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Abstract—Social crowdsourcing is a special outsourcing plat-
form, on which a complex job is outsourced onto a social network
of workers. By interactively recruiting friends of friends, and
assigning small pieces of works to them, eventually a large job can
be completed. However, due to the workflows presenting a tree-
like structure, the reliability of the current social crowdsourcing
system is poor. The absence of a relay worker will cause discon-
nection between the job owner and sub-workers. For increasing
the reliability, we explore two special social structures. One is
based on a triangle relation among any three consecutive workers
on the workflows; the other one is based on a quadrilateral
relation between two physically intersected workflows. Based on
these structures, we propose several social crowdsourcing return
rules. Theoretical analysis and simulation results show that our
proposed schemes can significantly improve the performance and
reliability of social crowdsourcing.

Index Terms—Crowdsourcing, failure recovery, reliability, so-
cial crowdsourcing, social tie.

I. INTRODUCTION

Crowdsourcing are increasingly used to solve human
intelligence-related problems, such as proofreading. In crowd-
sourcing, a large work is partitioned into smaller pieces by
its owner, and outsourced onto a crowdsourcing platform.
Independent freelances search and take up some subworks.
After finishing sub-works, they return results to the platform.
In Amazon Mturk, a subwork is called a Human Intelligence
Tasks (HIT). Although crowdsourcing brings more knowledge
diversity and a large amount of labor force [1], the independent
feature of workers causes the problem that it can only process
simple and independent works [2].

In this paper, we propose a new outsourcing system, called
social network-based crowdsourcing (SC), which outsources
works onto a social network of workers. Unlike the existing
systems, workers of SC are not independent: they have some
level of awareness and trust, and therefore, cooperation locally
exists. A job can be completed, via iterative recruitment
of workers through social ties. Instead of directly interact
with each worker, a job owner only needs to outsource his
workloads to friends, and leaves them to further propagate the
works, collect results, and post-process the results.

SC works as follows: when user v possesses a job, he first
creates social-HITs, and forwards them to his friends. Social-
HIT is a special data structure, which records job description,
results’ requirements, and the identity of the requester who
send the social-HIT to its current holder. When u accepts a
social-HIT, he is required to check whether the social-HIT
should continue to be forwarded to his friends, according to
the requirements of social-HITs. Each participant is also re-
sponsible for collecting its subtrees’ results. After the amount
of collected results satisfies the given return requirements, u
will process these results, such as reduce or aggregate them,

Fig. 1. An example about the absence of a relay worker. Worker A was
on-line during the propagation of social-HITs, and then left. The return flows
from its subtrees are disrupted by the absence of A.

and send them back to the requester. Physically, the job’s
workflows form a directed acyclic graph, but logically, the
flows of social-HITs form a virtual tree.

However, the tree-like structure is unreliable for returning
results: the off-line or long-term unresponsiveness of a relay
worker will cause the disconnection between the sub-workers
and the job owner, as shown in Fig. 1. Redundant preplanned
return paths can be adopted to improve the reliability. But,
inappropriate selection and using backup paths may even
worsen the situation. For example, for controlling the waiting
time of collecting subtrees’ results, the return requirements
could be: 1) u has collected results from c or more than c
descendants; 2) u is awake (an on-line status). Suppose we
adopted a recovery scheme that, when a worker withdraws,
his children are allowed to directly give the results back to a
pre-selected worker. If this is the case, not only the backup
collector’s children may lose the chance to return when the
missing worker’s children use up the c return slots early, but
also the backup collector itself may be overflowed by the data
when multiple failures happens. Moreover, the problem is more
complex, due to the facts: (1) workers in SC are distributed
and self-organized; they only possess some status information
of their friends; (2) workers may be sleeping or awake, which
leads to the uncertainty of return flows’ delay and order.

