of the face reenactment attacker is limited
in the sense that: 1) the attacker has already or is able to set
up a video chat connection with the victim; 2) the attacker
can generate fake facial videos with high quality in real-time
using any face reenactment technique; and 3) the attacker can
redirect the input stream of the current video chat software
(e.g. Skype) from the camera to the fake facial videos using
a virtual web camera. When these tasks are performed, we
suppose the victim cannot visibly identify the fake facial video
as a forgery. Note that the adversary model we considered is
much stronger than traditional models where attackers replay
the fake facial videos using another screen because the facial
videos are directly fed to video software without any loss and
interference.

The objective of our system is to significantly raise the
bar for such face reenactment attacks. To break our defense
system, the attacker needs to reconstruct the face-reflected
light on the fake face with high quality based on the relative
locations of the head, camera, and the screen in real-time. For
this, the attacker has to: 1) introduce an extra image processing
layer for each frame to reconstruct the face-reflected light; and
2) have enough computation resources to ensure the real-time
attack. Therefore, our system is difficult to attack.

B. System Architecture

The key idea underlying our system is to measure the
luminance correlation between the screen light and the face-
reflected light. When a legitimate user is using videotelephony
with an untrusted user, the camera can capture the screen light
that is reflected by the untrusted user’s face. By comparing the
luminance of the screen light and the face-reflected light, we
can determine if the face is from a real person or generated by
face reenactment techniques. There are two major phases for
using our system: a training phase and a detection phase. In
the training phase, our system will learn the decision strategy
based on the knowledge in the legitimate users’ data. After
that, our system is ready to be used for detection. Our detection
methods can be triggered multiple times during the real-time
video chat. If the untrusted user is detected as an attacker, an
alert will be sent to the legitimate user to avoid further loss.

Fig. 4 shows the detailed process of our system in five steps.
A legitimate user Alice wants to validate whether the facial

video sent from the untrusted user Bob is real or fake. To do
this, Alice records her own facial videos using a camera in step
1 and sends the real-time facial video via the internet to Bob
in step 2. On Bob’s side, his device receives Alice’s video and
displays it on his screen, which means that the luminance of
the screen light largely depends on the content in Alice’s video
in real-time. At the same time, as illustrated in step 3, Bob is
recording his facial video whose luminance change should be
influenced by not only the ambient light in Bob’s environment
but also his screen light. By receiving Bob’s video in step 4,
Alice can get the luminance information of both Bob’s screen
light and Bob’s face-reflected light. In our system running on
Alice’s device, we first extract the luminance information in
both videos and apply filters to the raw signals to extract only
significant light changes.

IV. LUMINANCE EXTRACTION

The goal of our system is to detect the liveness of the face
in the video by measuring the correlation between luminance
signals of the screen light and face-reflected light. Therefore,
we first need to robustly extract these two types of luminance
information from the two videos. Since we are only interested
in the overall luminance of the screen light, we first compress
each frame of the transmitted video into a single pixel, and
use the luminance value of the compressed pixel to represent
the overall luminance of the transmitted video. The luminance
of a pixel is defined as:

C = 0.2126R+ 0.7152G+ 0.722B, (3)

where C is the luminance value calculated using linear Red
Green Blue (RGB) values. The coefficient of each color is
assigned based on the human visual perception of brightness.

However, not all facial parts can be used to measure
luminance changes. For example, the user may blink the eyes
or talk during the recording. Such activities will introduce
a lot of variances between neighboring frames. Also, users
may wear glasses that reflect lights from other sources, which
will introduce much noise to the luminance measurements.
Based on our preliminary study, we find that the lower part
of the nasal bridge has the most stable images and is hard to
be occluded in most cases. Moreover, the luminance changes
caused by different screen lights at this area are easy to detect.
Therefore, we extract only the lower part of the nasal bridge
from each frame of the video for luminance measurement.

When a legitimate user receives the video from the untrusted
user, our system extracts frames with a sample rate of 10 Hz.
For each frame, we detect the location of the lower part of
the bridge by using a facial recognition API for Python [19].
As shown in Fig. 5, the facial recognition API can report four
locations on the nasal bridge and five locations on the nasal
tip. Since the sampled frames can vary in size depending on
camera hardware, we use the locations of the nasal bridge and
nasal tip to extract the interested area. As shown in Fig. 5,
given the coordinates of the nasal bridge (a1, b1) and nasal tip
(a2, b2), the side length of the interested area is l = |b1− b2|.
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Fig. 5. Facial feature localization and interested area extraction.
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Fig. 6. The spectrum of luminance signals w/ and w/o screen light change.

