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Abstract—Providing reliable transmission over error-prone
networks has received a lot of attention from the research com-
munity. In this paper, instead of using simple retransmissions to
provide reliability, we consider a novel retransmission approach
based on the importance of the bits (symbols). We study the
problem of maximizing the total gain in the case of partial
data delivery in error-prone wireless networks, in which each
set of bits (symbols) has a different weight. We first address
the case of one-hop single packet transmission, and prove that
the optimal solution has a round-robin transmission pattern.
Then, we extend our solution to the case of multiple packets.
We also enhance the expected gain using random linear network
coding. Our simulation results show that our proposed multiple
packets transmission mechanism can increase the gain up to
60% compared to that of a simple retransmission. Moreover,
our network coding scheme enhances the expected total gain up
to 15% compared to our non-coding mechanism.

Index Terms—Symbol-level coding, random linear network
coding, weight, wireless networks, error-prone channel.

I. INTRODUCTION

Broadcasting is an essential method for disseminating data
in wireless networks. However, the error-prone wireless links
creates challenges. To handle these challenges, different mech-
anisms [1]–[4] have been proposed to provide reliability. In the
case of numeric data, e.g., the captured information by sensor
nodes, the importance of the data (numbers) decreases from
the left (most significant bit) to the right (less significant bit).
Therefore, any mechanism that addresses numeric data trans-
missions in lossy environment should consider the weights of
the bits. The problem of reliable transmission has received a
lot of attention; however, to the best of our knowledge, nobody
has studied the problem of transmitting symbols (a group of
bits) with different weights.

In this paper, we consider a novel broadcasting approach
which considers the importance of the symbols. Instead of
providing reliable transmissions and guaranteeing a full deliv-
ery of the data, we are interested in maximizing the expected
total gain of the destination nodes, with a fixed given number
of symbol transmissions. In applications such as transmitting
numeric data from a source node to a set of destinations,
encountering an error in more important bits has a more
negative impact, and with a given number of transmissions,
it is more efficient to allocate more transmissions to the parts
of the data that are more important than others.
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ECCS 1128209, CNS 1138963, CNS 1065444, and CCF 1028167.
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Fig. 1. Motivation example; (a) 2 transmissions, (b) 3 transmissions.

Consider the example in Fig. 1, in which a packet is
transmitted to a destination. The weights of the symbols s1
and s2 is equal to 2 and 1, respectively. Assume that the
error-rate (p) of the link is equal to 0.6. The window size for
transmitting the packet is equal to 2 symbols, and after that
another packet will be ready for transmission. In this case,
the traditional methods transmit each symbol once. Now, let
us compute the expected gain. We represent the number of
transmissions of symbols s1 and s2 as x1 and x2, respectively.
Thus, the probability of successful delivery of symbols s1 and
s2 is equal to 1−px1 and 1−px2 , respectively. Consequently,
the expected gain is equal to w1× (1−px1)+w2× (1−px2),
where w1 and w2 are the weights of symbols s1 and s2. The
possible distribution of the transmissions and their respective
utilities are shown in Fig. 1(a). The figure shows that it is more
efficient to allocate both of the transmissions to symbol s1.
Now assume that the window size is equal to 3 transmissions.
Fig. 1(b) shows that the optimal solution is allocating 2
transmissions to symbol s1, and 1 transmission to symbol
s2. It should be noted that if there is no deadline, then the
optimal solution is a simple extension from the channel coding
theory [5].

In this work, we answer the following question. How
should we distribute the transmissions to different symbols
to maximize the total gain? While answering this question,
we have the following contributions:

• In contrast to previous works, which study the problem of
reliable packets or symbol level transmission, we study
the problem of maximizing the total gain in the case of
partial data delivery.

• In the case of single packet and single destination, we
propose an algorithm to find the optimal solution, and
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prove its optimality. This algorithm assigns the transmis-
sions to the symbols in a set of round-robin iterations. We
also propose an algorithm for the case of transmitting a
single packet to multiple destinations.

• We extend the proposed single packet transmission algo-
rithms to the case of multiple packets, and use the advan-
tage of random linear network coding (NC) to enhance
the expected gain. We show that NC does not necessarily
increase the gain, and we find the condition that NC
results in more gain than the non-coding mechanism.

The rest of this paper is organized as follows. Section II
reviews the related work. In Section III, we provide the prob-
lem definition and the setting. We propose our mechanisms
for the case of transmitting a single packet in Section IV. In
Section V, we extend our proposed mechanism to the case
of transmitting multiple packets, and we boost the gain using
linear inter-packets NC. We discuss the implementation issues
in Section VI, and evaluate the proposed mechanisms through
simulations in Section VII. Section VIII concludes the paper.

