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Abstract—Cloud computing as a promising computing paradigm is increasingly utilized as potential hosts for users’ massive dataset.

Since the cloud service provider (CSP) is outside the users’ trusted domain, existing research suggests encrypting sensitive data

before outsourcing and adopting Searchable Symmetric Encryption (SSE) to facilitate keyword-based searches over the ciphertexts.

However, it remains a challenging task to design an effective SSE scheme that simultaneously supports sublinear search time, efficient

update and verification, and on-demand information retrieval. To address this, we propose a Verifiable Dynamic Encryption with

Ranked Search (VDERS) scheme that allows a user to perform top-K searches on a dynamic document collection and verify the

correctness of the search results in a secure and efficient way. Specifically, we first provide a basic construction, VDERS0, where a

ranked inverted index and a verifiable matrix are constructed to enable verifiable document insertion in top-K searches. Then, an

advanced construction, VDERS
?
, is devised to further support document deletion with a reduced communication cost. Extensive

experiments on real datasets demonstrate the efficiency and effectiveness of our VDERS scheme.

Index Terms—Searchable symmetric encryption, verifiability, dynamic, top-K searches

Ç

1 INTRODUCTION

BECAUSE of the benefits of low costs and scalability, it
has become a prevalent trend for users to outsource

their massive datasets to clouds and delegate a cloud ser-
vice provider (CSP) to manage data storage and offer
query services [1]. With the wide application of cloud
computing, frequent data leakages have been noticed
recently, ranging from personal medical records to pri-
vate data on social networks [2], [3], [4], [5], [6]. Existing
research suggests encrypting data before outsourcing [7].
However, data encryption makes keyword-based searches
over ciphertexts a challenging problem. This is even
harder for efficient top-K searches in a dynamic and mali-
cious cloud environment [8].

Let us consider the following scenario. Alice outsources
archived emails to the cloud, where each email is indexed
by the sender’s name and ranked in descending order of the
receipt date. For example, for a set of emails indexed by key-
word Bob, the email received on April 2 has a higher rank
than the email received on April 1. To keep keyword and
document contents secret, Alice uploads them in the
encrypted forms to the cloud. There could be hundreds of
documents matching a specific keyword, and the consumed

costs will be extensive if all the matched documents are
returned to and decrypted by the user. Therefore, Alice may
want to perform a top-K search to retrieve the most recent
emails. Moreover, Alice may want to store only the emails
received in the last three months for monetary saving. For
example, when entering May, Alice will delete all emails
received before February.

In the above application scenario, the adopted encryp-
tion scheme should meet the following requirements: (1)
Ranked search. The user is allowed to perform a top-K
search to retrieve the best-matched documents. (2)
Dynamic. The user is able to update (add and delete)
documents stored in the cloud [9]. (3) Verifiability. The
malicious CSP may delete encrypted documents not com-
monly used to save memory space, or it may forge the
search results to deceive the user. Even if the CSP is hon-
est, a virus or worm may tamper with encrypted docu-
ments. Therefore, the user should have the ability to
verify the correctness of the search results. (4) Efficiency.
The user can efficiently perform searches, updates, and
verifications on a set of encrypted documents.

Although Searchable Symmetric Encryption (SSE) allows
a user to retrieve desired documents in a privacy-preserving
way, existing SSE schemes only partially address the above
requirements. To simultaneously satisfy all these properties,
this paper proposes a Verifiable Dynamic Encryption with
Ranked Search (VDERS) scheme that allows the user to per-
form updates and top-K searches on ciphertexts in a verifi-
able and efficient way. Our main idea is to construct a
verifiable matrix to record the ranking information and
encode it with RSA accumulator [10]. Furthermore, a ranked
inverted index is built from a collection of documents to facil-
itate efficient top-K searches and updates. Specifically, we
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first provide a basic construction, denoted by VDERS0,
which enables verifiable document insertion operations.
Then, we provide an advanced construction, denoted by
VDERS

?
, which not only can support efficient deletion

operations, but also can reduce communication costs with-
out outsourcing the verifiable matrix. Our main contribu-
tions are summarized as follows:

� We propose a VDERS scheme to achieve dynamic
and ranked searches in a cloud environment in an
efficient and verifiable way.

� Two constructions are provided to achieve efficient
top-K searches with support for verifiable updates.

� We theoretically analyze the security and perfor-
mance of our scheme and conduct extensive experi-
ments on real datasets to validate its effectiveness.

Paper Organization. We introduce related work in
Section 2 and provide the preliminaries in Section 3. After
the overview of this work in Section 4, we provide our basic
and advanced VDERS constructions in Sections 5 and 6,
respectively. We evaluate the proposed scheme in Section 7.
Finally, we conclude the paper in Section 8.

2 RELATED WORK

Our work focuses on verifiable ranked queries on dynamic
encrypted data. SSE that allows an untrusted server to per-
form keyword-based searches on ciphertexts can partially
address our requirements.

SSE has been widely researched since it was first pro-
posed by Song et al. [11]. As a seminal work in SSE, Curt-
mola et al. [12] provided a rigorous security definition and
constructed two schemes, SSE-1 and SSE-2, based on an
inverted index. Compared to SSE-1, SSE-2 is more secure,
and it has been proven to be secure against adaptive chosen
keyword attacks (CKA2). SSE-1 is secure against non-adap-
tive chosen-keyword attacks (CKA1), but yields an optimal
(sublinear) search time OðrÞ, where r is the number of docu-
ments that contain the query keyword. However, neither
SSE-1 nor SSE-2 has properties of dynamism, verifiability, and
ranked search.

Dynamic SSE (DSSE) allows a user to update the
encrypted outsourced data in an efficient and secure way.
Kamara et al. [13] constructed a DSSE scheme based on an
extended inverted index. Their subsequent work [14]
extended it to a parallel search setting by using a red-black
tree. Cash et al. [15] constructed a DSSE scheme optimized
for super-large datasets, but their scheme supports only effi-
cient document insertion. Naveed et al. [16] put forward a
DSSE scheme in which a server worked as a blind storage to
decrease leakage at the cost of multiple rounds of interac-
tion. The above schemes are proven to be CKA2-secure, but
leak keyword information about the newly added docu-
ments. With this leakage, the attackers can reveal the con-
tent of a past query by injecting new documents in a
dataset [17]. To mitigate such an attack, Stefanov et al. [18]
proposed the first DSSE scheme with forward privacy, but
their scheme suffers from inefficiency. Since then, forward
privacy has been the main motivation of recent DSSE
schemes [19], [20].

Verifiable SSE (VSSE) allows a user to verify the correct-
ness of search results. Kurosawa et al. [21] constructed a

Universally Composable (UC)-secure VSSE scheme, in
which a user can detect any malicious server’s cheating
behavior. While UC-security is stronger than CKA2-secu-
rity, their construction requires a linear search time. Solei-
manian et al. [22] presented a public VSSE scheme, which
delegates a third party to accomplish the verification, but
fails to support dynamic operations. The subsequent work
of Kurosawa et al. [23] extends VSSE to a dynamic environ-
ment. Their scheme employs RSA accumulator [10] to gen-
erate constant-size digests/proofs, but the verification cost
on the client side grows linearly with the total number of
documents. To enable verifiable conjunctive keyword
search over dynamic encrypted data, Sun et al. [24]
exploited the bilinear-map accumulator technique to con-
struct an accumulation tree. Jiang et al. [25] proposed a
VDSSE scheme that also utilized an accumulator tree to ver-
ify results of boolean queries. The accumulator tree struc-
ture is more efficient than RSA accumulator in verification,
but consumes more computation time for updating tree
structure. Zhu et al. [26] proposed a generic VSSE scheme in
a multi-user setting, where the verifiable design can provide
result verification for any SSE schemes and support data
updates. However, the above VSSE schemes return all search
results and therefore, may be unsuitable for an environment where
a lot of documents match a user’s query but the user is only inter-
ested in best-match documents.

Ranked SSE (RSSE) allows a user to rank the search
results based on different evaluation functions. Cao
et al. [27] proposed a dynamic multi-keyword RSSE scheme
which utilized the secure KNN technique [28] to rank
results according to the number of matched query key-
words. The main limitation of their scheme is inefficiency,
where the search time increases linearly with the number of
documents. Inspired by their work, many multi-keyword
VRSSE schemes [29], [30], [31], [32], [33] were put forward.
Sun et al. [29] proposed a verifiable RSSE scheme which
ranked search results based on cosine similarity while
improving search efficiency by an MDB tree structure. Chen
et al. [30] proposed a RSSE scheme based on a hierarchical
clustering index. Their scheme supports update and verifi-
cation, but requires the client to re-encrypt search indexes
once a document is added into a dataset. Zhang et al. [31]
developed a RSSE scheme in a multi-owner model, where
the search time grew linearly with the number of queried
keywords. Fu et al. [32] leveraged a user interest model to
assign weight to query keywords according to the user’s
search history. Guo et al. [33] put forward a dynamic multi-
phrase SSE scheme that allowed the user to rank results
locally based on TF-IDF scores. However, it is hard for existing
RSSE schemes to simultaneously support sublinear search time
and efficient updates and verification. The comparison results
between our work and previous SSE schemes are shown in
Table 1.