A square whose center is (a1, b1) is extracted from the frame
to calculate the luminance. We use the same methods to get
the luminance information from the area of interest. Fig. 7(a)
shows the luminance signal generated from the lower part of
the nasal bridge, and we can see significant rising edge and
falling edge appear when the luminance of the screen light
significantly changes (green areas).

V. PREPROCESSING

As shown in Fig. 7(a), the raw luminance signals contain
various noise. For the transmitted video, the noise is mainly
from the object movement in the scene. For the face reflection
in the received video, the noise can be introduced by external
light sources. Moreover, the inaccurate face localization can
lead to jittering in the interested area, which further influences
the luminance extraction of the face reflection. Hence, the raw
luminance signals need to be filtered before being used for
feature extraction.

Fig. 6 illustrates the spectrum of the luminance signals
of the face-reflected light. It is clear that high-frequency
noise exists across whole frequency bands, while screen light
changes influence the luminance of the face-reflected light
with low frequency under 1 Hz. Based on this observation,
we first use a low-pass filter with a cut-off frequency of 1 Hz.
As shown in Fig. 7(a), most high-frequency components are
removed while the overall trend is reserved. In our system, we
only consider significant luminance changes in both luminance
signals for two reasons. First, only significant luminance
changes in the transmitted video can generate luminance
changes in the interested area of the received video. Second,
the significant luminance changes in the received video are
robust to noise and easier to detect. However, it is hard to
locate each significant luminance change in the filtered signal
since low-frequency noise still exists. To locate all significant
light change in the filtered signal, we leverage a moving
window with length of 10 samples and calculate the short-
time variance within each window. The basic insight is that
the low-frequency noise within a window only generates a low
variance. Moreover, the variance value in the moving window
can reach a local maxima in two cases: 1) the luminance
rapidly increases to a high value; and 2) the luminance drops

(a) The raw and filtered luminance signal

Cut-off threshold: 2

Split to two small peaks 

(b) Variance signal

Significant luminance change

(c) Smoothed variance signal
Fig. 7. Preprocessing of luminance signals.

to a much lower value. Therefore, each significant luminance
change can be located by finding the local maxima in the
variance signal.

Nevertheless, the variance signal cannot be directly used
for locating significant light change. As shown in Fig. 7(b),
low-frequency noise can either generate small spikes in the
variance signal or split a significant luminance change into
multiple lower, neighboring peaks. To remove small spikes,
we apply a threshold filter on the variance signal with a
cut-off threshold of 2. To group neighboring lower peaks
into one significant luminance change, we further smooth the
variance signal by applying a moving window with a length
of 30 samples and calculating the root-mean-square value in
each window. Then, we leverage a Savitzky-Golay filter [20]
with a window length of 31 samples using polynomial fitting
and a moving average filter with a window length of 10
samples to further smooth the signal, and the result is shown
in Fig. 7(c). Finally, the traditional peak finding algorithm is
applied on each smoothed variance signal respectively. Since
the luminance variation range of the screen light is much larger
than that of the face-reflected light, the minimal prominence
of the peaks is set to 10 and 0.5 for the screen light and face-
reflected light, respectively.

VI. FEATURE EXTRACTION

In order to detect a fake face in the video, we need to extract
proper features that can describe the correlation between two
relative luminance signals. In our system, we consider both the
similarities of luminance change behaviors and the correlation
of luminance change trends. The luminance change behavior
is a vector where the value of each element is the time
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when a significant luminance change happens. Therefore, the
luminance change behavior focuses on the timestamps when
significant luminance changes happen while ignoring the trend
of the signal. The luminance change trend is the smoothed
variance signal after preprocessing and is used to describe how
the luminance changes over time.