II. RELATED WORK AND BACKGROUND

A. Reliable Transmission

Certain mechanisms, such as feedback messages, are used
in wireless networks to provide reliability. Automatic Repeat
reQuest (ARQ) is one of the most frequently used approaches
for addressing this challenge [1]. Nevertheless, ARQ im-
poses overhead, since it requires a lot of feedback messages,
especially for the case of multi destination nodes. Hybrid-
ARQ approaches [2], [6], which combine FEC (Forward Error
Correction) with ARQ, are proposed to solve this problem.

An efficient way to provide reliability without using feed-
back is to use rateless (fountain) codes [3], [4]. In these
schemes, the source node can generate and transmit an un-
limited number of encoded packets until every destination
receives enough packets to retrieve the original packets. In
rateless codes, the destination nodes need to collect a sufficient
number of packets, regardless of which packets have been lost.
Assuming that the number of original packets is k, the number
of sufficient coded packets is N = (1 + ϵ) [3], where ϵ is a
small number and shows the overhead of the rateless codes. It
can be shown that as k → ∞, the overhead goes to zero [7].
Therefore, rateless codes are very efficient for transmitting a
large number of packets, but are inefficient for transmitting a
small number of packets. As a result, rateless codes are not
appropriate for the delay-sensitive applications, such as our
problem, which needs small batches of packets.

B. Network Coding

Network coding (NC) [8]–[13] is introduced in [14] for
wired networks, to solve the bottleneck problem in single
multicast problem. The authors in [15] provide a useful
algebraic representation of the linear NC problem. In [16], it
is shown that randomly selecting the coefficients of the coded
packets, achieves the capacity asymptotically, with respect to
the finite field size.

In random linear NC, coded packets are random linear
combinations of the original packets over a finite field. The
coded packets are in the form of

∑k
i=1 αi × Pi, where P

and α are the packets and random coefficients, respectively.
Using random linear NC, the source node generates and
transmits random coded packets. The destination nodes are
able to decode the coded packets once they receive k linearly
independent coded packets. The decoding process is done
using Gaussian elimination for solving a system of linear
equations. Using this scheme, the destination nodes can send
just one acknowledgment message to stop the source node
from sending more coded packets once they are able to decode
the coded packets.

The work in [17]–[19] use the benefit of NC in their
retransmission phase to improve the transmission efficiency.
In order to reduce the number of required retransmissions,
these methods combine the packets that have not been received
correctly by different receiver nodes. Assume that in Fig. 2,
the source node sends packets P1 and P2, and destination
nodes d1 and d2 only receive packets P1 and P2, respectively.
As a result, the source node needs to retransmit both of the
packets. However, the source node can mix the packets to send
a single packet P1+P2. If nodes d1 and d2 receive the coded
packets, they can retrieve their respective packets P2 and P1,
by performing (P1+P2)−P1 and (P1+P2)−P2, respectively.

Symbol-level NC for wireless mesh networks is introduced
in [20], and it is shown that its throughput is more than that of
the packet-level coding. The insight behind the symbol-level
coding is that, even in the case that a node does not receive
a packet correctly, some of the symbols that form the packet
might be received without any error. As a result, if instead
of coding the packets together we code the symbols, the
successfully received symbols do not need to be retransmitted,
which reduces the transmission cost. The authors in [21],
[22] use the symbol-level coding to propose a method for
distributing data in vehicular networks.

III. SETTING

Consider a single-hop wireless network that consists of
one source and n destination nodes d, as depicted in Fig. 2.
The source node has a batch of k packets to send to the
destination nodes, and each packet consists of m symbols.
Each symbol has a weight wi, and in general wj > wj+1,
∀j : 1 ≤ j ≤ m− 1. In our model, the weight of the i-th
symbols of all of the packets are the same. We assume that
the error rate of each transmitted symbol (or packet) from
the source node to the i-th destination node is equal to pi.
We represent the number of times that the i-th symbol is
transmitted as xi.

We assume that the packets of a batch have a deadline to
be received by the destination nodes, which is equal to the
window size, and after this time another batch of packets will
be ready for transmission. Moreover, this window size for a
batch of packets is enough for transmitting t × k symbols,
where t is the assigned window for a single packet. If the
packets are not delay sensitive or the source has infinite
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Fig. 2. System setting.

TABLE I
THE SET OF SYMBOLS USED IN THIS PAPER.