3 PRELIMINARY

3.1 System Model

The system consists of three different parties: the CSP, the
data owner, and the data user, as illustrated in Fig. 1. The
CSP maintains cloud platforms that pool hard and soft
resources to provide data storage and query services.
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The data owner first creates ciphertexts c for a document
collection d. Given keywords w extracted from d, she then
builds a secure index I for fast searches, and generates a
local evidence C and remote auxiliary information F for
verifiable searches. After uploading ðc; I;FÞ to the cloud,
she can perform updates on ciphertexts with an update
token T � and retrieve documents on demand with a search
token T W in a verifiable way. On receiving the search results
and a search proof ðRW;PÞ from the CSP, the data owner
recovers document contents after verifying the correctness
of the search results. The data owner can also delegate the
search/update/verification ability to authorized data users.
In this paper, we do not differentiate between the data
owner and the data user, and refer to them as users.

3.2 Adversary Model

We assume that the users are fully trusted. The CSP is the
potential attacker and is assumed to be honest but curi-
ous [7]. That is, the CSP would correctly execute the prespe-
cified protocol, but still attempt to learn extra information
about the stored data and the received message [34].

As defined in [12], access pattern refers to the outcome of
search results, i.e., which documents have been returned;
search pattern refers to whether two searches have been
performed for the same keyword. As a tradeoff between
security and efficiency, existing SSE schemes resort to the
weakened security guarantee for efficiency concerns. That
is, they will reveal the access pattern and the search pat-
tern but nothing else during the search process. Like exist-
ing SSE schemes, such information is also available to the
CSP in our scheme. Furthermore, in a top-K search, only
K highest ranked documents will be returned. Therefore,
our scheme will leak information about document ranks
besides access pattern and search pattern. It is worth notic-
ing that the leakage of ranking information is inevitable in
top-K searches. For example, the adversary first issues a
top-1 search and then a top-2 search for keyword W ,
thereby it can know that the document returned in the first
round has the highest rank and the new document
returned in the second round is ranked second. If the
adversary issues top-1; 2; . . . ; top-K continuously, then the
rank of each document will be exposed by comparing
search results.

Our scheme mainly aims to preserve the following pri-
vacy properties:

� Confidentiality. The CSP knows nothing about the
document/keyword contents expect search pattern,
access pattern, and document ranks.

� Verifiability. The CSP cannot forge a search result or
falsify the outsourced ciphertexts.

3.3 RSA Accumulator

RSA accumulator [10] is applied to verify the correctness of
the search results in our scheme. It provides a constant-size
digest for an arbitrarily large set of inputs and a constant-
size witness for any element in the set such that it can be
used to verify the (non-)membership of the element in this
set. Let k 2 N be a security parameter, and let p ¼ 2p0 þ 1
and q ¼ 2q0 þ 1 be two large primes where p0; q0 are primes
such that jpqj > 3k. Let F ¼ ff : f0; 1g3k ! f0; 1gkg be a
family of two-universal hash functions, let N ¼ pq and
’ðNÞ ¼ ðp� 1Þðq � 1Þ, and let G be a cyclic group of size
ðp� 1Þðq � 1Þ=4 where g is a generator of G. For a set of ele-
ments E ¼ fy1; . . . ; yng with yi 2 f0; 1gk, the RSA accumula-
tor works as follows:

� For each yi 2 E, we choose a random prime xi,
denoted by PðyiÞ, such that yi ¼ fðxiÞ. The accumu-

lator is calculated as AccðEÞ ¼ g
Qn

i¼1 PðyiÞmodN.

� For any subset E0 � E, a witness p ¼
g

Q
yi2E�E0

PðyiÞmodN is produced.

� The subset test is carried out by checking AccðEÞ ¼
p

Q
yi2E0

PðyiÞmodN.

Proposition 1. For any y 2 f0; 1gk, we can compute a prime
x 2 f0; 1g3k such that fðxÞ ¼ y with overwhelming probability
from the set of inverses f�1ðyÞ by sampling Oðk2Þ times.

Strong RSA Assumption. Given N ¼ pq and a random ele-
ment y 2 ZN, it is hard to find x and e > 1 such that
y ¼ xe modN.

Proposition 2. Given N; g; f , and E ¼ fy1; . . . ; yng, it is hard
to find y 62 E and p such that pPðyÞ ¼ AccðEÞmodN under
the strong RSA assumption.

Given Proposition 1, a prime xi can be computed effi-
ciently for any yi 2 E. The security of RSA accumulator is
based on strong RSA assumption and Proposition 2.

4 SCHEME OVERVIEW

4.1 Notations

Let k 2 N be a secure parameter of the whole system, and let
0 be a string of 0s with length k. For t 2 N, notation ½t� is
used to denote the set of integers f1; . . . ; tg. The set of all

Fig. 1. System model. Communication channels are secured with secu-
rity protocols such as SSL/SSH.

TABLE 1
Comparison with Previous Work

Rank Dynamic Verifiability Sublinear

Refs. [13], [14], [15] @ @
Refs. [21], [22] @
Refs. [23], [24], [25] @ @
Ref. [26] @ @ @
Refs. [27], [31], [32], [33] @ @
Ref. [29] @ @
Ref. [30] @ @ @
Our VDERS @ @ @ @
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binary strings of length t is denoted by f0; 1gt and the set of
finite binary strings by f0; 1g�. Given a sequence of elements
v, its ith element is denoted by v½i� or Vi and its total number
of elements by jvj. Given a matrix M, the element in its ith
row and jth column is denoted by M½i�½j�. If S is a set then
jSj refers to its cardinality. If s is a string then jjsjj refers to
its bit length. The concatenation of t strings s1; . . . ; st is
denoted by hs1; . . . ; sti.

The data set consists of a sequence of n documents
d ¼ ðD1; . . . ; DnÞ, where the jth document Dj, associated
with identifier j, contains a sequence of keywords wj for
j 2 ½n�. The ciphertext collection is denoted by c ¼ ðC1; . . . ;
CnÞ, where Cj is the ciphertext of document Dj for j 2 ½n�.
The universal distinct keywords extracted from d are
denoted by w ¼ w1 [ . . . [wn ¼ ðW1; . . . ;WmÞ. The ith key-
word Wi 2 w, associated with identifier i, is contained in a
sequence of documents dWi

, for i 2 ½m�. We assume that the
identifier associated with each document/keyword is inde-
pendent of its contents, and thus is allowed to be exposed to
the CSP. Let � be a function outputting the identifier of a
document or a keyword. For document D 2 d and keyword
W 2 w, their identifiers are denoted by �ðDÞ and �ðW Þ,
respectively. The most relevant notations in our scheme are
shown in Table 2.

4.2 Ranked Inverted Index

In the inverted index [12], a list of nodes pointing to docu-
ments containing keyword W 2 w are randomly stored in a
search array As and the pointer to the head node is stored in
a search table Ts. The overwhelming advantage of an
inverted index is its search efficiency, i.e., the complexity of
searching keyword W is OðjdW jÞ, which is not only sub-lin-
ear, but also optimal. As an extension, our ranked inverted
index I is composed of a search table Ts and a search array
As. Let �1 denote a ðlog#As þ 1Þ-length string of 1s. For
each keyword W 2 w, a ranked linked list LW that chains a
list of nodes in As is defined as follows:

Definition 1 (Ranked linked list). LW links jdW j nodes
ðN1; . . . ;NjdW jÞ and each node is defined as Nj ¼ hidj; "j;
addrsðNjþ1Þi, where idj is identifier of the jth document in

dW , "j is the score
1 of the jth document in dW for keywordW 2,

and addrsðNjþ1Þ is the address of node Njþ1 in a search array
As. In the special case, addrsðNjdW jþ1Þ ¼ �1.

As for data structures, the search array As is an array
with As½i� denoting the value stored at location i of As and
As½i�  v denoting storing v at location i of As. The search
table Ts is a dictionary that stores key-value pairs. If a pair
ðk; vÞ exists in Ts, then v is the value associated with key k
in Ts. Furthermore, Ts½k�  v denotes storing the value v
under key k in Ts. Let #As and #Ts denote the size of As

and Ts, respectively. Similar to [13], we set #Ts ¼ mþ 1,
where the first m entries correspond to keywords in w and
the last entry points to an unused entry in As; and we set
#As ¼ jjcjj=8þ z to protect statistical information about d,
where jjcjj is the bit length of the ciphertext collection and
z 2 N is the number of unused entries in As.

4.3 Verifiable Matrix

Let H : f0; 1g� ! f0; 1gk be a collision-free hash function, let
s be a pseudo-random permutation (PRP) on ½m�, and let
S : f0; 1gk � f0; 1g� ! f0; 1gk be a pseudo-random function
(PRF) with key k4. The verifiable matrix V is an m� n
matrix defined as follows:

V½i�½j� ¼ HðIDj�1; IDj; IDjþ1Þ � Sk4ðWÞ; j 2 ½jdW j�
gij; otherwise;

�
(1)

where i ¼ sð�ðWÞÞ, IDj denotes the identifier of the rank-j
document for keywordW , and gij is a random string of length
k stored atV½i�½j�. Therefore,V½i�½j� records the information of
the rank-ðj� 1Þ, rank-j, and rank-ðjþ 1Þ documents for key-
wordW . In the special case, we have ID0 ¼ IDjdW jþ1 ¼ 0.