In this paper, we focus on the design of redundant return
paths and the rules for using them. We first design a distribut-
ed dual return paths scheme by exploring the relationships
among any three consecutive workers on the workflows. The
proposed scheme is local, lightweight, and can be directly
implemented on the current crowdsourcing platform. It is
proven that the scheme can tolerate any non-consecutive node
failure or any non-common-source link failure. Moreover, the
negative effects of using the backup paths are controlled.
Through the qualitative and quantitative analysis, we show that
the proposed scheme significantly improves the performance,
especially the reliability, of SC systems. Considering the fact
that most social-HITs are propagated via the popular users
(who have a large node degree), once such a worker misses,
his single backup collector will be overflowed quickly. In
order to avoid this problem, we propose an extension scheme,
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Algorithm 1 P-SNCA
1: Current node u accepts a social-HIT from v:

〈JobId, v, LifeT ime,Hop, Instruct〉
2: if Hop > 0 then
3: Generate a new social-HIT:

〈JobId, u, LifeT ime,Hop-1, Instruct〉
4: Send the new social-HIT to every friend of u except v
5: Complete the work described in Instruct
6: while Waiting for the returns from u’s friends do
7: if The collected results satisfy the return requirements

described in Instruct then
8: Process the results, and send them back to v; break
9: if Current time t > LifeT ime then
10: Destroy the social-HIT at u; break
11: else
12: Complete the work described in Instruct
13: Return the work’s result to v

by letting the second social-HIT’s requester, from the same
‘grandfather,’ be the backup collector. Theoretical analysis and
simulation results show that our proposed schemes greatly
increase the number of collected results at the job owner. The
main contributions of our work are as follows: 1) We find two
special local structures for selecting of the backup returning
nodes: GFC structure-based scheme and Second Requester-
based scheme; 2) Three rules are designed for the coordinated
use of the return paths; 3) Extensive simulations and theoretical
analysis are performed to testify our solutions.

II. RELATED WORK

The organization of a workplace affects the characters of
works and outcomes [3]. The commonly used one is the lay-
ered structure, where people in a higher position fully control
those that are lower [4]. But this structure lacks flexibility, and
hurts the willingness of workers. Crowdsourcing [5] is a new
workplace structure, where one can obtain the needed services
from self-employed workers. However, the independence and
the uncertainty of workers lead to new problems, such as low
quality assurance. In this paper, we propose a new outsourcing
system called SC, where works are outsourced onto a social
network of workers. Fault tolerance is an important issue in
distributed systems. Typically, recovery schemes create several
backup paths to bypass the fault. Due to the specific features
of a system, the recovery scheme may be implemented by es-
tablishing two spanning trees [6], creating link/node disjointed
paths [7], or dynamically maintaining a breadth first search tree
of living nodes [8]. Unlike traditional distributed systems, the
nodes on crowdsourcing are real humans. They are not always
available, nor sharing status information with strangers. Our
scheme explores the local features of participants, and can be
implemented by Mturk’s APIs.

III. SYSTEM MODEL OF SOCIAL CROWDSOURCING

SC models the job’s outsourcing procedure via the process
of iteratively recruiting friends’ friends. Since each user serves
as a computing entity in a distributed system, we also refer to
users as ‘nodes.’ Whenever a user has a job, the user will
create social-HITs and send them to his friends. The user is
regarded as the job owner. Unlike traditional crowdsourcing,
where workers search for works, in SC, a social-HITs is
directly sent from a user to his friend. In crowdsourcing,

Fig. 2. Sleep/Wake-up period-related delay. Assume that v and w are the
father and son of u, respectively. At time t0, all of them collected c − 1

returns from their subtrees, and w got another returns at t1. Since w is awake,
it immediately returns the results to u, who is in sleep status. When u waked
up at t2, he found that he had satisfied returning conditions, and then, he
forwarded the results to v. Although v had collected enough returns, due to
the longer sleep period of v, the results are returned at t3.

workers are always alive and work, but in SC, workers may
be online, offline, or stop working. We name an online worker
Awake, and an offline user Sleep. During the propagation of
social-HITs, some nodes may sleep; the platform will store
the social-HITs for them. When they wake up, if the social-
HITs have not expired, the workers can still accept them.
Basically, the system just provides a communication platform
for the peer workers. Due to the existence of sleeping nodes,
communication delays may exist. For example, in Fig. 2, there
is a t2 − t1 time delay between u and v. Since SC’s workers
are friends, a node is able to have extra information about
his friends, such as the distribution of sleep/awake status’
duration, the real-time sleep/awake status, and the number of
children, who have returned the results to him. From security
and privacy concerns, such information should only be shared
between friends.