Notation Definition
di The i-th destination node
n The number of destination nodes
m The number of symbols inside each packet
k The number of packets
wi The weight of the i-th symbol of each packet
pi The error rate of the link between the source and the i-th

destination node.
t The size of the transmission time window for each packet

(in the term of number of symbols)
si The i-th symbol (in the case of single packet)
sj,j The i-th symbol of the j-th packet
Si, Pi The i-th coded symbol, The i-th packet
∆xi The change in the utility gain as we increase xi to xi+1
u The utility function
ui The gain (utility function) from the i-th symbols
uNC
i The gain (utility function) from the i-th symbols when

we use linear NC

packets to transmit, the optimal solution is a simple extension
of the well-known channel coding theory [5]. Our goal is
maximizing the total weight of the received symbols of a batch
of k packets by the destination nodes. As a result, our utility
function becomes:

u = k ×
m∑
i=1

n∑
l=1

wi × (1− pl
xi) (1)

s.t.
m∑
i=1

xi = t

It is obvious that the more important symbols should be
transmitted more than the other symbols, as successful delivery
of these packets to the destination nodes results in more
gain. However, it is not clear how we should assign and
distribute the duplications to the different symbols in order
to maximize the total gain. Our goal in this work is finding
this optimal assignment. The set of symbols used in this paper
is summarized in Table I.

IV. OPTIMAL SOLUTION FOR THE CASE OF SINGLE
PACKET

A. One Destination

We first investigate and address the problem in the case of
a packet size equal to 2 symbols. Then, we generalize the
solution to the case of m symbols.

1) packet size m = 2: For a packet size m = 2 the
objective function becomes:

u = w1 × (1− px1) + w2(1− px2)

st. x1 + x2 = t

We denote the change in the gain as we increase the i-th
symbol’s transmissions from xi to xi+1 as ∆xi , so we have:

∆xi = wi × (1− pxi+1 − (1− pxi))

= wi × (1− p)× pxi

We know that w1 > w2. Therefore, it is clear that, in order
to achieve more gain, the number of times the source node
transmits the first symbol should be more than or equal to that
of the second symbol. If we consider the problem in rounds
of transmission, the first time we should increment x2 and
transmit the second symbol is when the gain of increasing x1

is less than that of x2. In other words, the condition to increase
x2 is ∆x1 < ∆x2 . Consequently, we have:

w1 × (1− p)px1 < w2 × (1− p)px2

px1 <
w2

w1
px2 (2)

In this case, we are incrementing x2 for the first time, so
x2 = 0, and we have:

px1 <
w2

w1
(3)

As a result, the first time we should increment x2 is when
px1 < w2

w1
; we refer to this point as the saturation point. After

this point, whenever px1 < w2

w1
px2 , we should increment x2,

since it results in more gain. In contrast, if px1 ≥ w2

w1
px2 , we

increment x1.
Fig. 3 shows the optimal distribution of transmissions be-

tween x1 and x2 for different total numbers of transmissions t.
The weights of symbols s1 and s2 in this example are assumed
to be 5 and 1, respectively. To find the optimal distribution,
we compute the utility for all possible distributions. It can
be inferred from this figure that after incrementing x2 for the
first time, the optimal solution has a round-robin incrementing
pattern. The insight behind this phenomenon is as follows. The
ratio of ∆x1 and ∆x2 is equal to:

∆x1

∆x2

=
w1 × (1− p)× px1

w2 × (1− p)× px2
=

w1 × px1

w2 × px2
(4)

Before the saturation point, ∆x1 ≥ ∆x2 , and the ratio in
Equation (4) is greater than 1. However, after the saturation
point, whenever we increment x2, the ratio in Equation (4)
is multiplied by 1

p , and becomes greater than 1. As a result,
the next transmission should be assigned to x1. In contrast,
whenever we increment x1, the ratio is multiplied by p, which
makes the ratio less than 1. In this case, it is more beneficial
to assign the next transmission to x2.

Based on the discussion, our algorithm works as follows.
We increment x1 until px1 < w2

w1
. If anymore transmissions are

left, we start to distribute the remaining transmissions between
x1 and x2 in a round-robin pattern. We prove the optimality
of this algorithm in the Appendix.

2) General packet size m: Similar to the case of m = 2,
the first symbol has more weight, so it is more important
than the other symbols. As a result, we should not transmit
other symbols until ∆x1 > ∆x2 . It should be noted that this



4

1 2 3 4 5 6 7 8 9 1011121314151617181920
0
1
2
3
4
5
6
7
8
9

10
11
12

Total transmissions (t)

# 
of

 tr
an

sm
is

si
on

s 
of

 e
ac

h 
sy

m
bo

l

 

 

x1
x2

Fig. 3. Optimal distribution of transmissions between 2 symbols for an error
probability p = 0.5, w5 = 5, and w2 = 1.
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Fig. 4. Optimal distribution of transmissions between 5 symbols for an error
probability p = 0.5, wi = 25−i.