4.4 Scheme Definition

The VDERS scheme consists of the following algorithms:

� ðparams; SKÞ  GenKeyð1kÞ: It takes a security
parameter k as input and outputs public parameters
params and a secret key SK.

� ðI; cÞ  EncryptionðSK;d;wÞ: It takes a secret key
SK, a sequence of documents d, and a sequence of
keywords w as inputs, and outputs a ranked
inverted index I and a sequence of ciphertexts c.

� ðF;CÞ  AccGenðparams; SK;d;w; cÞ: It takes pub-
lic parameters params, a secret key SK, a sequence
of documents d, a sequence of keywords w, and a
sequence of ciphertexts c as inputs. It outputs remote
auxiliary information F and a local evidenceC.

� T W  SrcTokenðSK;WÞ: It takes a secret key SK
and a keyword W 2 w as inputs to generate a search
token T W .

� RW  SearchðI; T W Þ: It takes a search token T W and
an index I as inputs to output search resultsRW .

TABLE 2
Summary of Notations

d A sequence of n documents ðD1; . . . ; DnÞ
w A sequence ofm keywords ðW1; . . . ;WmÞ
c A sequence of n ciphertexts ðC1; . . . ; CnÞ
dW A sequence of documents containing keywordW
wj A sequence of keywords contained in documentDj

I A ranked inverted index ðTs;AsÞ
C The local evidence ðcC;cIÞ
F The remote auxiliary information
P The search proof ðpC;pIÞ
T W A search token generated for keywordW
T � An update token generated for documentD
idW A sequence of document identifiers ðID1; . . . ; IDjdW jÞ

where IDj is rank-j document’s identifier for keywordW
sW A sequence of scores ð"1; . . . ; "jdW jÞwhere

"j is rank-j document’s score for keywordW
cW A sequence of ciphertexts ðCID1

; . . . ; CIDjdW j
Þwhere

CIDj
is rank-j document’s ciphertext for keywordW

RW The search results for search token T W

1. For the single keyword search, we choose the term frequency (TF)
as the relevance score, which is calculated by TF ¼ DW

jDj , where DW

denotes the frequency of the keyword W appearing in the document D
and jDj denotes the number of words inD.

2. The role of scores is to order documents in top-K searches. There-
fore, there is no need to use authentic scores for comparison, and all
scores will be preprocessed by order preserving functions like [35].
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� P GenProofðparams; c;F; T W;RW Þ: It takes pub-
lic parameters params, a sequence of ciphertexts c,
remote auxiliary information F, a search token T W ,
and search results RW as inputs to generate a search
proof P.

� f0; 1g  Verifyðparams; SK;C; T W;RW;PÞ: It takes
public parameters params, a secret key SK, a local
evidence C, a search token T W , search results RW ,
and a search proof P as inputs. It outputs 1 if verifi-
cation is successful, and outputs 0 otherwise. If the
output is 1, for each ciphertext inRW , it takes a secret
key SK as input to recover plaintext.

� ðT �;C0Þ  UpdTokenðparams; SK;D;CÞ: It takes
public parameters params, a secret key SK, a docu-
ment D, and a local evidence C as inputs to generate
an update token T � and a new local evidence C0,
where � 2 fadd;delg.

� ðI0; c0;F0Þ  UpdateðI; c;F; T �Þ: It takes a ranked
inverted index I, a ciphertext collection c, remote
auxiliary information F, and an update token T � as
inputs. It generates a new ranked inverted index I0, a
new ciphertext collection c0, and new remote auxil-
iary information F0.

Definition 2 (Correctness of VDERS). VDERS is correct if
for all k 2 N, for all keys generated by the GenKey algorithm,
for all ðI; cÞ output by the Encryption algorithm, and for all
updates, the Search algorithm always returns the correct
search results.

4.5 Security Definition

Confidentiality. We follow the approach in [13] that utilizes
leakage functions to capture what is being revealed by
ciphertexts and tokens. Let Adv be a stateful adversary, let
Sim be a stateful simulator, and let L1ðdÞ ,L2ðd;W Þ,
L3ðd; DÞ, and L4ðd; DÞ be stateful leakage algorithms. We
consider the following probabilistic experiments.

� RealAdvðkÞ: the challenger runsGenKeyð1kÞ to generate
a secret key SK.Adv outputs d and receives ðI; cÞ from
the challenger so that ðI; cÞ  EncryptionðSK; d;wÞ.
Adv makes a polynomial number of adaptive
queries, and for each query, it receives from the chal-
lenger either a search token T W such that
T W  SrcTokenðSK;WÞ or an update token T � such
that ðT �;C0Þ  UdpTokenðparams; SK;D;CÞ. Finally,
Adv returns a bit b that is output by the experiment.

� IdealAdv;SimðkÞ: Adv outputs d. Given L1ðdÞ, Sim gen-
erates and sends a pair ðI; cÞ to Adv. Adv makes a
polynomial number of adaptive queries. Given
either L2ðd;W Þ, L3ðd; DÞ, or L4ðd; DÞ, Sim returns an
appropriate token and in the case of an add opera-
tion, a ciphtertext C. Finally, Adv returns a bit b that
is output by the experiment.

Definition 3 (Confidentiality of VDERS). VDERS is confi-
dential if for all probabilistic polynomial-time (PPT) adversar-
ies Adv, there exists a PPT simulator Sim such that
jPr½RealAdvðkÞ ¼ 1� � Pr½IdealAdv;SimðkÞ ¼ 1�j is negligible.

Intrinsically, the confidentiality of VDERS is equivalent
to the CKA2 security of [13], in which Adv’s views given by
Sim are indistinguishable from those in the real world.

Verifiability. It describes the fact that no adversary can
deceive the user to accept incorrect search results. As
in [23], we say that the adversary Adv wins if given ðd;w; IÞ
and search queries Adv can return ðRW;PÞ for some query
such thatRW 6¼ RW and the user accepts the result.

Definition 4 (Verifiability of VDERS). VDERS is verifiable
if for any PPT adversary Adv, PrðAdv winsÞ is negligible for
any ðd;w; IÞ and any query.

5 BASIC VDERS SCHEME

5.1 Main Idea

The foundational technologies in our VDERS scheme are
RSA accumulator (defined in Section 3.3), the ranked
inverted index (defined in Section 4.2), and the verifiable
matrix (defined in Section 4.3). Ourmain idea is first building
a ranked inverted index to achieve sublinear search time in
top-K queries, and then verifying the correctness of search
results based on RSA accumulator and the verifiablematrix.

Specially, the search index is constructed as a ranked
inverted index. Unlike the inverted index [12] in which each
node contains only information about document identifier
and the location of the next node in the search array, our
ranked inverted index incorporates ranking information in
each node to enable top-K queries in cloud computing.

Furthermore, inspired by the work in [23], our VDERS
scheme also employs RSA accumulator for dynamic verifi-
cation. The main difference from their work is that our
scheme constructs a verifiable matrix V to record the docu-
ment ranking information for each keyword, and calculates
the remote auxiliary information F and a local evidence C
by encoding the elements of V into RSA accumulator.

5.2 Our Construction

Let F ¼ ff : f0; 1g3k ! f0; 1gkg be a family of two-universal
hash functions and let SKE ¼ ðGen;Enc;DecÞ be a symmet-
ric-key encryption (SKE) scheme, where Gen is a key gener-
ation algorithm, Enc is an encryption algorithm, and Dec is
a decryption algorithm. Let H : f0; 1g� ! f0; 1g� be a ran-
dom oracle and let H : f0; 1g� ! f0; 1gk be a collision-free
hash function. To compute Hðx1; . . . ; xnÞ, we first transform
each input xi into a bit string x̂i and then take the concatena-
tion of hx̂1; . . . ; x̂ni as the inputs of H. Let F : f0; 1gk�
f0; 1g� ! f0; 1gk, G : f0; 1gk � f0; 1g� ! f0; 1g�, P : f0; 1gk�
f0; 1g� ! f0; 1gk, and S : f0; 1gk � f0; 1g� ! f0; 1gk be PRFs.
VDERS0 is constructed as follows:

� ðparams; SKÞ  GenKeyð1kÞ: Given ðN ¼ pq; gÞ as
shown in Section 3.3, the user randomly chooses a
hash function f 2 F and four k-bit strings k1; k2;
k3; k4 as keys of PRFs3. Then, she runs algorithm
SKE:Gen to generate the key ke of SKE, chooses a
PRP s on ½m�, and sets the public parameters as
params ¼ ðN; g; fÞ and the secret key as SK ¼ ðp; q;
s; ke; k1; k2; k3; k4Þ.