IV. SOCIAL NETWORK-BASED CROWDSOURCING

A social-HIT is defined as a quintuple:

〈JobId, Father, LifeT ime,Hop, Instruct〉.

JobId is a unique identity of the original job. As a social-HIT
is transmitted from user to user, Father is used to indicate
the one, who gave the social-HIT. Every job is associated
with a life time, LifeT ime, in order to timely clean-up the
starved job. When time is up, any related social-HITs will be
destroyed, no matter whether their results have been submitted.
For controlling the scope of participants on a social network,
a propagation counter, named Hop, is used to record the
number of remaining hops; when Hop = 0, the job will not
be transmitted anymore. The job’s description, results’ return
requirements, and other details are recorded in Instruct. After
obtaining a social-HIT from a friend, the receiver is able to
decide whether to accept it, or not; for the same job, a node
may reject it when it comes from one friend, yet may accept it
when it is from another. Algorithm 1 shows Primitive Version
of Social Network-based Crowdsourcing Algorithm (P-SNCA).

Algorithm 1 creates a self-organized system, and each
pair of friends exchanges at most two rounds of messages:
forwarding social-HITs and collecting results. The overall
logic flow of social-HITs presents a tree-like structure (Fig. 3
(a)), where the job owner is the root. Suppose that the initial
value of Hop equals H , the average communication delay
between nodes is d, and the average number of friends is
r. Ideally, the job owner communicates with r users, but
there are O(rH ) users working on this job, which will be
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TABLE I. DECREASING PATTERN OF PH

PH c = 6 c = 7 c = 8 c = 9 c = 10 c = 11
H = 5 .7999 .7994 .7962 .7736 .1828 0
H = 6 .7999 .7994 .7962 .7724 4e−5 0
H = 7 .7999 .7994 .7962 .7716 0 0

Fig. 3. The return-flows in a social network-based crowdsourcing system.

completed within 2dH time (by ignoring the job’s processing
time). Because works and results are propagated and collected
hop-by-hop, SC is a native privacy-preserved system: whether
a node having or participating in a work is only known by
its direct friends. The system successfully hides the identity
of the job owner to sub-workers. However, due to the tree-
like structure, P-SNCA system is not reliable: if a relay node
u fails (0 < Hop(u) < H), all results on its subtrees will
be lost. Note that different return requirements make a little
difference on the reliability. But, from the aspects of severity,
failure conditions, and recovery schemes, they are the same.
In this paper, we focus on a specific return requirement: when
a node is awake and receives c replies, the node immediately
returns his result; if the node is in sleep and receives more
than c replies during sleeping, it should return all of them
when it wakes up.

Successful Return Rate Analysis: Suppose that the work-
flows of P-SNCA form a complete r-ary tree with height
H + 1 (including the original job owner) and every node
has the same reliability R. Let Pi be the probability that
a node with Hop = i successfully returns its sub-trees’
results to its father node. Pi can be recursively computed by:

Pi = R ·
∑r

j=c

(
r
j

)
·P j

i−1 ·(1−Pi−1)
r−j where 1 ≤ i ≤ H ,

and P0 = 1. Pi greatly drops at certain H and c. For example,
if r = 15, R = 0.8, we have Table II.

System Reliability Analysis: In SC, a node failure means
that user u sends a package to a non-root user v, but v fails
to forward the package to the next user. The failure of nodes
may appear in the form of absent nodes, who are in the sleep
status, or incompetent nodes, who cannot fulfill the return
requirements. A link failure indicates the case, where u sends
a package to v, but v does not receive it. In realistic, the
communication between nodes is implemented by a reliable
platform, such as Amazon Mturk. The occurrence rate of link
failure is much less than that of the node failure. Let v be
u’s father, and x be u’s grandfather. For u, there are three
conditions, which cause v’s failure: (1) v had already returned
results to x, before u satisfies the return requirements. (2) u
returned results to v, but v is in the sleep status; x leaves
before v’s next wake-up time. (3) u submitted results to v, and
v is awake; x leaves before v satisfies the return requirements.
These three are the general conditions; many cases may cause
them. Moreover, one node’s failure may lead to the failure of
others, since the accomplishment of a node depends on the
fulfillment of its subtrees.