condition implies that ∆x1 > ∆xi ,∀i : 2 ≤ i ≤ m. The reason
is that, w2 > wi,∀i : 3 ≤ i ≤ m, and xi = 0,∀i : 2 ≤ i ≤ m.
Consequently, similar to the case of packet size m = 2, the
first time that we should increment x2 is when px1 < w2

w1
, and

after this point the transmissions should be distributed between
x1 and x2; however, in contrast with the case of m = 2,
after a specific point, we should start to transmit the third
symbol. The condition to increment x3 is when ∆x1 < ∆x3

and ∆x2
< ∆x3

. For ∆x1
< ∆x3

we have:

w1 × (1− p)px1 < w3 × (1− p)px3

In this case, we are increasing x3 for the first time, so x3 = 0,
and the condition becomes px1 < w3

w1
. Moreover, for the

second condition ∆x2 < ∆x3 we have:

w2 × (1− p)px2 < w3 × (1− p)px3

As x3 = 0, the equation becomes px2 < w3

w2
. When these

two conditions hold, we should start assigning the remaining
transmissions to the first 3 symbols in a round-robin pattern.
By the same reasoning, the condition to increase xm is when
pxi < wm

wi
,∀i : 1 ≤ i ≤ m − 1. Fig. 4 shows the optimal

distribution of the transmissions when m = 5 for different
numbers of total symbol transmissions t. The link’s error rate
and wi are equal to 0.5 and 25−i, respectively. This figure
shows that, even in the case of a packet size more than
2 symbols, the round-robin distribution of the transmissions
results in the optimal solution.

Algorithm 1 SPTMD Algorithm
for i=1 to m do
xi = 0

for j=1 to t do
max = 0
argmax = 0
for i=1 to m do
∆xi = wi ×

∑n
l=1(p

xi

l − pxi+1
l )

if ∆xi
> max then

max = ∆xi

argmax = i
xargmax = xargmax + 1

Based on the discussion, our Single Packet Transmission
(SPT) algorithm works as follows. We assign the transmissions
to x1 until px1 < w2

w1
. Then, we distribute the transmissions

between x1 and x2 until px1 < w3

w1
and px2 < w3

w2
. After this

point, we continue the round-robin pattern among x1, x2, and
x3. In general, we start incrementing xj when pxi <

wj

wi
,∀i :

1 ≤ i ≤ j−1, and we add xj to the round-robin incrementing
pattern. The proof of this algorithm’s optimality is presented
in the Appendix.

B. Multiple Destination Nodes

We assume that the error rate of the links are independent.
As a result, in the case that the error rates of the destination
nodes are equal, the problem becomes exactly the same as
the case of single destination node, and we can use the
proposed mechanism in the previous section. However, in the
case of multiple destination nodes with different transmission
error rates, the round-robin pattern does not exist. For this
reason, we use an iterative algorithm, which we call it Single
Packet Transmissions to Multiple Destinations (SPTMD). In
the case of multiple destination nodes, ∆xi can be calculated
as follows:

∆xi = wi ×
n∑

l=1

[
1− pxi+1

l − (1− pxi

l )
]

= wi ×
n∑

l=1

[
pxi

l − pxi+1
l

]
The SPTMD algorithm assigns the total number of transmis-

sions t to the different symbols in t rounds. At each iteration,
our algorithm computes ∆xi ,∀i : 1 ≤ i ≤ m, and it assigns
the current transmission to xj , where j = argmax1≤i≤m ∆xi .
Algorithm 1 shows the iterative process.

The second loop (the loop over j) and its internal for loop
in Algorithm 1 run t and m times, respectively. Moreover, ∆xi

is a summation over n nodes. As a result, the complexity of
the SPTMD method is in the order of O(t×m× n).

V. EFFICIENT SOLUTION IN THE CASE OF MULTIPLE
PACKETS

In order to transmit a batch of k packets from a source node
to a set of destination nodes, we can use two approaches: with-
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Fig. 5. Inter-packet network coding.

out and with NC. We describe the details of the mechanisms
in the following sections.

A. Without Network Coding

In our model, the size of the packets (in term of symbols) are
equal. Moreover, the weights of the i-th symbols in different
packets are the same. As a result, the problem of sending
k independent packets becomes k similar problems with the
same solution. Consequently, we can simply use the result
of the previous section, and repeat the same process for the
different packets. In the Multiple Packets Transmission (MPT)
mechanism, we first compute the optimal number of transmis-
sions for each symbol. For this purpose, we perform one of the
proposed algorithms in the previous section, depending on the
number of destination nodes. Then, we use the output values
xi from the first step, and transmit each of the i-th symbols of
the different packets xi times. As we repeat the same process
on k packets, the utility of this scheme is k times the gain of
transmitting one packet.

B. Inter-Packet Network Coding

We can benefit from random linear NC in order to increase
the gain of the MPT mechanism. For this purpose, much
similar to the MPT method, we run the SPTMD or SPT
algorithms to compute the value of optimal xi. Then, as it
is shown in Fig. 5, we code all of the i-th symbols of the
k packets together. We denote the i-th coded symbols as Si.
The coded symbols are in the form of Si =

∑k
j=1 αj × sj,i,

where αj,i is a random coefficient. In this scheme, the source
node generates and sends xi × k coded symbols from the i-th
original packets. This is in contrast with the previous approach,
in which the source node transmits the i-th symbol of each
packet xi times (xi × k transmissions for k packets).