� ðI; cÞ  EncyptionðSK;d;wÞ: Assume that �1
denotes a ðlog#As þ 1Þ-length string of 1s and that

3. A prime x is chosen randomly from f�1. A secret key ka 2 f0; 1gk
shared between the user and the CSP is used as the randomness when
computing x, so that they obtain the same outputs from f�1.
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free denotes a word not in w. The user runs Algo-
rithm 1 to build a ranked inverted index I ¼ ðTs;AsÞ
and a sequence of ciphertexts c ¼ ðC1; . . . ; CnÞ.

Algorithm 1. VDERS0:Encryption

Input: Secret key SK, documents d, and keywordsw
OutPut: Ranked inverted index I and ciphertexts c
1: Initialize the search table Ts with an empty dictionary of

sizemþ 1 and initialize the search array As with an empty
array of size jjcjj=8þ z

2: for each keywordW 2 w do
3: Create a ranked linked list LW ¼ ðN1; . . . ;NjdW jÞ by ran-

domly choosing jdW j unused entries in As where Ni ¼
hidi; "i; addrsðNiþ1Þi is defined inDefinition 1

4: for i 2 ½jdW j� do
5: Choose a k-bit random string ri and set

As½addrsðNiÞ�  ðNi �HðPk3ðWÞ; riÞ; riÞ

6: Encrypt the address of the head node N1 and set

Ts½Fk1ðWÞ�  addrsðN1Þ �Gk2ðWÞ

7: Create a free list Lfree ¼ ðF1; . . . ;FzÞ by randomly choosing
z unused entries in As where Fi ¼ h0; 0; addrsðFi�1Þi and
addrsðF0Þ ¼ �1

8: for i ¼ z to 1 do
9: Set As½addrsðFiÞ�  ðFi; 0Þ
10: Store the address of the tail node Fz in Ts by setting

Ts½free�  addrsðFzÞ
11: Fill the remaining entries of As with random strings
12: Set I ¼ ðTs;AsÞ
13: for j 2 ½n� do
14: Set Cj ¼ SKE:Encðke;DjÞ and c ¼ c [ Cj

15: return (I; c)

In Algorithm 1, the user first builds a ranked inverted
index I as follows: After initializing the search table Ts and
the search array As (Line 1), for each keyword W 2 w, she
creates an encrypted list LW of nodes storing at random
locations of As, and stores the encrypted address of the
head node in Ts (Lines 2-6). Then, she creates an unen-
crypted free list Lfree by choosing z unused entries at ran-
dom in As and stores the address of the tail node in Ts

(Lines 7-10). Next, she fills the remaining entries of As with
random strings to hind statistical information about the doc-
ument collection (Lines 11-12). Finally, she generates a
sequence of ciphertexts c and returns ðI; cÞ as the outputs of
Algorithm 1 (Lines 13-15).

� ðF;CÞ  AccGenðparams; SK;d;w; cÞ: The user con-
structs a verifiable matrix V as defined in Section 4.3,
and sets the remote auxiliary information as F ¼ V.
Let PðyÞ be a random prime x such that fðxÞ ¼ y. She
calculates a local evidenceC ¼ ðcC;cIÞwith

cC ¼ g
Qn

i¼1 PðHði;HðCiÞÞÞmodN; (2)

cI ¼ g

Qm

i¼1
Qn

j¼1 PðHði;V½i�½j�ÞÞmodN: (3)

� T W  SrcTokenðSK;WÞ: To retrieve the top-K
documents, the user generates a search token
T W ¼ ðFk1ðWÞ; Gk2ðWÞ; Pk3ðWÞ; K; sð�ðWÞÞÞ for

keyword W 2 w. If the user wants to retrieve all
documents containing keyword W , K in T W is
replaced by notation �.

� RW  SearchðI; T W Þ: For top-K queries, the CSP
runs Algorithm 2 to output search results RW ¼
ðidKþ1

W ; sKþ1W ; cKW Þ, where idj
W , sjW , and cjW denote the

first j identifiers, scores, and ciphertexts in idW , sW ,
and cW , respectively. For normal queries, search
resultsRW are set as ðidW; sW; cW Þ.

In Algorithm 2, the CSP parses T W as ðt1; t2; t3; t4; t5Þ,
and returns ; if t1 is not in Ts (Lines 1-3). Otherwise, the
CSP first recovers the address of head node of LW in As and
recovers all nodes of LW in sequence (Lines 4-8). Then, it
sorts documents according to their scores and returns iden-
tifiers, scores, and ciphertexts of the matched documents as
the search resultsRW (Lines 9-17).

Algorithm 2. VDERS0:Search

Input: Ranked inverted index I and search token T W

OutPut: Search resultsRW

1: Parse T W as ðt1; t2; t3; t4; t5Þ
2: if t1 is not in Ts then
3: return ;
4: Compute Ts½t1� � t2 and recover addrsðN1Þ the address of

the head node N1 of LW in As

5: repeat
6: Obtain the encrypted node Ni stored at As½addrsðNiÞ� and

parse Ni as ðvi; riÞ
7: Compute vi �Hðt3; riÞ and recover node Ni ¼ hidi;

"i; addrsðNiþ1Þi
8: until addrsðNiþ1Þ ¼ �1
9: Sort documents according to their scores
10: Let IDj and "j be the identifier and score of the rank-j docu-

ment forW , respectively
11: if t4 6¼ � then
12: Set idKþ1

W ¼ ðID1; . . . ; IDKþ1Þ, sKþ1W ¼ ð"1; . . . ; "Kþ1Þ, and
cKW ¼ ðCID1

; . . . ; CIDK
Þ

13: SetRW  ðidKþ1
W ; sKþ1W ; cKW Þ

14: else
15: Set idW ¼ ðID1; . . . ; IDjdW jÞ, sW ¼ ð"1; . . . ; "jdW jÞ, and

cW ¼ ðCID1
; . . . ; CIDjdW j

Þ
16: SetRW  ðidW; sW; cW Þ
17: returnRW

� P GenProofðparams; c;F; T W;RW Þ: For top-K
queries, the CSP parses T W as ðt1; t2; t3; t4; t5Þ, and
sets search proof P ¼ ðpC;pIÞwith

pC ¼ g

Q
Ci2c;Ci 62cKW

PðHði;HðCiÞÞÞ
modN; (4)

pI ¼ g

Qm

i¼1;i6¼t5
fi	
Qn

j¼Kþ1 PðHðt5;V½t5�½j�ÞÞmodN; (5)

where fi ¼
Qn

j¼1 PðHði;V½i�½j�ÞÞ. For normal queries,
parameter K in both Eqs. (4) and (5) is replaced by
jdW j.

� f0; 1g  Verifyðparams; SK;C; T W;RW;PÞ: Let IDj

be the identifier of the rank-j document containing
keyword W . To verify a top-K query, for i 2 ½K�, the
user computes xi with Eq. (6) and checks whether
Eq. (7) holds.
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xi  PðHðIDi; HðCIDi
ÞÞÞ: (6)

cC ¼ ðpCÞ
QK

i¼1 xi modN: (7)

Next, she parses T W as ðt1; t2; t3; t4; t5Þ, and recon-
structs the first K elements V½t5�½1�; . . . ;V½t5�½K� at
the t5-row of the verifiable matrix Vwith Eq. (1). For
j 2 ½K�, she computes yj with Eq. (8) and checks
whether Eq. (9) holds.

yj  PðHðt5;V½t5�½j�ÞÞ: (8)

cI ¼ ðpIÞ
QK

j¼1 yj modN: (9)

If Eqs. (7) and (9) hold, she outputs 1, and 0 other-
wise. For normal queries, parameter K in both
Eqs. (7) and (9) is replaced by jdW j. If the output is 1,
for each ciphertext Cj 2 RW , the user runs SKE:Dec
to recover documentDj.

� ðT �;C0Þ  UpdTokenðparams; SK;D;CÞ: To delete
document D with �ðDÞ ¼ j, the user sets the update
token as T � ¼ T del ¼ ðj;delete; C0Þ, where C0 is out-
put of SKE:Encðke; 0Þ. Then, she retrieves Cj from
the CSP and generates a new local evidence as
C0 ¼ ðc0C;c0IÞ, where c0I ¼ cI and c0C is computed
with

c0C ¼ ðcCÞ
PðHðj;HðC0ÞÞÞ
PðHðj;HðCjÞÞÞ

mod’ðNÞ
modN: (10)

To add document D with �ðDÞ ¼ nþ 1, the user sets the
update token as T � ¼ T add ¼ ððnþ 1; add; Cnþ1Þ; z; tv; taÞ,
where Cnþ1 is the output of SKE:Encðke;Dnþ1Þ, z ¼
ðg1; . . . ; gmÞ are a sequence of k-bit random strings,
tv ¼ ðb1; . . . ;bjwnþ1jÞ and ta ¼ ð�1; . . . ; �jwnþ1jÞ. For the ith
keywordW 2 wnþ1, she computes bi and �i as follows:

1) She computes the scores "i of document Dnþ1, choo-
ses a random string ri of k bits, and computes �i ¼
ð�i½1�; �i½2�; �i½3�; �i½4�; �i½5�Þ as:

�i½1� ¼ Fk1ðWÞ; �i½2� ¼ Gk2ðWÞ; �i½3� ¼ ri;

�i½4� ¼ hnþ 1; "i; 0i �HðPk3ðWÞ; �i½3�Þ;
�i½5� ¼ sð�ðWÞÞ:

(11)

2) She first performs a normal query to retrieve all
documents containing keyword W and verifies the
correctness of the search resultsRW . Then, she deter-
mines the rank of Dnþ1, denoted by J, by comparing
its score, "i, with those of documents inRW , and sets
bi ¼ ðbi½1�;bi½2�;bi½3�;bi½4�;bi½5�;bi½6�Þ as:

bi½1� ¼ HðIDJ�2; IDJ�1; nþ 1Þ � Sk4ðWÞ;
bi½2� ¼ HðIDJ�1; nþ 1; IDJÞ � Sk4ðWÞ;
bi½3� ¼ Hðnþ 1; IDJ; IDJþ1Þ � Sk4ðWÞ;
bi½4� ¼ HðIDJ�2; IDJ�1; IDJÞ � Sk4ðWÞ;
bi½5� ¼ HðIDJ�1; IDJ; IDJþ1Þ � Sk4ðWÞ;
bi½6� ¼ J;

(12)

where IDj is the identifier of the rank-j document for
keyword W before update, and IDjdW jþ1 ¼ ID0 ¼ 0.
In the special case, if J ¼ 1, we set bi½1� ¼ bi½4� ¼ ?;
if J ¼ jdW j þ 1, we set bi½3� ¼ bi½5� ¼ ?. Then, she
generates a new local evidence C0 ¼ ðc0C;c0IÞ as
follows:

c0C ¼ ðcCÞPðHðnþ1;HðCnþ1ÞÞÞmodN: (13)

For i 2 ½jwnþ1j�, she computes yi with:

yi ¼
Q3

j¼1 PðHð�i½5�;bi½j�ÞÞQ5
j¼4 PðHð�i½5�;bi½j�ÞÞ

mod’ðNÞ; (14)

Note that if bi½j� ¼ ?, PðHð�i½5�;bi½j�ÞÞ will be set to 1.
Then, she updates cI to c0I with

c0I ¼ ðcIÞ
Q

i2x PðHði;giÞÞ
Qjwnþ1 j

i¼1 yi modN; (15)

where x ¼ ½m�=f�1½5�; . . . ; �jwnþ1j½5�g is a set of elements and
gi 2 z is a k-bit random string.

� ðI0; c0;F0Þ  UpdateðI; c;F; T �Þ: The CSP runs algo-
rithm Algorithm 3 to generate the updated versions
of ranked inverted index, ciphertext collection, and
remote auxiliary information ðI0; c0;F0Þ. In Algo-
rithm 3, for the deletion operation, the CSP keeps I
and V unchanged, and updates c by replacing
ciphertext Cj with C0 (Lines 1-3).

Fig. 2. Samples of ranked inverted indexes.
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For the addition operation, the CSP first generates c0 by
adding Cnþ1 into c (Lines 4-6). To generate I0 ¼ ðT0s;A0sÞ, it
executes lines 7-13 of Algorithm 3 as follows: For each key-
word W 2 wnþ1, it stores the new node at the last free loca-
tion $ in As and sets it as the first node of LW , and then it
updates Ts½�i½1�� to point to $ and updates Ts½free� to point
to the second last free location $�1 in As. Finally, it gener-
ates F0 ¼ V0 and returns (I0; c0;F0) (Lines 14-27).

Algorithm 3. VDERS0:Update

Input: The original ranked inverted index I, the original cipher-
texts c, the original remote auxiliary information F, and the
update token T �

OutPut: The updated versions of ranked inverted index,
ciphertexts, and remote auxiliary information ðI0; c0;F0Þ

1: Set I0 ¼ I, c0 ¼ c, and F0 ¼ F (i.e., V0 ¼ V)
2: if T � ¼ T del ¼ ðj;delete; C0Þ then
3: Mark Cj as delete and replace Cj 2 c0 with C0

4: else
5: T � ¼ T add ¼ ððnþ 1; add; Cnþ1Þ; z; tv; taÞ
6: Set c0 ¼ c0 [ Cnþ1
7: for the i-the keywordW 2 wnþ1 do
8: Compute$ Ts½free� and obtain the last free location

$ in As

9: Compute ðð0; 0; $�1Þ; 0Þ  As½$� and obtain the
second last free location$�1 in As

10: Update the free list to point to the second last free
location$�1 in As by setting Ts½free�  $�1

11: Recover the address of the first node N1 of LW in As by
computing a1 ¼ Tsð�i½1�Þ � �i½2�

12: Store a new node at location$ as the first node of LW

by setting As½$�  ð�i½4� � h0; 0;a1iÞ; �i½3�Þ
13: Store the pointer to the first node of LW in Ts by setting

Ts½�i½1��  $� �i½2�
14: Add z as the last column of V0

15: for the ith keywordW 2 wnþ1 do
16: Set J ¼ bi½6� and t ¼ �i½5�
17: if J < n then
18: for j ¼ n to Jþ 1 do
19: Set V0½t�½jþ 1�=V0½t�½j�
20: if J ¼ 1 then
21: Set V0½t�½J� ¼ bi½2� and V0½t�½Jþ 1� ¼ bi½3�
22: else
23: if J ¼ jdW j þ 1 then
24: Set V0½t�½J� 1� ¼ bi½1� and V0½t�½J� ¼ bi½2�
25: else
26: Set V0½t�½J� 1� ¼ bi½1�, V0½t�½J� ¼ bi½2�, and

V0½t�½Jþ 1� ¼ bi½3�
27: return (I0; c0;F0)

5.3 Illustration Example

The correctness of our VDERS scheme can be sketched in
the following example.

(Initial phase) Given a sequence of documents d ¼ ðD1;
D2; D3; D4Þ and a sequence of keywords w ¼ ðW1;W2;W3Þ,
document ranks for each keyword are shown in Fig 3a. Given
ðparams; SKÞ, the user encrypts each documentDi 2 dwith
SKE to generate ciphertext collection c ¼ ðC1; . . . ; C4Þ, and
constructs the verifiable matrix V and the ranked inverted
index I as shown in Figs. 4a and 2a, respectively.

She then sets the remote auxiliary information as F ¼ V
and calculates the local evidenceC ¼ ðcC;cIÞ as:

cC ¼ g
Q4

i¼1 PðHði;HðCiÞÞÞmodN;

cI ¼ g

Q3

i¼1
Q4

j¼1 PðHði;V½i�½j�ÞÞmodN:

Finally, she sends ðparams; I; c;FÞ to the CSP, and keeps
ðSK;CÞ locally.

(Search phase) To retrieve the top-1 document containing
keyword W2, the user sends the search token T W ¼
ðFk1ðW2Þ; Gk2ðW2Þ; Pk3ðW2Þ; 1; 3Þ to the CSP.

The CSP locates Ts½Fk1ðW2Þ� ¼ Ts½3� and recovers the
address of the first node in As by computing 4 ¼ Ts½3��
Gk2ðW2Þ. It then computes As½4� �HðPk3ðW2Þ; r1Þ to recover
the first node N1 ¼ h4; 120; 3i, where 4 is the identifier of the
first document, 120 is the score, and 3 is the address of the
next node in As. In the same way, it recovers the second
node N2 ¼ h3; 110;�1i, where 3 is the identifier of the sec-
ond document, 110 is file score, and �1 indicates D3 is the
last document containing keyword W2. The CSP sorts docu-
ments according to their scores, and sets the search results
asRW ¼ ðid2

W; s2W; c1W Þ ¼ ðð4; 3Þ; ð120; 110Þ; C4Þ.
Next, it calculates the search proof P ¼ ðpC;pIÞ as:

pC ¼ g

Q
i¼1;2;3 PðHði;HðCiÞÞÞmodN;

pI ¼ g

Q
i¼1;2 fi	

Q
j¼2;3;4 PðHð3;V½3�½j�ÞÞmodN;

where fi ¼
Q4

j¼1 PðHði;V½i�½j�ÞÞ. The messages returned to
the user are set as ðRW;PÞ.

Once the user receives the messages returned, she com-
putes x ¼ PðHð4; HðC4ÞÞÞ and checks if cC ¼ px

C modN.
She then reconstructs V½3�½1� ¼ Hð0; 4; 3Þ � Sk4ðW2Þ, com-
putes y ¼ PðHð3;V½3�½1�ÞÞ, and checks if cI ¼ ðpIÞy modN.
Note that, the following equations hold only when the
search results are correct:

px
C modN

¼ g

Q
i¼1;2;3 PðHði;HðCiÞÞÞ	PðHð4;HðC4ÞÞÞ

¼ g
Q4

i¼1 PðHði;HðCiÞÞÞ ¼ cC

Fig. 3. The ranking information of documents.