V. RELIABILITY ENHANCED SC

A. Grandpa, Father, Current node (GFC) structures

For the purpose of increasing reliability and resource utility,
we need to provide alternative return paths for P-SNCA. Due
to the pure-distributed feature, the new return path generating
scheme must be lightweight, only using local information, and
can be implemented on the current crowdsourcing platform.
We found that, by exploring the relationships between a node
and its grandfather/sibling, the performance of P-SNCA can
be significantly improved.

Definition 1: GFC represent a triangle relation in which
a non-root node records the identities of its father (a primary
return node) and grandfather/sibling (a backup return node).

Given a SC system withHop ∈ [0, H ], for ∀u, ifHop(u) ∈
[0, H−2], u records the identities of its father and grandfather;
if Hop(u) = H − 1, it records the identities of father and one
of the siblings. Assume that the original job owner is always
available before LifeT ime expires.

Property 1: The proposed GFC structure can tolerate any
non-consecutive node failure.

Property 2: The proposed GFC structure can tolerate any
non-common-source link failure, if there is at least one return
flow unbroken between the root and its children.

B. GFC Structure-based SNCA (GFC-SNCA)

Assume that worker w is ready to return. He needs to deter-
mine whether to send results to its father u, or to grandfather v,
such that the job owner eventually can collect as many results
as possible. If w decides to give the results directly to v, he
also needs to determine the time of returning. If w replies
too late, both u and v could leave, while, if it returns too
early, many potential results will be dropped off. For example,
let w be a node in our complete r-ary tree analysis model,
Hop(w) = i. Suppose that v has collected c − Δc replies,
1 ≤ Δc < c. If w returns to v immediately, v will collect
(c−Δc) · ci+2 + ci+1 = ci+3 − (c ·Δc− 1)ci+1 units of data.
However, other children of v may return results in a later time;
v could collect ci+3 units of data if w did not return to him.
Approximately, there is a Δc · ci+2 difference.

Obviously, the optimal return node selection depends on
real-time success returning probabilities of the paths, from u
to root, and from v to root. But, due to the lack of global
information on the number of collected replies of each node
and the uncertainty of future sleep/awake statuses, computing
such probabilities is impossible. Since each node has only
two options and early using the backup one may cause results
dropping, GFC-SNCA adopts the following idea: a node does
not use its backup return node, as long as the primary one have
enough opportunity to return data to a higher-level node.GFC-
SNCA locally predicts father’s failure, and gives the return
time when a node needs to use the backup return node.

1) Predicting of Father’s Failure: The success of a recov-
ery scheme depends on the accuracy of failures’ prediction. In
SC, a non-root node needs to know two things about its father
and grandfather nodes: 1) the probability of their sleep/awake
status at the next decision time t+Δt; 2) the probability that
a given node will collect the required number of returns at



4

t+Δt. By knowing a node’s current status and its sleep/awake
pattern, every node can locally estimate the first probability
of its friends. Note that, in SC, how many results will be
collected by a node during a Δt interval is determined by
the number of newly wake-up nodes on its subtrees, who have
collected greater or equal to c returns. Therefore, by gradually
estimating the sleep/awake status from leave to root, one can
compute the probability about the number of returns that a
node may collect. Although the predicting results are accurate,
this method destroys the distributed feature of SC. So, we need
to approximate the second probability by local information.

Consider that the majority of new incoming returns during
Δt comes from the children, who were in the sleep status but
had collected the required number of results at t. Therefore, we
approximate the second probability that v will collect enough
replies at t+Δt by only using the information of v’s children.
For the ease of description, let | · | represent the number of
elements in a given set, N(v) be the responded friend set who
accepts v’s social-HITs, ACC(v, t) be the number of replies
collected by v at time t, Father(v) gives the identity of v’s
father, and S(v, t) gives v’s status at t. There are four possible
statuses associated with S(v, t): Sleep, Awake, Done, and
Dead. Before v returns results, it could be in either Sleep or
Awake. When u submits results to a node v, then the status of
u becomes Done. When the statuses of u’s both return paths
are either in Done or Dead, u is Dead.