Using NC, each destination node is able to decode the
i-th coded symbols and retrieve the k original i-th symbols
of different packets if it receives at least k linearly indepen-
dent coded symbols. The decoding phase can be done using
Gaussian elimination for solving a system of linear equations.
Consequently, the gain from the i-th symbols of the k packets
can be calculated using the following equation:

uNC
i = wi × k ×

n∑
l=1

[ xi×k∑
j=k

(
k×xi

j

)
× (1− pl)

j × pxi×k−j
l

]

Source
=0.5 

 Packet 1
 

 Packet 2
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Fig. 6. Inter-packet network coding.

We multiply wi by k since, when we code the i-th symbols
of the k packets together, any destination node can decode
all of the symbols, or none of them. The total number of
transmissions for the set of i-th symbols is equal to xi×k; as
a result, the probability of receiving j coded symbols correctly,
and happening error in the rest of the coded symbols, is equal
to

(
k×xi

j

)
×(1−p)j×pxi×k−j , where

(
k×xi

j

)
is the number of

possible ways to select j coded symbols out of the transmitted
coded symbols. A node needs at least k coded symbols to
decode the coded symbols; therefore, the number of received
coded symbols should be in the range of k and xi × k.

Using NC, each coded symbol contributes the same amount
of information to the destination nodes. Therefore, receiving
any k coded symbols is sufficient for retrieving the symbols.
It is in contrast with the case of non-coding transmissions,
in which a destination node might not receive some of the
symbols, and might receive the other symbols multiple times.
In this case, receiving a symbol multiple times does not con-
tribute to the total gain. However, NC decreases the probability
of receiving partial i-th symbols of the packets. The reason is
that if a destination node receives enough coded symbols, it
can decode the coded packets and retrieve all of the original
symbols, but it cannot decode the coded symbols in the case
of receiving an insufficient number of coded packets.

Consider the example in Fig. 6, in which the source node
wants to send two single-symbol packets to the destination
node d1. Assume that the transmission error rate is equal to
0.5, and x1 = 2. The MPT scheme sends each symbol twice.
As a result, the probability of receiving both of the symbols by
the destination node is equal to (1− p2)× (1− p2) = 0.5625,
and the probability of receiving just one of the symbols is
equal to 2 × (1 − p2) × p2 = 0.3750. On the other hand,
the MPT-NC scheme sends 4 random linear combinations of
the symbols. Therefore, the destination node can decode and
recover both of the symbols, if it receives at least any 2 coded
symbols out of the 4 transmitted coded symbols. In this case,
the probability of retrieving both of the symbols is equal to
1−p4−3×p3× (1−p) = 0.75, which is more than the MPT
mechanism. The reason for this difference is that, in the case of
non-coded symbols, the destination node needs to receive each
of the transmitted symbols at least once, and receiving one of
the symbols twice does not have any advantage. However, in
the case of NC, the probability of retrieving just one of the
symbols is equal to 0, as in random linear NC, there is no
way for partial retrieval.
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Algorithm 2 MPT-NC Algorithm
Compute the optimal x⃗ by running Algorithm 1 (SPTMD)
for i=1 to m do
ui = wi × k × (1− pxi

l )

uNC
i = wi × k ×

∑n
l=1

[∑xi×k
j=k

(
k×xi

j

)
× (1 − pl)

j ×

pxi×k−j
l

]
if uNC

i > ui then
for i=1 to k × xi do

Create a random linear combination of the i-th
symbols
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Fig. 7. Comparison between the gain of the inter-packet NC and no coding
mechanisms, error probability p = 0.5, number of packets k = 10.

The gain of the NC and no coding approaches for different t
are shown in Fig. 7. The number of packets and the link’s error
rate are equal to 10 and 0.5, respectively. It can be inferred
from the figure that, in this case, for a t greater than 2, it is
more efficient to use the proposed inter-packet NC. In contrast,
for a t less than or equal to 2, we should avoid using NC, since
it reduces the gain.

Based on our discussion, for each set of symbols from the
different packets, it might be beneficial to use NC, or it might
be more efficient to avoid using NC. Therefore, for each set
of the i-th symbols of the packets, we compute the utility of
the non-coding and coding mechanisms. If the performance
of the coding policy is more than that of the non-coding,
we generate k × xi random coded symbols, where xi is the
optimal number of transmissions when we use the non-coding
mechanism. This process is shown in Algorithm 2. It should
be noted that if it is more efficient to transmit the i-th symbols
of the packets without using NC, we do not need to continue
the algorithm for the remaining symbols. The reason is that,
always, xj ≤ xi,∀i, j : j > i, as wj ≤ wi. Therefore, if is not
efficient to encode the i-th symbols together, it is definitely
not efficient to encode the j-th symbols.