1) Luminance change behavior: If both luminance signals
are legitimate, there is a strong correlation between them.
In other words, for any significant luminance change in one
signal, we can always find a matched luminance change in
another one. To quantitatively describe how similar two lumi-
nance change behaviors are, we define two behavior similarity
metrics z1 and z2. The proportion of matched luminance
changes in the transmitted video z1 is defined as:

z1 =
1

N
× F (T,R), (4)

where N is the number of significant luminance changes in the
transmitted video, T is the preprocessed luminance signal of
the transmitted video, R is the preprocessed luminance signal
of the received video, and F (T,R) is a function whose output
value is the number of matched luminance changes in the
transmitted video. Similarly, the proportion of the matched
luminance change in the received video z2 is defined as:

z2 =
1

M
×G(T,R), (5)

where M is the number of significant luminance changes in the
received video and G(T,R) is a function whose output value
is the number of matched luminance changes in the received
video. For a legitimate user, both values are expected to be 1
or very close to 1, while the values of an attacker should be
close to 0. Fig. 8 shows two luminance signals collected from
a legitimate user. It is clear that, for each luminance change in
one signal, we can always find a matched luminance change
in another one, which means both z1 and z2 are equal to 1.

2) Luminance change trend: In the luminance change be-
havior, we only consider when significant luminance changes
happen while ignoring the trend of the signal. In the worst
case, the attacker’s signal can have the same luminance change
behavior but with considerably different shapes of luminance
signals. Therefore, besides considering the similarity between
two luminance change behaviors, we also evaluate the correla-
tion of their trends. To remove the mismatching introduced by

Fig. 9. An example of LOF-based classification.

network delay, we first estimate and remove the delay based
on the average time difference between matched luminance
changes. Since we only consider the trend of the luminance
signal instead of absolute values, we further normalize each
smoothed variance signal to [0, 1]. Then, each signal is cut into
two segments with equal length. For each pair of segments
of two signals, we leverage Pearson correlation coefficient
[21] to measure the correlation of their trends. Specifically,
the correlation coefficient corr(x, y) between a pair of signal
segments is defined as:

corr(X,Y ) =
1

L

L∑
i=1

(
xi −X
σX

)(
yi − Y
σY

), (6)

where L is the number of segments, X = (x1, x2, . . . , xL) and
Y = (y1, y2, . . . , yL) are a pair of normalized signal segments
with length of L, x is the mean value of x, y is the mean
value of y, σ represents the standard deviation. The value
range of corr(x, y) is [−1, 1]. Ideally, corr(x, y) should be
1 if two smoothed variance signals are positively correlated.
In other words, the larger the corr(x, y), the more positive
correlation exists between two smoothed variance signals.
Since we have two correlation coefficients calculated from two
pairs of segments, we only use the smaller one of them as the
third feature z3. Besides, we also use the maximum dynamic
time warping (DTW) distance (expressed with z4) between
each pair of segments as the fourth feature to describe the
correlation of luminance change trends. Since the range of z4
is much larger than the other three features, we divide it by
30 to reduce its influence in the classification.

VII. FAKE VIDEO DETECTION

A. Fake video detection for a single video clip

Although we can simply check whether a luminance change
happens at the same time in both videos, it will make a
weak luminance change in one video be identical to a strong
luminance change in another one, which increases the chance
of attackers to pass the check. Therefore, we also need to
measure how well two luminance signals match each other
via classification techniques. To do the classification, a naive
idea is to collect training data from both legitimate users and
face reenactment attackers. However, it will involve much
training cost to collect data from every new legitimate user.
Moreover, it is even harder to get data from all possible face
reenactment attackers. Therefore, we need to build a classifier



with good classification performance using only the data of a
limited number of legitimate users. In our system, we build a
strong classifier using the local outlier factor (LOF) model [22]
since it has good performance and fewer parameter adjustment
requirements. Specifically, the dataset sent to the LOF model
consists of two parts: the dataset collected from legitimate
users and one new data from the untrusted users. Since the
attacker’s features are distinct from those of legitimate users
on at least one dimension, the attacker’s data appears as an
outlier in the whole dataset.