Estimator on the probability of satisfying return require-
ments (EPSRR) is given by Algorithm 2, which contains two
parts. Part one (lines 1-5) computes the wake-up probabili-
ty Pw(·) of node v’s children, who have already collected
the required amount of replies, but are in the sleep status.
How to compute the exact value of conditional probability
Pro{S(u, t+Δt) = Awake | S(u, t) = Sleep} is determined
by the sleep/awake function of nodes. Part two (lines 6-10)
estimates v’s replying probability at t+Δt. {Pw > 0} gives a
set of v’s children, who may wake up at t+Δt. Suppose that v
has collected ACC(v, t) replies. Part two checks whether it is
possible for v to collect another c−ACC(v, t) replies during
the Δt time interval, by using the nodes in {Pw > 0}. If it is
possible, EPSRR returns with the corresponding probability.
2) Returning Rules in GFC-SNCA: Based on the local

status information and the estimated replying probability of
children, we can detect and predict nodes’ failure, and accord-
ingly select a returning node for a worker. In this part, we
propose three returning rules for enhancing the reliability.

Ideally, the complete time of a node should be earlier than
that of its father. However, due to the unbalanced tree structure
and the sleep/awake status, a father node may leave before its
children. Here are the rules that a node should directly submit
its results to the grandfather node.
Rule 1: For node u satisfied S(u, t) = Awake,

ACC(u, t) ≥ c, and either (1) S(v, t) = Done/Dead or (2)
ACC(x, t) > C1, ACC(v, t) < C2, if its grandfather node x
satisfies one of the following three conditions, then u should
give the results to x instead of v.

1) If S(x, t) = Sleep, ACC(x, t) ≥ c, then u → x at t.
2) If Pro{ACC(x, t+Δt) ≥ c | ACC(x, t+Δt) < c}·

Pro{S(x, t+Δt) = Sleep | S(x, t) = Sleep} ≥ Ps,
then u → x at time t.

3) If the number of collected results of x does not
change in the next k consecutive time intervals, and
ACC(x, t+ k ·Δt) > C1, then u → x at t+ k ·Δt.

Ps, C1, and C2 are three thresholds, where 0 < Ps ≤ 1 and
C1 > C2 > 0. Conditions S(u, t) = Awake and ACC(u, t) ≥
c indicate that u is ready to return. There are two possible
problems that could be associated with its father x. First, x
has left, S(v, t) = Done/Dead. Second, it has only collected
a small number of replies by the time the grandfather node x
is almost done. In both cases, it is unlikely for v to forward u’s
results to x. But, as we mentioned before, directly returning
results to x at an inappropriate time will quickly use up x’s
return slots. Note that, even if a node has collected enough
replies, it will not return them until it is in awake status. So,
when the grandfather node has collected, or will collect enough
returns while sleeping, u can directly send the results to x. For
the situation that node x has not received any reply for a long
time since the last return, it is possible that the rest return flows
are broken. If we allow u to forward its results to x in such
situation, the return flows of both u and x can keep going.

Consider the users with less than c+ 1 friends. Although
they can propagate social-HITs, it is impossible for them to
meet the return requirements. The root definitely will never
get the results from the subtrees of these users.

Rule 2: If |N(u)| = 0, 0 < Hop(u) < H , S(v, t) = Sleep,
and either (1) ACC(v, t) ≥ c, or (2) Pro{ACC(v, t+Δt) ≥
c | ACC(v, t + Δt) < c} · Pro{S(v, t + Δt) = Sleep |
S(v, t) = Sleep} ≥ Ps, then u could return its results to the
father v, u → v, at time t.

In Rule 2, node u’s social-HITs are not accepted by any of
its friends. If its father v is in sleep status and has already
collected the required number of replies, whether u gives
results to v will not affect the returning of any other node.
Therefore, we let u directly send the result to v. Another
similar condition is that v will keep sleeping and collect the
required number of results with a high probability. We also
allow u to directly communication with v.

For the GFC structures containing lower degree grandfather
or father nodes, if u satisfies one of the following conditions in
Rule 3, it is allowed to return results directly to its grandfather.

Rule 3: Node u is ready to return results to its father v,
S(u, t) = Awake, ACC(u, t) ≥ c. Let x be u’s grandfather.