VI. IMPLEMENTATION

After assigning the transmissions to the symbols, we should
put them together to form the packets. In the MPT, SPTMD,
and SPT mechanisms, we need to specify the index of each
symbol in the packet. If we had just one transmission for
each symbol, we could simply mention the first and the last
index of the symbols that are included in the packet, and put

Algorithm 3 Optimal header duplication
Max gain = 0
for x0 = 1 to t− 1 do

depending on the setting, run the MPT, SPTMD, or SPT
algorithms to compute the optimal x⃗ in transmitting t−x0

symbols
use Equation (5) to compute u
if u > Max gain then
Max gain = u

else
return xo and x⃗, exit loop

..
.

(a)

Source IP          Dest. IP

Index i      Start       End 

Index j      Start       End 

The locations of

the i-th symbols

The locations of 

the i-th symbols

..
.

(b)

Source IP         Dest. IP

Index i       Coding flag

Index i+1   Coding flag

Coefficient 1

Coefficient 2

..
.

Fig. 8. Packets’ header, (a): The MPT, SPTMD, and SPT mechanisms, (b):
The MPT-NC mechanism.

the symbols in the packet in increasing order of their index.
However, in our schemes, each symbol might be included in a
packet several times. As a result, we need 3 fields in the header
to indicate the locations of symbol si. The first field represents
the index of the symbol. The second and the third fields are
used to show the starting and the ending locations of symbol
si in the packet, respectively. Fig. 8(a) shows the structure of
the header in the MPT, SPTMD, and SPT mechanisms.

The header must be received correctly by the destination
nodes, because it contains important information about the lo-
cation of the symbols in the packet. To increase the reliability,
Forward Error Correction (EFC) codes can be used. In addition
to EFC codes, we can include the header multiple times in
the packet, as this part of the packet is much more important
than the other parts. If we consider the correct delivery of the
header, the Objective Function (1) can be rewritten as follows:

u = k ×
m∑
i=1

n∑
l=1

wi × (1− pxo

l )× (1− pl
xi) (5)

s.t.
m∑
i=0

xi = t

where x0 is the header duplication. Consider Figs. 9(a) and (b).
We assign different values to x0 and run the SPT algorithm to
find the optimal distribution of the remaining transmissions to
the symbols. Figs. 9(a) and (b) show the maximum achievable
gain when the total number of transmissions is equal to 10,
and the error rates are equal to 0.2 and 0.5, respectively.
These figures show that as we increase the duplication of the
header, the total gain increases. The reason is that, a correctly
received symbol is not useful unless the header is also received
correctly. However, after a specific point, the total gain starts
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Fig. 9. Optimal header duplication, Total number of transmissions equal to
10; (a): p=0.2. (b): p=0.5.

to decrease. To find the optimal header duplication x0, we start
with x0 = 1, and run the MPT, SPTMD, or SPT algorithms
to compute the optimal xi in transmitting t− 1 symbols. We
repeat the same process for x0 = 2 and t− 2, and stop once
we find that utility decreases as we increment x0. The details
are shown in Algorithm 3.

In the MPT-NC mechanism, the i-th symbol might be en-
coded or non-coded. Therefore, we need a flag field to indicate
the encoded symbols. The packets’ header in the MPT-NC
method is shown in Fig. 8(b). In addition to the source and
destination IP addresses, we use index and coding flag to show
the encoded symbols. The coefficients of the coded symbols
are also included at the end of the header, which increases
the overhead. In order to decrease this overhead, we can put
some predefined random coefficient vectors on the destination
and the source nodes. In this way, instead of including the
coefficient in the heather, the source can just put the index
of the coefficient vectors in the heather. In order to make the
coefficient vectors useful for any packet batch size, the size
of the predefined vectors should be chosen long enough. If
the size of the batches is less than the vector size, the extra
elements of the vector can be ignored by the destination nodes.

VII. SIMULATION

In this section we evaluate the SPT (Single Packet Transmis-
sion), SPTMD (Single Packet Transmission to Multiple Des-
tinations), MPT (Multiple Packets Transmission), and MPT-
NC (Multiple Packet Transmission with NC) mechanisms. We
compare our proposed mechanisms with a simple retransmis-
sion method. In this method, we distribute the transmissions
evenly to the different symbols of the packets. We run the
simulations on 1,000 random topologies with different links’
error rates, and for each of the random topologies we run the
simulations 10 times. The plots in this paper are based on the
average outputs of the simulation runs. We assume that the
weight of the i-th symbol of a packet is equal to 2m−i.