Given a feature vector z = [z1, z2, . . . , zK ] of the untrusted
user’s data, the local reachability density (LRD) of a feature
vector z is defined as:

LRD(z) = 1/(

∑
r∈Nk(z)

max{k-dis(r), d(z, r)}
|Nk(z)|

), (7)

where Nk(z) are the k nearest neighbors (legitimate users’
data), r is a legitimate user’s data that is also the k nearest
neighbors of z, k-dis(r) is the distance from the object r to
the kth nearest neighbor, and d(z, r) is the euclidean distance
between feature vectors z and r on the feature hyperplane.
LOF model determines whether the signal is from an attacker
based on comparing the local densities of z and its k-nearest
neighbors using

LOFk(z) =

∑
r∈Nk(z)

LRD(r)
LRD(z)

|Nk(z)|
. (8)

Since the attacker’s features are distinct from those of
legitimate users on at least one feature dimension, so the
attacker’s data point should be away from the cluster for
legitimate users, which means its values of LOFk(z) are larger
than 1 on the feature hyperplane. Based on this observation,
our system determines whether the signal is generated by the
attacker by setting a threshold τ . If the value of LOFk(z) is
larger than τ , an attacker is claimed to be detected. Fig. 9
illustrates an example of LOF-based classification using two
features z1 and z2. The darkness of the background represents
the value of LOFk(z). The darker the background is, the larger
the LOFk(z) is. We can observe that the LOFk(z) values of
legitimate users are all less than 1.5, while that of the attacker
is 2. By setting a threshold τ = 1.8, the attacker can be
accurately detected. In our system, the decision threshold τ
is set to 3, and the number of neighbors is set to 5.

B. Decision combination for multiple rounds of detection

Since our solution does not require intense computational
resources, it is possible to trigger our system multiple times
during the video chat to tolerate single wrong classification.
To combine the detection results of multiple attempts, we
involve them in a majority voting game where each player has
equal weight. Considering the final result is produced based
on D detection attempts, an untrusted user is regarded as a
face reenactment attacker if its votes exceed 0.7 × D. The
coefficient 0.7 is determined based on the detection accuracy
of each single detection, which is reported in Section VIII-C.

21-inch screen27-inch screen 13-inch screen

Dell P2719H LED monitor Dell E2010Ht LCD monitor MacBook Pro LED display  

Fig. 10. Monitors used in our experiments.

VIII. EVALUATION

A. Implementation and Dataset

Like the video chat scenario, our system consists of two
components: a legitimate user (Alice in Fig. 4) who triggers
the detection and an untrusted user (Bob in Fig. 4) with
unknown legality. We implemented our testbed using a Dell
27-inch LED monitor with 85% brightness to display the video
from the legitimate user. For the untrusted user who is also
legitimate, we used a Google Nexus 6 smartphone to act as the
camera for recording facial videos. For the untrusted user who
is a face reenactment attacker, we first collect its facial videos
using a Google Nexus 6 smartphone. The recorded facial
videos are then fed to the driving model of ICface [23] for
generating fake facial videos. The reason we use ICface is that
it generated the most visually convincing results of any open-
source facial reenactment method. In total, ten volunteers (four
females and six males) with diverse skin colors (both dark skin
and light skin) are involved in our experiments. To simulate
the behavior of the legitimate user, we asked volunteers to
record their daily video chat while changing the metering area
by touching the smartphone screen. The collected facial videos
were segmented into clips with equal length of 15 seconds. For
the behavior of the untrusted user, we asked ten volunteers to
act as both a legitimate user and a face reenactment attacker,
respectively. For each role of each user, we replayed 40 video
clips to them. For data analysis and processing, the data was
then transmitted to a desktop computer with Intel(R) i7-8700
@ 3.2 GHz CPU and 32 GB of RAM.

B. Evaluation Metrics

To evaluate the performance of our system, we use four
metrics as follow: 1) true acceptance rate is used to describe
how accurately our system can accept a legitimate user, and it
is defined as the number of accepted attempts by the number
of total attempts of a legitimate user; 2) true rejection rate
represents how accurately our system can reject an attacker. It
is calculated by dividing the number of rejected attempts by
the number of total attempts of an attacker; 3) false acceptance
rate is the measure of the likelihood that the system will
incorrectly accept an attacker; and 4) false rejection rate is
the measure of the likelihood that the system will incorrectly
reject a legitimate user. By combining the false acceptance
rate and false rejection rate, we can also get the equal error
rate of the system.