1) If |N(v)| ≤ c and |N(x)| ≤ c, then u → x at time t.
2) If |N(v)| ≤ c, |N(x)| > c, S(x, t) = Sleep, and

either (1) ACC(x, t) ≥ c, or (2) Pro{ACC(x, t +
Δt) ≥ c | ACC(x, t+Δt) < c}·Pro{S(x, t+Δt) =
Sleep | S(x, t) = Sleep} ≥ Ps, then u → x at t.

3) If |N(v)| > c, |N(x)| ≤ c, ACC(x, t) > C1 ·
|N(x)|/c, and ACC(v, t) < C2 then u → x at t.

In Rule 3 case 1, both father and grandfather nodes do
not get enough social-HIT acceptance; if x can collect more
than c returns from its grandchildren, then it still can give its
results back. Rule 3 case 2 shows the condition where the
father node does not have enough acceptance. Similar to Rule
2, if the sleeping grandfather node has collected, or will collect
c, or more than c results, u can directly submit to x without
the disturbances of others’ submission. For the last case, if the
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Algorithm 2 Estimator on Probability of Satisfying Return
Requirements (EPSRR)
1: for ∀u, u ∈ N(v), Father(u) = v do
2: if S(u, t) = Sleep and ACC(u, t) ≥ c then
3: Pw(u) = Pro{S(u, t+Δt) = Awake|S(u, t) = Sleep}
4: else
5: Pw(u) = 0
6: if |{Pw > 0}| ≥ c− ACC(v, t) then
7: Pro{ACC(v, t+Δt) ≥ c} = Pro{combination of {Pw}}
8: else
9: Pro{ACC(v, t+Δt) ≥ c} = 0
10: Return Pro{ACC(v, t+Δt) ≥ c}

collecting progress of v is too slow while grandfather node x
has collected a majority of the returns from its children, u will
be allowed to send results to x.

C. Performance Analysis of GFC-SNCA

Successful Return Rate Analysis: By exploring the
friendships within 2-hops, the successful return rate will de-
pend on the completing of both children and grandchildren
nodes. Let P (u) and Q(u) be the probability that node u
completes the jobs and returns to its father node by using P-
SNCA and GFC-SNCA, respectively. N2(u) represents a set
of nodes, who accept the social-HITs from u’s children.

Theorem 1: In P-SNCA, if |N(u)| < c, the return rate of
node u must be zero, P (u) = 0; in GFC-SNCA, if |N(u)| < c
but |N2(u)| ≥ c, node u may be able to return its subtrees’
results, Q(u) ≥ 0.

Theorem 2: For any given workflow graph, if node u
satisfies 2 ≤ Hop(u) ≤ H , and the prediction of father nodes’
failure is accurate, then the successful return rate at u always
has Q(u) > P (u).

Again, let us consider our simpler model, the workflows
of which form a complete r-ary tree with height H + 1.
Let Qi be the probability that a node with Hop = i
completes the jobs and returns to its father node, function
g(y, z, q) = Cz

y · qz · (1 − q)y−z . Cz
y means the number

of z-combinations from y elements. We have:Qi = R ·∑c−1
j=0

(
g(r,j,Qi−1) ·

∑(r−j)(c−1)
k=c−j g((r−j)(c−1),k,Qi−2)

)
+ R ·

∑r

j=c

(
g(r,j,Qi−1) ·

∑(r−j)(c−1)
k=0 g((r−j)(c−1),k,Qi−2)

)
whereQ0 = P0 = 1,Q1 = P1 = R. Qi is an approximation of
GFC-SNCA’s return rate: we ignore the case where both u and
its father v directly send results to x. This equation contains
two parts. The first part computes the return probability when
less than c nodes from the i−1 level return results to the node
in the i level. The second one computes the same probability
when there are equal or greater than c replied from the i − 1
level. Qj partially depends on Qj−1. If a level j node v fails,
the number of successively returned v’s children must be less
than c. Let H = 10, r = 15, c = 14 and R = 0.1. By the
above approximation, we have Q10 = 0.0713. But, under the
same setting, P10 = 0.