1) Single Packet: in the first experiment, we compare the
total gain of the SPT and the simple retransmission method
in Fig. 10(a). The packet size in this experiment is equal to
10 symbols. Also, the number of destination nodes and the
link error probability are equal to 1 and 0.3, respectively.
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Fig. 10. Comparison between the gain of the simple retransmission and
SPT mechanisms in the case of single packet transmission, m = 10, n = 1,
k = 1; (a) p = 0.3, (b) p = 0.5.

It is clear that the total gain should increase as we increase
the total number of transmissions, which can be seen in the
figure. Moreover, the figure shows that the difference between
the SPT and the simple retransmission methods decreases as
we increase the total number of transmissions from 10 to 40
symbols. The reason is that the successful delivery of all of
the symbols approaches 1 in both of the mechanisms as we
increase the number of retransmissions. Fig. 10(a) shows that
the total gain of the SPT mechanism is up to 30% more than
that of the simple retransmission method.

We increase the link’s error rate to 0.5, and repeat the
previous experiment in Fig. 10(b). Similar to Fig. 10(a), the
difference between the two mechanisms decreases as we in-
crease the number of retransmissions. However, by comparing
Figs. 10(a) and (b) we find that the efficiency of our proposed
mechanism SPT, increases as the link’s error rate increases.
The total gain of the SPT approach in this figure is up to 60%
more than that of the simple retransmission method.

In the next experiment, we evaluate the gain of the SPTMD
mechanism in sending a packet to multiple destinations, by
comparing it to the simple retransmission method in Fig. 11(a).
We set the packet size to 10 symbols, and totally transmit 10
symbols. In each of the 1,000 runs, the links’ error rates are
randomly chosen in the range of [0.2, 0.4]. The figure shows
that the gain of both of the mechanisms increase as we increase
the number of destinations, which is due to more receiver
nodes. Also, it is clear from the figure that the relationship of
the total gain and the number of destinations is linear, which
is because of the independence of the links. As a result, the
ratio of the gain of the mechanisms is fixed in this figure.

We repeat the previous experiment in Fig. 11(b) by in-
creasing the range of the links’ error rates to [0.2, 0.6]. As
it is expected, the gains of the mechanisms in Fig. 11(b) are
less than that of the Fig. 11(a). The efficiency of the SPTMD
mechanism increases as the error rates increase.

2) Multiple Packets: Fig. 12(a) shows the total gain of the
MPT, MPT-NC, and simple retransmission mechanisms. In this
figure, the packet size is equal to 5 symbols. Also, the number
of destination nodes is equal to 1, and the error rate of the links
between the source and the destination node is equal to 0.4.
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Fig. 11. Comparison between the gain of the simple retransmission and
SPT mechanisms in the case of single packet transmission, m = 10, k = 1,
t = 10; (a) p ∈ [0.2, 0.4], (b) p ∈ [0.2, 0.6].
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Fig. 12. Comparison between the gain of simple retransmission, MPT, and
MPT-NC mechanisms, m = 5, n = 1; (a) p = 0.4, t = 5 (b) k = 50.

We increase the total number of transmissions as we increase
the number of packets, and it is equal to the total number
of symbols (total number of symbols is equal to 5 times the
number of packets). As it is expected, the gain of the MPT-NC
mechanism is more than that of the other methods. Moreover,
the gain of the MPT mechanism is more than that of the simple
retransmission method. Fig. 12(a) shows that the gain of the
MPT-NC mechanism is up to 15% and 45% more than that
of the MPT and simple retransmission methods, respectively.
Also, the efficiency of the NC increases as we increase the
number of packets which are coded together.

We evaluate the effect of link’s error rate on the gain in
Fig. 12(b). The packet size and the number of packets are
equal to 5 symbols and 50, respectively. Also, for the total
250 symbols that the source node needs to transmit, we set the
total number of transmissions to 250. The figure shows that the
total gain of the MPT and simple retransmission mechanisms
drops dramatically as we increase the error rate. In contrast
with the other methods, MPT-NC is more robust to the error
rate, which is due to using NC.

We repeat the experiment of Fig. 12(a) in Fig. 13(a) with
5 destination nodes. The packet size is equal to 5 symbols
and the links’ error rates are in the range of [0.3, 0.5]. Much
similar to Fig. 12(a), the gain of all of the mechanisms increase
as we increase the number of packets. Note that we increase
the total number of transmissions as we increase the number
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Fig. 13. Comparison between the gain of simple retransmission, MPT, and
MPT-NC mechanisms, m = 5, n = 5, p ∈ [0.3, 0.5]; (a) total gain, t = 5
(b) Performance of the MPT-NC mechanism over the MPT method.

of packets. By comparing Fig. 12(a) with Fig. 13(a) we find
that the difference between the MPT and MPT-NC decreases
in the case of multiple destinations, which is because of the
diversity of the links. Consequently, the efficiency of MPT-NC
increases in the case that the error rates of the links are close
to each other.