C. Overall Performance

1) System performance for legitimate user: A good face
forgery system should provide high usability for legitimate
users, which means the true acceptance rate should be as
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Fig. 11. Overall performance for a single detection.
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Fig. 12. Impact of decision threshold.

high as possible. To examine whether our system can be
trained without collecting data from new users, we trained
two classifiers using each volunteer’s own data and another
volunteer’s data, respectively. For each volunteer, we repeated
this experiment for 20 rounds to obtain the average true
acceptance rate. Within each round, we randomly picked 20
instances for training and tested the system using the other 20
instances. Fig. 11 shows the true acceptance rates for a single
detection attempt. We can observe that our system can provide
an average true acceptance rate of 92.5% when the classifier is
trained using each volunteer’s own data. Even if the classifier
is trained using others’ data, our system can still achieve an
average true acceptance rate of 92.8%, which implies that our
system can be quickly launched for new users without training
in practice. Also, we found that the system performance of
using others’ training data is better than that of using own data
for some users. The main reason is that the training data of
these users on the feature hyperplane distribute across a larger
area compared with those of other users. Since our system
determines the liveness by checking the local reachability
density based on a fixed threshold, gathering more training
data will provide us with better classification performance.

2) System performance against attacker: In this experi-
ment, we randomly picked 20 instances from each volunteer
as training data, and evaluated the true rejection rate of a
single detection attempt against fake facial videos generated by
ICFace. As illustrated in Fig. 11, our system can successfully
reject the face reenactment attacker with average accuracy
of 94.4%. For some volunteers (e.g. user 2), the mean true
rejection rate can reach 97.25%, which means that our system
can already provide high-security protection with only one de-
tection attempt. Although our system can still make the wrong
classification with a low possibility, our decision combination
strategy can tolerate a single mistake and further improve
system accuracy and robustness, which will be discussed in
Section VIII-F.

27 inches 20 inches 13 inches

Different sizes of screens

70

80

90

100

T
ru

e
 a

c
c
e

p
ta

n
c
e

 r
a

te
 (

%
)

Fig. 13. True acceptance rates under different screen sizes.

D. Influence of Decision Threshold

The value of the decision threshold greatly influences the
system performance. If the decision threshold is too high,
the legitimate users can all be passed by our system, but
many attackers can also be missed. If we improve the security
level by setting the decision threshold to a small value,
many legitimate users will be rejected, which largely reduces
usability. In this experiment, we evaluate the proper value
of the decision threshold. We adjusted the decision threshold
from 1.5 to 4 while using 20 randomly-picked instances for
training. Fig. 12 illustrates the mean false acceptance rate
and false rejection rate for different values of the decision
threshold. When the decision threshold is between 2.8 and
3, our system achieved a balanced false acceptance rate and
false rejection rate, which means the equal error rate of our
system is about 5.5%. Therefore, we set the default value of
the threshold to 3 in our system.

E. Influence of Screen Size

The performance of our system largely relies on the amount
of light emitted from the screen. If the luminance of the screen
light is low, the luminance change of the face-reflected light
would be lower due to the light scattering. In this experiment,
we evaluated the system performance by using screens with
different sizes shown in Fig. 10, and the results are shown
in Fig. 13. Better system performance is achieved by using
a larger screen, which is in line with our expectations. Even
with the smallest screen in our testbed, our system can still
achieve an average true acceptance rate of about 85% for a
single detection. We also evaluate the system performance on
a 6-inch smartphone screen. Experimental results show that
our system can achieve similar performance only when the
user’s face is very close (about 10 cm) to the screen. When
the screen is moved too far away, the luminance of the screen
light is not strong enough to generate significant luminance
change on the user’s face.

F. Influence of Number of Detection Attempts

Due to the influence of noise, our system may wrongly
accept an attacker or reject a legitimate user with a low
possibility. To tolerate the wrong detection for a single video
clip, our system combines the results from multiple detection
attempts through a majority voting procedure. Fig. 14 shows
the system performance under a different number of detection
attempts when 20 instances are used for training. We can
observe that both true acceptance rate and true rejection rate
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Fig. 15. Impact of the number of training instances.

are significantly improved by combining multiple detection
results whether the classifier is trained using the user’s own
data or others’ data. Moreover, the variances of accuracy
(both true acceptance and true rejection rate) are largely
reduced, which means the system robustness is improved by
considering multiple detection attempts. Although the true
rejection rates drop by at most 5% for two and three attempts,
it is mainly because we randomly selected training data for
each classification.