System Reliability Analysis: As Property 1 shows, the
GFC structure can tolerate any non-consecutive node failure.
Consider the fact that the failure of a node is usually caused
by the failure of another one. If the proposed GFC-SNCA can

timely and accurately detect the existence of node failures,
then the probability of having consecutive node failure can also
be reduced. From the returning node selection rules in GFC-
SNCA, a reader can see that the children of a failure node only
return their results to the grandfather node, who has satisfied
the return requirements but is in sleep status, or who has not
collected any more results in a while. Suppose that node u is
ready to submit its results. If u’s father or grandfather is in one
of the three failure conditions in Section IV.B, u just returns
its results to the alternative returning node.

D. Extension

When using GFC-SNCA, if u fails, plenty of results from
u’s children will flock to the u’s father, v, which may cause
v’s return slots being quickly used up. In this section, we
present an extension version of GFC-SNCA, called EGFC-
SNCA, which explores the second-requester path to bypass
the return flow. During the propagation of social-HITs, u may
receive the same social-HITs multiple times from different
friends. Some of them may have the same grandfather but
a different father. We define a second requester as follows:

Definition 2: According to the receiving time, the sender
of the second received social-HIT, who has the same grandfa-
ther as the first social-HIT, is called the Second Requester.

When u detects the failure of its father, instead of returning
results to the grandfather, u should first attempt to submit
them to the second requester y. If y fails, then u can use its
grandfather x as the backup return node. The return rules for
the second requester are the same as the ones for grandfather
nodes, by simply replacing x with y in rules. Due to the page
limitation, we will not restate the rules. Note that, by using
the second requester, the return flow from u can be controlled
under the subtree of x; therefore, the potential negative effects
for using the backup paths are limited in a local scope.

VI. EVALUATION AND PERFORMANCE ANALYSIS

We synthetically create a social network, which follows
the power law distribution. Each node is associated with an
initial wake/sleep status, which is randomly assigned and
follows uniform distribution. The length of a sleep/awake
period follows normal distribution. In order to simulate the
preference of a node, we assign a random weight on each pair
of friendships. Assume that each node can generate one result.
We use the number of collected results out of the total number
of participated nodes as our evaluation metric.

Fig. 5 compares P-SNCA and GFC-SNCA. When using
P-SNCA, only 1.8% of nodes can successively return their
results. Since the social-HITs are propagated based on their
arriving time and users’ preference, the number of nodes with
different Hop does not increase monotonously. Instead, it has
a fusiform distribution, which causes the situations in which
many nodes have no children; even if they have children nodes,
the amount of them does not stratify the returning requirement.
We check the number of nodes, which may satisfy one of our
proposed rules. When the root node cannot collect results any
longer, we count these numbers. There are 1.2% of nodes,
who have collected the required amount of replies after their
father node submitted; about 25.4% nodes have a non-zero
Hop value, but have no responded child; there are 1.6% nodes
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(a) Return requirement c (b) Ave. length of awake time (c) Ave. length of sleep time

Fig. 4. The impacts of simulation setting-related parameters
Fig. 5. Failure types’ distribution

(a) Initial status (b) Parameter Ps (c) Waiting time k in Rule 1

Fig. 6. The impacts of returning rule-related parameters
Fig. 7. Impacts of sleeping variance

whose father or grandfathers have less than c children. After
adopting our proposed algorithm, the root can collect results
from approximately 28% of nodes.

The value of the returning requirement c affects the total
number of results that the root can collect. In Fig. 4 (a),
with the growth of c, the percentage of collected results
sharply decreases. Next, we test the impacts of the length of
awake/sleep status. In Fig. 4 (b), we fixed the average length of
sleeping time, while gradually raising that value of the awake
time. The percentage of collected results slightly increases first,
and then drops. It seems that there is some kind of balance
between the average length of sleep status and awake status,
and Fig. 4 (c) confirms our observation. The percentage of
replied nodes also goes up first, and then drops down. Since the
length of sleep/awake status follows normal distribution, we
further check the impacts of the variance in Fig. 7. However,
there is no obvious changing pattern: they are all influenced
by the variance with different amplitudes.