Fig. 4. Samples of verifiable matrices.
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ðpIÞy modN

¼ g

Q
i¼1;2

Q4

j¼1 PðHði;V½i�½j�ÞÞ	PðHð3;V½3�½1�ÞÞ	
Q

j¼2;3;4 PðHð3;V½3�½j�ÞÞ

¼ g

Q4

j¼1 PðHð3;V½3�½j�ÞÞ
Q

i¼1;2
Q4

j¼1 PðHði;V½i�½j�ÞÞ

¼ g

Q3

i¼1
Q4

j¼1 PðHði;V½i�½j�ÞÞ ¼ cI :

If all these checks succeed, she can recover document D2

from ciphertext C2 2 RW .
(Update Phase). As shown in Fig. 3b, document D5, the

rank-2 document for keywordW2, is added. The user gener-
ates the update token T � ¼ T add ¼ ðð5; add; C5Þ; z; tv; taÞ as
follows: she first generates the ciphertext C5 of document
D5 with SKE, and sets z ¼ ðg1; g2; g3Þ, where gi is a random
string of k bits. Then, she sets tv ¼ b where b½1� ¼ Hð0;
4; 5Þ � Sk4ðW2Þ, b½2� ¼ Hð4; 5; 3Þ � Sk4ðW2Þ, b½3� ¼ Hð5; 3;
0Þ � Sk4ðW2Þ, b½4� ¼ Hð0; 4; 3Þ � Sk4ðW2Þ, b½5� ¼ Hð4; 3; 0Þ�
Sk4ðW2Þ, and b½6� ¼ 2. Furthermore, she chooses a random
string r3 of k bits and sets ta ¼ � where �½1� ¼ 3; �½2� ¼
Gk2ðW2Þ; �½3� ¼ r3, �½4� ¼ h5; 115; 0i �HðPk3ðW2Þ; �½3�Þ, and
�½5� ¼ sð2Þ ¼ 3.

Next, she computes y as:

y ¼
Q3

j¼1 PðHð�½5�;b½j�ÞÞQ5
j¼4 PðHð�½5�;b½j�ÞÞ

mod’ðNÞ

¼
Q3

j¼1 PðHð3;V0½3�½j�ÞÞQ2
j¼1 PðHð3;V½3�½j�ÞÞ

mod’ðNÞ;

Finally, she generates the new local evidence C0 ¼ ðc0C;c0IÞ
by setting c0C ¼ ðcCÞPðHð5;HðC5ÞÞÞmodN, and c0I ¼
c
PðHð1;g1ÞÞ	PðHð2;g2ÞÞ	y
I mod N.

Given T �, the CSP generates the updated verifiable
matrix V0 and the updated ranked inverted indexes I0 as
shown in Figs. 4b and 2b, respectively. We leave the con-
struction of document deletion to the readers.

5.4 Security Proof

We first provide the definitions of the leakage functions.
The definitions below closely follow those in [13] except
that rank information of each document is also exposed.

� L1ðdÞ ¼ ð#As; f�ðWÞgW2w; f�ðDÞgD2d; fjjDjjgD2dÞ.
#As is the size of search array, � is the identifier
function outputting the identifier of a document D
or keyword W , and jjDjj is the bit length of docu-
mentD.

� L2ðd;WÞ ¼ ð�ðWÞ;ACCPðWÞÞ. ACCPðW Þ is the
access pattern defined as the sequence of document
identifiers idW ¼ ðID1; . . . ; IDjdW jÞ where IDj is the
identifier of the rank-j document for keywordW .

� L3ðd; DÞ ¼ ð�ðDÞ; f�ðWÞ; apprsðWÞgW2w; jjDjj) where
apprsðWÞ is a bit set to 1 if W appears in at least one
document in d and to 0 otherwise.

� L4ðd; DÞ ¼ ð�ðDÞÞ.

Theorem 1. If SKE is secure under adaptive chosen-plaintext
attacks (adaptive CPA-secure), H is a collision-free hash func-
tion, and F , G, P , and S are pseudo-random, then VDERS0

satisfies confidentiality and verifiability under the strong RSA
assumption in the random oracle model.

A proof is given in the appendix, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/TSC.2019.2922177.

6 ADVANCED VDERS SCHEME

6.1 Main Idea

Our basic VDERS construction allows top-K queries in a
dynamic and verifiable way, but falls short in the following
aspects: (1) Inefficiency in deletion operation. It flags the
deleted document but keeps corresponding nodes in the
search array As. Therefore, it has no real meaning to delete
a document and limits the number of the documents that
can be added. (2) Inefficiency in verification. It requires to
transmit the verifiable matrix V to the CSP for the genera-
tion of search proofs. The complexity of V is OðnmkÞ, which
may be unacceptable for a large-scale dataset.

To release the space of a deleted document, we define a
deletion table Tj for each documentDj 2 d as follows:

Definition 5 (Deletion table). Tj is a dictionary of size jwjj.
For each keyword W 2 wj, Tj½W � stores addrsðNÞ, where N is
the node in the ranked linked list LW corresponding to docu-
mentDj, and addrsðNÞ is N’s location in the search array As.

Tj stores the addresses in As for nodes that should be
released if document Dj is removed. Let N�1 and Nþ1
denote nodes previous to and following N in LW , respec-
tively. Given Tj, node N can be deleted from LW for each
keyword W 2 wj by storing N as the last node of the free
list Lfree and modifying the pointer of node N�1 to point to
node Nþ1. To reduce the communication cost, we encode
the verifiable matrix V into accumulated values so that the
CSP can generate search proofs correctly without V.

Algorithm 4. VDERS
?
:Encryption

Input: Secret key SK, documents d, and keywordsw
OutPut: Ranked inverted index I and ciphertexts c

?

1: Execute lines 1-12 of Algorithm 1 and generate I ¼ ðTs;AsÞ
2: for each documentDj 2 d do
3: Initialize Tj with an empty dictionary of size jwjj
4: for each keywordW 2 wj do
5: Locate node N corresponding toDj in LW

6: Set Tj½W �  addrsðNÞ
7: Set eTj  SKE:Encðke;TjÞ
8: Set Cj  SKE:Encðke;DjÞ and c

? ¼ c
? [ ðCj; eTjÞ

9: return (I; c
?
)

6.2 Our Construction

The main differences between VDERS0 and VDERS
?
lie in

the following algorithms.

� ðI; c? Þ  EncryptionðSK;d;wÞ: As shown in Algo-
rithm4, the user first executes lines 1-12 ofAlgorithm1
and generates the ranked inverted index I ¼ ðTs;AsÞ.
For each documentDj 2 d, she creates a deletion table
Tj as defined in Definition 5, and separately encrypts
Tj and Dj with algorithm SKE:Enc. The ciphertext
collection c

?
is set as ðCj; eTjÞnj¼1.
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� ðF?
;C

? Þ  AccGenðparams; SK;d;w; c
? Þ: The user

constructs an m� n verifiable matrix V as defined in
Section 4.3. For each keyword W 2 w, she calculates

i ¼ sð�ðWÞÞ and fi ¼
QjdW j

j¼1 PðHði;V½i�½j�ÞÞmod’ðNÞ,
and sets remote auxiliary information as F

? ¼
ðf1; . . . ;fmÞ. Note that the primary role of V is to
record document ranking information. Since such
information has been encoded into F

?
, V can be

removed from local storage. Finally, she sets a local
evidence as C

? ¼ ðc?

C;c
?

IÞ where c
?

C ¼ cC is calcu-
lated with Eq. (2) and c

?

I is calculated with

c
?

I ¼ g
Qm

i¼1 fi modN: (16)

� R?

W  SearchðI; T W Þ: The CSP executes lines 1-10 of
Algorithm 2. Let cKW be the first K ciphertexts in cW .
For top-K queries, it sets R?

W ¼ ðidW; sW; cKW Þ. For
normal queries, it setsR?

W ¼ ðidW; sW; cW Þ.
� P

?  GenProofðparams; c
?
;F

?
; T W;R?

W Þ: The CSP
parses T W as ðt1; t2; t3; t4; t5Þ and sets the proof as
P

? ¼ ðp?

C;p
?

IÞ, where p
?

C ¼ pC is computed with
Eq. (4) andp

?

I is computed based onF
? ¼ ðf1; . . . ;fmÞ:

p
?

I ¼ g

Qm

i¼1;i6¼t5
fi modN: (17)

� f0; 1g  Verifyðparams; SK;C
?
; T W;R?

W ;P
? Þ: To

verify a top-K query, for i 2 ½K�, the user computes
xi with Eq. (6) and checks whether Eq. (7) holds. She
parses T W as ðt1; t2; t3; t4; t5Þ, and reconstructs
V½t5�½1�; . . . ;V½t5�½jdW j� with Eq. (1). For j 2 ½jdW j�,
she computes yj with Eq. (18) and checks whether
Eq. (19) holds:

yj  PðHðt5;V½t5�½j�ÞÞ: (18)

c
?

I ¼ ðp
?

IÞ
QjdW j

j¼1 yj modN: (19)

If Eqs. (7) and (19) hold, she outputs 1, and 0 other-
wise. For normal queries, parameter K in Eq. (7) is
replaced by jdW j. If the output is 1, for each cipher-
text Cj 2 R

?

W , the user runs SKE:Dec to recover the
documentDj.