G. Influence of Number of Training Data

To quickly launch our system in practice, we want to reduce
the training cost by as much as possible even if our system
is trained using others’ data. Therefore, we performed an
experiment using the data collected from one volunteer to
evaluate how many training instances are needed for good
system performance, and the results are shown in Fig. 15.
When the classifier is trained with eight instances, our system
can already provide an average true acceptance rate of 92.25%
for normal users and an average true rejection rate of 91% for
attackers. By involving up to 20 training instances, the average
true acceptance rate and true rejection rate are slightly raised
to 94.75% and 95.75%, respectively. Additionally, the standard
deviations of both the true acceptance rate and true rejection
rate are largely reduced by up to 8.8%, which shows the
system robustness is largely raised by having more knowledge
about the legitimate users’ data.

H. Influence of Sampling Rate

The computation overhead of our system largely depends on
the frequency that we sample each video at. High sampling
rates can provide us with more information about the lumi-
nance change, but the image and signal processing overhead
are also multiplied. To find the lowest viable sampling rate
for our system, we collected data from one volunteer and
varied the sampling rate among 5 Hz, 8 Hz, and 10 Hz. As
illustrated in Fig. 16, our system can still provide a mean

5 8 10

Sampling rate (Hz)

20

40

60

80

100

A
c
c
u

ra
c
y
 (

%
)

True acceptance rate

True rejection rate

Fig. 16. Impact of the sampling rate.

0.5 0.7 0.9 1.1 1.3 1.5

Delay (s)

0

20

40

60

80

100

R
e

je
c
ti
o

n
 r

a
te

 (
%

)

Fig. 17. The rejection rates when relative luminance signal is delayed.

detection accuracy of at least 95.25% for both legitimate users
and attackers when the sampling rate is only 8 Hz. When the
sampling rate drops to 5 Hz, the mean true acceptance rate
slightly decreases to about 86%, while the mean true rejection
rate rapidly drops to only 48%. Therefore, our system requires
a sampling rate of at least 8Hz to ensure security. We will
show that most video chat devices can handle the computation
overhead under a sampling rate of 8 Hz in Section IX.

I. Influence of Ambient Light

In practice, the relative luminance of the reflected light is
always under the impact of the ambient light. If the ambient
light is weak, the relative luminance of the reflected light
large depends on the luminance of the screen light. If the
ambient light is strong, the relative luminance change of the
reflected light is dominated by the ambient light instead of the
screen light. In this subsection, we further evaluate the system
performance under different light conditions. Experimental
results show that our system can achieve similar performance
that is reported in Section VIII-C. Also, the true acceptance
rate of a single detection attempt drops to about 80% when
the illuminance on the face is increased to 240 lux (the
corresponding illuminance under the light source is about
350 lux). Considering 350 lux is bright enough in an indoor
environment in practice, our system can still achieve high
performance in most scenarios by combining the detection
results of multiple attempts.

J. Effectiveness of The Defense System

To break our system, the attacker needs to ensure at least
two things. First, the attacker has to forge the luminance
change on the generate fake facial videos. Second, the syn-
thetic luminance change should be real enough to fool the
legitimate user who acts as an observer. In real attacker scenar-
ios, it is reasonable to assume that the computation resources
of the attacker are equal to the face reenactment attacker and
cannot be further upgraded. Therefore, the attacker needs to



more time to generate the new facial video with synthetic
luminance change. Even if this generation process is feasible,
it introduces a delay to the relative luminance signal. In this
subsection, we evaluated the impact of this delay on the
rejection rate even if the attacker can generate exactly the same
relative luminance change in the fake facial video. Specifically,
we shifted the relative luminance signals of a legitimate user
by different delays and checked how the system performance
degrades with the increases of signal delay, and the results are
shown in Fig. 17. We can see that the rejection rate quickly
rises to about 80% when the delay is 1.3 seconds, which means
that the attacker still cannot fool our system if its forgery
processing time is longer than 1.3 seconds. Considering most
face reenactment techniques themselves cannot achieve this
low processing time, we can argue that a strong attacker who
can even forge the relative luminance signal still cannot pass
our system.

IX. DISCUSSION

Since we target the fake face detection for real-time video
chat, the computation overhead should be minimized for
timely detection results. In our system, the computation
overhead mainly comes from three parts: facial landmark
detection for obtaining the location of the nasal bridge, feature
extraction, and classification. For the facial landmark detection
algorithm, recent research shows that it can be run at 300
fps on a mobile phone [24]. Besides, even with simple im-
plementation using Matlab and Python, the feature extraction
and classification can be quickly processed together within 0.2
seconds for a luminance signal extracted from a 15-second
facial video. These facts imply the feasibility that our system
can be implemented on more resource-limited devices (e.g.
smartphones) with a video sampling rate of 10 Hz.