In Fig. 6 (a), we gradually increase the number of awake
nodes. For Rule 1, when there are about equal numbers of
sleeping and awake nodes, the root node collects the maximum
number of replies. But, for the others, the amount of collected
replies drops first and then goes up. One possible explanation
is that the number of nodes satisfying Rule 1 reaches its
maximum when there are an equal number of sleeping and
awake nodes, while the number of nodes satisfying the others
rules gets its extremum at the opposite conditions. In Fig. 6
(b), we test the impacts of Ps, which determines whether or
not to give results to a backup returning node. The percentage
of replied nodes slowly decreases with the growth of Ps.
Since only a few nodes satisfy Rule 1, the decreasing speed
is relatively slower. EGFC beats all others. In Fig. 6 (c), we
test parameter k, which controls the waiting time in Rule 1.
With the growth of k, the number of collected results forms
a concave shape. When k is small, the returning slots may be
quickly occupied by the grandchildren; if k is too large, the
father of the backup node may leave. Therefore, the number
of collected results first increases, and then drops.

VII. CONCLUSION

SC explores the social relations among workers: recruiting
a worker not only means hiring the worker himself, but also
means hiring the worker’s friends, and friends of friends, who
may be able to help the worker complete the job. However, due
to the tree-like structure of social-HITs’ logic flows, the SC
system is not reliable. For increasing the reliability, nodes need
redundant return paths. But inappropriate assignment or use
of these paths will even worsen the situations of failures. Due
to the unique features of SC, recovery schemes of traditional
distributed systems are either ineffective or unrealistic. In this
paper, we proposed several rules for locally selecting and using
the backup return paths. The basic idea is that, by allowing
a node to monitor and predict the statuses of its primary and
backup return nodes, the node is able to return the results to the
higher-level nodes while avoiding the backup node’s premature
return. Theoretical analysis and extensive simulations prove the
significant performance of our schemes.
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APPENDIX

A. Proof of Property 1:

Proof: We regard ‘tolerate’ to be that the failure of any
node will not break off the return flow between its father and
subtrees. There are two possible cases with a failure node u.
First, u is a leaf on the workflow tree, Hop(u) = 0. Since
u has no children, return flows will not be interrupted by the
absence of u. Second, u is a relay node, 0 < Hop(u) < H .
Suppose v is the father of u, and w is one of u’s children,
as shown in Fig. 3 (b). When u fails, w just needs to return
his results to v. However, for the consecutive node failure,
assuming u and v, GFC structure cannot tolerate it, because
both of w’s return paths are broken off.

B. Proof of Property 2:

Proof: We regard any two return flows with the same
source node as common-source links. For broken links, there
are two cases: (1) purely relay node-related link failure, and
(2) the root-related link failures. In case 1, consider any three
successive nodes v, u, and w, as shown in Fig. 3 (b).Hop(v) =
Hop(u) + 1 = Hop(w) + 2, Hop(w) ≥ 0, and Hop(v) <
H . Since there are always two return paths from a node to
its ancestors, for any single link failure , the source node of
a failure link can always return its result via the alternative
path. For any non-common-source link failure, the broken links
could also be a pair: (I) w � v and u � v, or (II) w � u
and u � v. Assume that y is w’s child and x is v’s father. In
subcase (I), the alternative path will be w → u → x; in subcase
(II), the alternative paths will become y → u → x and w → v.
In case 2, let x be the root, where Hop(x) = H , and nodes u,
v, and w be its children. In GFC structure, x’s children will
create the backup paths, assuming they are u → v, v → w,
and w → u. Again, for any single link failure, the source
node of a failure link can always use the backup path. If both
u → x and v → x break off, the results can still be returned
via u → v → w → x; if both u → x and v → w fail, the
second path will be u → v → x; if u → v and v → w are off,
we still have u → x, v → x, and w → x to the job owner.

C. Proof of Theorem 1:

Proof: In P-SNCA, node u will never satisfy the return
requirements if it has less than c responded subtrees. However,
in GFC-SNCA, u may be able to receive c, or more than c,
replies from its grandchildren, unless u keeps sleeping.

D. Proof of Theorem 2:

Proof: Let the node conditions making P (u) > 0 be set
{P (u) > 0}, and the conditions leading Q(u) > 0 be set
{Q(u) > 0}. According to both algorithms, if P-SNCA is
able to return, then under the same condition, GFC-SNCA
can also successively give results back, but not vice versa. So,
{P (u) > 0} � {Q(u) > 0} for ∀u, Hop(u) ∈ [2, H ]. Hence,
for ∀u, if 2 ≤ Hop(u) ≤ H , then Q(u) > P (u).