We compare the performance of the MPT-NC mechanism
over the MPT in Fig. 13(b). For this purpose, we divide
the gain of the MPT-NC mechanism by that of the MPT
mechanism, and plot its CDF. In this experiment, the packet
size and the number of packets are equal to 5 symbols and
50, respectively. Also, the error rate of the links between
the source and the 5 destination nodes are in the range of
[0.3,0.5]. This figure shows that in less than 5% of the cases,
the number of delivered symbols in the MPT-NC mechanism
is less than that of the MPT method. Moreover, in more than
50% of the cases, the number of delivered symbols of the
MPT-NC protocol is more than 10% higher than that of the
MPT mechanism.

VIII. CONCLUSION

There is much work on reliable transmissions over error-
prone wireless channels. In contrast to the previous work on
reliable transmission, we consider a novel problem in this
paper. We study the problem of maximizing the total gain
in the case of partial data delivery in error-prone wireless
networks. In our setting, each set of bits have a different
weight. We first address the case of single packet transmission
to a single destination node, and we show that the optimal
solution of this problem has a round-robin pattern. Then, we
extend our solution to the case of multiple destinations. We
also provide a solution for the case of sending multiple packets
to multiple destinations, and we enhance the expected gain
(utility) using inter-packets random linear NC. Our simulation
results show that our proposed multiple packets transmission
mechanism can increase the gain up to 60% compared to
that of a simple retransmission mechanism. Moreover, using
random linear NC can enhance the gain.
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APPENDIX

Here, we prove the optimality of the SPT mechanism, and
we show that the optimal solution has a round-robin pattern.
The utility function in the case of transmitting one packet to
one destination is as follows:

u =
m∑
i=1

wi × (1− pxi), s.t
m∑
i=1

xi = t

For the packet size equal to 2 symbols (m = 2) we have:

u = w1 × (1− px1) + w2(1− px2)

x1 + x2 = t

Lemma 1: If px1 < w1

w2
px2 , then px1 > w1

w2
px2+1.

Proof: We refer to the optimal solution at the current
iteration as (x1, x2). Assume that the current state is (x1, x2)
and px1 < w1

w2
px2+1. Then, px1−1 < w1

w2
px2 , and we have:

w1p
x1−1 < w2p

x2

w1(1− p)px1−1 < w2(1− p)px2 ⇒ ∆x1−1 < ∆x2

As a result, it should be more efficient to increase x2 in the
previous iteration. Therefore, in the current iteration we will
have (x1 − 1, x2 + 1), which contradicts the assumption that
the current state is (x1, x2). Consequently, we have px1 >
w1

w2
px2+1.
Lemma 2: If px1 > w1

w2
px2 , then px1+1 < w1

w2
px2 .

Proof: Assume that the current state is (x1, x2) and
px1+1 > w1

w2
px2 . As a result, px1 > w1

w2
px2−1, so we have:

w1p
x1 > w2p

x2−1

w1(1− p)px1 > w2(1− p)px2−1 ⇒ ∆x1 > ∆x2−1

Therefore, it should be more efficient to increment x2 in
the previous state. Thus, in the current state we will have
(x1 + 1, x2 − 1), which for x2 ≥ 1 (x2 − 1 cannot be
negative) contradicts with the assumption that the current state
is (x1, x2). Consequently, px1+1 < w1

w2
px2 .

Proposition 1: Assigning the transmissions to x1 for
x1 ≤ logp

w2

w1
and then incrementing x1 and x2 in a round-

robin pattern will result in the optimal solution.
Proof: Based on Equation 3, if px1 < w2

w1
then ∆x1 <

∆x2 , so x2 should be zero. In addition, based on Lemma 1
after this point, every time we increment x2, ∆x2+1 becomes
less than ∆x1 . Therefore, in this case, assigning the next
transmission to x1 results in more gain. Lemma 2 is the reverse
of Lemma 1, which results in a round-robin incrementing
pattern.

Lemma 3: If pxi >
wj

wi
pxj∀i, j ∈ [1,m], j ̸= i, then

pxi+1 <
wj

wi
pxj .

Proof: Assume that the current state is (x1, x2, ..., xm)
and there is a j such that pxi+1 >

wj

wi
pxj . Then,

pxi >
wj

wi
pxj−1 in one of the previous states. As a result,

∆xi > ∆xj−1, so we should see a state with xi + 1 and
xj − 1. In this case there is no way to see the current state,
which contains xi and xj .

Proposition 2: The SPT algorithm results in an optimal
solution.

Proof: It can be inferred from Lemma 3 that the optimal
assignment has a round-robin pattern. The reason is that when
we increment xi, pxi becomes less than wj

wi
pxj ,∀j : j ̸= i.

The next time pxi becomes greater than wj

wi
pxj is when we

increment all xj , j ̸= i.