� ðT ?

�;C
? 0Þ  UpdTokenðparams; SK;D;C

? Þ: To delete
document Dj with �ðDÞ ¼ j, the user first retrieves
ðCj; eTjÞ from the CSP, and recovers Tj. Then, she
sets the update token as T � ¼ T del ¼ ððj;deleteÞ;
tv; taÞ, where tv ¼ ðn1; . . . ; njwjjÞ and ta ¼ ð�1 . . . ;
�jwjjÞ. For the ith keyword W 2 wj, she computes ni
and �i as follows:
1) She performs normal queries to retrieve all docu-

ments containing keyword W . For node N 2 LW

that corresponds to document Dj, the CSP will
return ðaddrsðN�1Þ; addrsðNþ1ÞÞ together with the
search results R?

W , where N�1 and Nþ1 are the
nodes previous to and followingN, and addrsðN�1Þ
and addrsðNþ1Þ are their locations in As, respec-
tively. Then, she computes addrsðNÞ  Tj½W �, and
sets �i ¼ ð�i½1�; �i½2�; �i½3�; �i½4�; �i½5�Þ as:

�i½1� ¼ Fk1ðWÞ; �i½2� ¼ addrsðN�1Þ;
�i½3� ¼ addrsðNÞ; �i½4� ¼ addrsðNþ1Þ; �i½5� ¼ sð�ðWÞÞ:

2) After verifying the correctness of R?

W , she
reconstructs V½�i½5��½1�; . . . ;V½�i½5��½jdW j� with

Eq. (1), and calculates f�i½5� ¼
QjdW j

j¼1 PðHð�i½5�;
V½�i½5��½j�ÞÞmod’ðNÞ. Then, she determines the
rank of Dj, denoted by J, and sets bi ¼ ðbi½1�;
bi½2�;bi½3�;bi½4�;bi½5�;bi½6�Þ as:

bi½1� ¼ HðIDJ�2; IDJ�1; IDJþ1Þ � Sk4ðWÞ;
bi½2� ¼ HðIDJ�1; IDJþ1; IDJþ2Þ � Sk4ðWÞ;
bi½3� ¼ HðIDJ�2; IDJ�1; IDJÞ � Sk4ðW Þ;
bi½4� ¼ HðIDJ�1; IDJ; IDJþ1Þ � Sk4ðW Þ;
bi½5� ¼ HðIDJ; IDJþ1; IDJþ2Þ � Sk4ðW Þ;
bi½6� ¼ J;

where IDj is the identifier of the rank-j
document for keyword W before update, and
IDjdW jþ1 ¼ ID0 ¼ 0. In the special case, if J ¼ 1,
we set bi½1� ¼ bi½3� ¼ ?; if J ¼ jdW j, we set
bi½2� ¼ bi½5� ¼ ?. Then, she calculates ni ¼
f�i½5� � xi mod’ðNÞ, where xi is calculated as
follows:

xi ¼
Q2

j¼1 PðHð�i½5�;bi½j�ÞÞQ5
j¼3 PðHð�i½5�;bi½j�ÞÞ

mod’ðNÞ: (20)

Next, she generates the new local evidence as
C

? 0 ¼ ðc? 0
C ;c

? 0
I Þ with Eqs. (21) and 22, respec-

tively.

c
? 0
C ¼ ðc

?

CÞ
1

PðHðj;HðCjÞÞÞ
mod’ðNÞ

modN: (21)

c
? 0
I ¼ ðc

?

IÞ
Qjwj j

i¼1 xi modN: (22)

To add document Dnþ1 with �ðDÞ ¼ nþ 1, the user sets
the update token as T ?

� ¼ T add ¼ ððnþ 1; add; Cnþ1; eTnþ1Þ;
tv; taÞ, where Cnþ1 is output of SKE:Encðke;Dnþ1Þ, eTnþ1 is
output of SKE:Encðke;Tnþ1Þ4, tv ¼ ðn1; . . . ; njwnþ1jÞ and ta ¼
ð�1; . . . ; �jwnþ1jÞ. For the ith keyword W 2 wnþ1, she calcu-
lates ni and �i as follows:

1) She computes �i ¼ ð�i½1�; . . . ; �i½5�Þwith Eq. (11).
2) As deletion operations, she reconstructs

V½�i½5��½1�; . . . ;V½�i½5��½jdW j� with Eq. (1), and calcu-

lates f�i½5� ¼
QjdW j

j¼1 PðHð�i½5�;V½�i½5��½j�ÞÞmod’ðNÞ.
Then, she calculates xi with Eq. (23) and sets
ni ¼ f�i½5� � xi mod’ðNÞ:

xi ¼
Q3

j¼1 PðHð�i½1�;bi½j�ÞÞQ5
j¼4 PðHð�i½1�;bi½j�ÞÞ

mod’ðNÞ; (23)

where bi ¼ ðbi½1�; . . . ;bi½6�Þ is calculated with
Eq. (12). Next, she generates the new local evidence
as C

? 0 ¼ ðc? 0
C;c

? 0
I Þwith Eqs. (13) and 22, respectively.

In Eq. (22), where jwjj is replaced by jwnþ1j.

� ðI0; c? 0;F? 0Þ  UpdateðI; c? ;F?
; T ?

�Þ: If the update
token T ?

� ¼ T del ¼ ððj;deleteÞ; tv; taÞ, the CSP

4. To construct Tnþ1, the user can either ask the CSP for the locations
of free nodes or locally store the locations of all free nodes.
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generates c
? 0 by removing ðeTj; CjÞ from c

?
. It gener-

ates F
? 0 by replacing f�i½5� with ni for i 2 ½jwjj�. To

generate I0 ¼ ðT0s;A
0
sÞ, for the ith keyword W 2 wj, it

parses �i ¼ ð�i½1�; �i½2�; �i½3�; �i½4�; �i½5�Þ and per-
forms as follows:
1) It computes $ Ts½free� and finds the last free

location$ in As.
2) It updates the free list to point to node N by set-

ting Ts½free�  �i½3�.
3) It releases the location of N by setting

As½�i½3��  ðh0; 0; $i; 0Þ.
4) If �i½2� 6¼ �1, let As½�i½2�� ¼ ðv�1; r�1Þ. It updates

N�1’s next pointer by setting As½�i½2��  ðð0;
0; �i½3� � �i½4� � v�1Þ; r�1Þ.

5) If N is the first node of LW , it sets
Ts½�i½1��  �i½4�.

If T � ¼ T add ¼ ððnþ 1; add; Cnþ1; eTnþ1Þ; tv; taÞ, it gener-
ates the updated ranked inverted index I0 in the same way
as VDERS0:Update. Next, it generates c

? 0 by adding
ðCnþ1; eTnþ1Þ into c

?
and generates F

? 0 by replacing f�i½5�
with ni for i 2 ½jwnþ1j�.

Discussion. In both VDERS0 and VDERS
?
, a user needs to

search a set of keywords before generating an update token.
This will incur additional costs in the update phase. To
solve this problem, we can adopt the lazy update mecha-
nism [30], which allows to postpone an update operation
until a search operation happens. Specifically, to delete doc-
ument Dj in VDERS

?
, the user sends T del ¼ ðj;delÞ to the

CSP, which will send back eTj and remove ðCj; eTjÞ. Once the
user searches any keyword W 2 wj, she can obtain related
information for generating ð�i; ni; xiÞ. With those informa-
tion, the CSP can update ðI;C;FÞ accordingly. After search-
ing all keywords in wj, she completes all components of the
deletion token. Similarly, to add document Dnþ1 in
VDERS

?
, the user keeps the document identifier and related

score locally and sends T add ¼ ððnþ 1; add; Cnþ1; eTnþ1Þ; taÞÞ
to the CSP, which updates c

?
and I. Once searched any key-

word in wnþ1, she can obtain related information for modi-
fying C and F accordingly. After searching all keywords in
wnþ1, she completes all components of the add token.

6.3 Security Proof

We assume that the size of deletion table Tj is the same as
that of document Dj. Therefore, VDERS

?
has the same lea-

kages as VDERS0 except that more information is leaked in
the deletion operation. We provide the definition for
L4ðd; DÞ as follows:

� L4ðd; DÞ ¼ ð�ðDÞ; faddrsðN�1Þ; addrsðNÞ; addrsðNþ1Þ;
�ðWÞgW2w�ðDÞ

Þ where ðaddrsðN�1Þ; addrsðNÞ;
addrsðNþ1ÞÞ is the information leaked by the deletion
token.

Theorem 2. If SKE is adaptive CPA-secure, H is a collision-free
hash function, and F , G, P , and S are pseudo-random, then
VDERS

?
satisfies confidentiality and verifiability under the

strong RSA assumption in the random oracle model.

A proof is given in the appendix, available in the online
supplemental material.