As a starting point, our system is evaluated in a relatively
stable indoor environment. However, in practical deployment,
more environmental factors need to be taken into consideration
and may affect system performance. Additionally, current
evaluations are performed based on a limited number of
volunteers and a limited period. In the future, we need to
continue the evaluation with more/diverse population samples,
longer periods, and more influential factors to improve the
robustness of the system.

X. RELATED WORK

A. Face Reenactment Techniques

Face reenactment is a group of techniques that can trans-
fer facial expressions from a source face to a target face.
Traditionally, the work of face reenactment is done offline
due to high computation resource required [17], [25]–[33].
For example, Garrido et al. [25] proposed a system that can
transfer facial expressions when both the source and target
faces are from the same person. They further improved their
work to transfer facial expressions among different people in
[26]. Recently, there has been research supporting online face
reenactment, opening this technology up to a wider range
of applications. A famous work called Face2Face [16] is

proposed to achieve online face reenactment with about 27.6
frames per second. This fact implies that face reenactment
techniques can be executed during real-time video recording,
which largely improves attackers’ capability for launching face
forgery attack in real-time video chat.

B. Face Liveness Detection in Videos

Considering the serious threats introduced by fake facial
videos, various systems are proposed to detect fake faces in
videos, which are also referred to as face liveness detection.
Overall, current fake face detection methods can be grouped
into two categories: artifact detection-based and challenge-
response-based. Artifact detection-based methods aim to ex-
ploit artifacts that are introduced during the synthesis process
using both low-level and high-level features [8]–[12], [34],
such as illuminance distribution, texture, shape cues, and eye
blinking. Carvalho et al. [35] proposed a forgery detection
model by exploiting subtle inconsistencies in the color of the
illumination of images. To further improve the performance
during feature extraction, recent works propose to use deep
network to capture more inconsistencies in fake images using
both low-level and high-level features [8]–[12], [34]. For
example, Raghavendra et al. [10] proposed a novel approach
leveraging the transferable features from a pre-trained Deep
Convolutional Neural Networks (D-CNN) to detect both dig-
ital and print-scanned morphed face image. Also, researchers
focus on having a generalized model that can detect multiple
types of face forgery. For example, a compact model is pro-
posed in [8] to detect fake faces generated by either Face2Face
[16] or Deepfakes. However, all existing artifact detection-
based methods have two major limitations. First, they need to
collect enough training from target face forgery techniques,
which is usually expensive and hard to satisfy in practice,
particularly for unknown techniques. Second, the detection
procedure requires intensive computational resources (e.g. a
graphics processing unit), which is not suitable for battery-
limited devices.

Different from artifact detection-based methods, challenge-
response-based methods leverage the nature of human activi-
ties (e.g. head movement [13]). However, the face reenactment
attacker can still easily break FaceLive by faking the data of
motion sensors in advance since it can have enough knowledge
of the target video. Moreover, since the detection is done on
the attacker’s end, the attacker can even send the legitimate
user a wrong detection result. A recent work detects a fake face
during face authentication by randomly flashing well-designed
pictures on a screen [14]. Various physical characteristics
including unique textual features and uneven 3D shapes are
extracted from the reflected light for robust face forgery
defense. However, their challenge-response-based method has
to alter the displayed content on the screen, which largely
influences the user experience during video chat.

XI. CONCLUSION

In this paper, we propose a defense system for real-time
video chat against fake facial videos generated by face reen-



actment techniques. The key insight behind our system is that
the luminance of the face-reflected light is proportional to that
of the screen light. Therefore, we can detect face forgery by
measuring the correlation between the luminance signals of
the screen light and the face-reflected light. Compared with
existing works, our system has three major strengths. First,
it does not require extra hardware or intense computational
resources. Second, our system does not replace original video
frames and can ensure a certain level of user experience.
Moreover, our system does not require the training data of
attackers and new users, which means it can be quickly
launched on any videotelephony device. Experimental results
show that our system can provide an average true acceptance
rate of at least 92.5% for legitimate users and reject face
reenactment attacker with mean accuracy of at least 94.4%
for a single detection.
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