7 EVALUATION

7.1 Performance Analysis

We compare the performance of VDERS0, VDERS
?
, and the

two schemes proposed in [23] and [13] (denoted by
BASELINE1 and BASELINE2, respectively) in terms of
computational and communication complexities. For compu-
tation cost, we only consider the most expensive operations,
i.e., the calculation of RSA accumulators, and we analyze the
incurred cost from the server side and the user side, respec-
tively. Note that BASELINE2 is not verifiable, and thus, its
cost is 0; it will not be listed. Given a collection of n docu-
ments with m keywords, the comparison results are shown
in Table 3, whereK is the parameter for a top-K search, jdW j
is the number of documents containing keywordW , and jwjj
is the total number of keywords contained in documentDj.

For communication cost, all schemes encrypt documents
with SKE, and the sizes of the ciphertexts are the same. Fur-
thermore, RSA accumulator generates a constant-size search
proof. Therefore, we only consider the sizes of a secure
index, a verifiable matrix, and a search/update token. The
comparison results are shown in Table 4, where X ¼

P
jdW j

is the total number of keyword-document pairs.

7.2 Parameter Setting

Experiments were conducted on a local machine running
the Microsoft Windows 10 Ultimate operating system with
an Inter Core i5 CPU running at 3.4GHz and 8GB memory.
The programs were implemented in Java and compiled

TABLE 3
Comparison of Computation Cost

Server Initial Search Add Delete

BASELINE1 Oð1Þ Oðn 	mÞ Oð1Þ OðnÞ
VDERS0 Oð1Þ Oðn 	mÞ Oð1Þ Oð1Þ
VDERS

?
Oð1Þ OðnþmÞ Oð1Þ Oð1Þ

User Initial Search Add Delete

BASELINE1 Oðn 	mÞ Oðnþ jdW jÞ OðmÞ Oð1Þ
VDERS0 Oðn 	mÞ OðKÞ OðmÞ Oð1Þ
VDERS

?
Oðnþm	 OðK þ jdW jÞ Oðjwjj	 Oðjwjj	
jdW jmaxÞ jdW jmaxÞ jdW jmaxÞ

TABLE 4
Comparison of Communication Cost

BASELINE1 BASELINE2 VDERS0 VDERS
?

Initial Oðn 	mÞ OððXþmÞ 	 kÞ OððXþ n 	mÞ 	 kÞ OððXþmÞ 	 kÞ
Search OðnÞ OðkÞ OðkÞ OðkÞ
Add OðmÞ Oðjwjj 	 kÞ Oððmþ jwjjÞÞ 	 k Oðjwjj 	 kÞ
Delete Oð1Þ OðkÞ Oð1Þ Oðjwjj 	 kÞ

Fig. 5. Comparison in initial phase.
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using Eclipse 4.6.0. The cryptographic algorithms were
implemented with JPBC library.

To validate the effectiveness and efficiency of the VDERS
scheme in practice, we conducted a performance evaluation
on a real e-mail data set, the Enron Email Data Set5. This data
set has 30,000 plaintext e-mails with a total size of about
71.2 MB. The average size of each document is 2.43 KB. We
chose 1 
 3 keywords for each document after ranking them
by frequency of occurrence, and got 7,922 keywords finally.

7.3 Experiment Results

We compared our VDERS constructions with BASELINE1
and BASELINE2 in terms of the communication cost and the
execution time in the initial phase, search phase, and update
phase. Since BASELINE2 is unverifiable, it lacks algorithms
AccGen, GenProof, and Verify. Furthermore, SKE is
employed to encrypt document contents in all schemes, and
the computation and communication costs of generating a
search token are very small. Therefore, we left out the time of
encrypting documents in algorithm Encrption, and omitted
the comparison of algorithmSrcToken.

Fig. 5 illustrates the comparison results in the initial
phase. For the Encryption algorithm, BASELINE1 encrypts a
string of length n for every keyword, and thus incurs the
most computation and communication costs. VDERS0 and
VDERS

?
encrypt a ranked inverted index in the same way.

Since VDERS
?
needs to encrypt a deletion table Ti in addi-

tion, and thus it incurs more computation and communica-

tion costs compared with VDERS0. BASELINE2 encrypts an
inverted index which includes a deletion table and a dele-
tion array in addition, and thus its costs exceed VDERS0.
For the AccGen algorithm, VDERS0 is the most expensive
in both computation and communication costs because of
the generation and transmission of a verifiable matrix
(m� n� k bits in size); VDERS

?
incurs the minimal compu-

tation cost since the number of RSA accumulator calcula-
tions is reduced to jdW j for each keyword; BASELINE1
incurs the minimal communication cost since there is no
need to transmit auxiliary information to the CSP. Further-
more, the communication cost of VDERS

?
in the AccGen

algorithm is also largely reduced since it only needs to
transmitm integers to the CSP.

Fig. 6 shows the execution time at the server side in the
search phase. In Fig. 6a, as the number of documents n grows,
BASELINE1 needs to decrypt longer strings and return more
documents, rendering the execution time to grow linearly;

The search time in our VDERS constructions and
BASELINE2 is impacted by the number of documentsmatch-
ing a keyword, and thus increases smoothly. In Fig. 6b, the
execution time of algorithm GenProof in both VDERS0 and
BASELINE is mainly impacted by the number of documents
n. However, in our advanced GenProof algorithm, the com-
putation of Eq. (17) is based on F

?
, and the execution time

increases slightly as n increases. For example, the execution
time in VDERS0 and VDERS

?
increases from 68s to 582s, and

from 4s to 18s, respectively, as n increases from 5,000 to
30,000. From Figs. 6c and 6d, we know that the execution
time of algorithm Search is slightly impacted by parameter
K, but the execution time of algorithm GenProof decreases
smoothly asK increases. For example, asK increases from 10
to 50, the execution time of algorithmSearch inVDERS0 fluc-
tuates around 0.08 ms, and the execution time of algorithm
GenProof inVDERS

?
decreases from 20s to 12s.

Fig. 7 shows the execution time at the user side in the
search phase. From this figure, we know that our VDERS

Fig. 6. Execution time in the search phase (server side). Given fixedK ¼ 20, the execution time of (a) and (b) changes over the number of documents
n; Given fixed n ¼ 30; 000, the execution time of (c) and (d) changes over the number of returnedK documents.

Fig. 7. Execution time in the search phase (user side). Given fixed
K ¼ 20, the time of (a) changes over the number of documents n; Given
fixed n ¼ 30; 000, the time of (b) changes over parameterK.

Fig. 8. Communication cost in the update phase. Given fixed n ¼ 30; 000,
the communication costs of (a) and (b) change over the number of key-
words in a document jwjj.5. http://www.cs.cmu.edu/
./enron/
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constructions have better performance compared with
BASELINE1. To verify the search results, the number of RSA
accumulator calculations in BASELINE1, VDERS0, and
VDERS

?
is mainly impacted by jdW j þ n, K, and jdW j þK,

respectively. Therefore, the execution time of BASELINE1 in
Fig. 7a grows linearly as n increases, but it remains
unchanged in Fig. 7b as K increases. On the contrary, the
execution time of VDERS

?
in Fig. 7a changes slightly and

VDERS0 just fluctuates around a fixed value as n increases,
but they both grow linearly in Fig. 7b asK increases.

Fig. 8 shows the communication costs in the update
phase. In terms of adding a document, VDERS0 incurs the
largest communication cost because it needs to upload m
extra random numbers to the CSP. BASELINE1 incurs the
minimal cost because it only needs to upload m bits. From
Fig. 8a, we know that the cost of BASELINE2 grows linearly,
the costs of our VDERS constructions grow slightly, but the
cost of BASELINE1 remains unchanged, as jwjj increases.
For example, as jwjj increases from 10 to 40, the cost of
BASELINE1 remains as 8 KB, but the costs of BASELINE2,
VDERS0, and VDERS

?
, increase from 43 KB to 170 KB, from

259 KB to 269 KB, and from 6 KB to 12 KB, respectively. In
terms of deleting a document, the communication costs of
BASELINE1 and VDERS

?
are negligibly small, and we only

consider VDERS
?
and BASELINE2. From Fig. 8b, we know

that the cost of BASELINE2 is independent of jwjj, but the
cost of VDERS

?
badly grows with jwjj.

Fig. 9 shows the computation time in the update phase.
In Fig. 9a, BASELINE1 needs to compute m times of RSA
accumulators, and thus it incurs the maximum execution
time. In Fig. 9b, VDERS0 incurs the maximum execution
time since it needs to update both the ranked inverted index
and the verifiable matrix. In terms of deleting a document,
we still only consider VDERS

?
and BASELINE2. In Fig. 9c,

the time of BASELINE2 is independent of jwjj, but the time
of VDERS

?
grows with jwjj. In Fig. 9d, both the time of

VDERS
?
and BASELINE2 grows as jwjj increases. Further-

more, BASELINE2 with a more complicated index structure
incurs more execution time than VDERS

?
.

8 CONCLUSION

In this paper, we design a VDERS scheme to simultaneously
support sublinear search time, efficient update and verifica-
tion, and on-demand information retrieval in cloud comput-
ing environment. Experiment results demonstrate that our
scheme is effective for verifying the correctness of top-K
searches on a dynamic document collection. As part of our

future work, we will try to design a forward secure VDERS
scheme, where the update phase does not leak keyword
information about a newly added document.
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