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Edge Resource Prediction and Auction for
Distributed Spatial Crowdsourcing With

Differential Privacy
Yin Xu , Mingjun Xiao , Member, IEEE, An Liu , Member, IEEE, and Jie Wu , Fellow, IEEE

Abstract�Traditional spatial crowdsourcing (SC) systems
employ a centralized server platform to provide services for
requesters. Such a centralized design requires powerful resource
capacity and often cannot accomplish the urgent demands due
to the unpredictable network latency. In order to ensure the
scalability of systems and the quality of services, we study the dis-
tributed SC (DSC), where a diversity of location-relative services
provided by various service providers (SPs) can deploy on edge
clouds (ECs) with low time latency. Since the edge resources
are limited, SPs need to compete for edge resources so as to
deploy their desired SC services, and the requested resources
must be allocated together to meet the demand of the service. We
�rst design a gated recurrent unit with particle �lter (GRUPF)
network for SPs to predict future resource demands so as to
participate in the competitions judiciously. Then, we model the
competitive edge resource allocation problem between SPs and
ECs as a combinatorial auction process. Due to the NP-hardness
of this problem, an approximation algorithm is proposed to tackle
it. Moreover, the leakage of private information such as bids may
incur severe economic damage, and most existing studies usually
rely on a trusted third party to provide rigorous privacy pro-
tection. Therefore, we customize a novel differentially private
resource auction (DRA) mechanism, and design a bid confusion
strategy based on differential privacy. Through theoretical anal-
ysis, we prove that the DRA mechanism meets some desired
properties, including �-differential privacy, individual rational-
ity, computational ef�ciency, and � -truthfulness. Additionally,
we corroborate the signi�cant performances of DRA through
extensive simulations on synthetic and real-world data sets.
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I. INTRODUCTION

W ITH the prosperous development of mobile Internet
and smart mobile devices, spatial crowdsourcing (SC)

has attracted increasing attention in utilizing the crowd power
to complete complex tasks. A typical SC system is com-
prised of a server on the cloud, mobile users, and some task
requesters. Through the SC server, requesters can crowdsource
their tasks to mobile users (also known as, workers) to be
accomplished. So far, there has been plenty of research on
designing various SC systems and the corresponding privacy-
preserving protocols, incentive mechanisms, task assignment,
or user recruitment, etc., [1]–[10]. Nevertheless, most of these
existing SC systems only involve a single server platform,
which can be categorized as the centralized crowdsourcing
paradigm. In other words, all user recruitment or task assign-
ment would need to be conducted via the centralized SC server.
On the one hand, it would weigh the burden on the centralized
server and require powerful resource capacity. On the other
hand, owing to the expensive bandwidth and the unpredictable
network latency, centralized platforms often fail to accomplish
the stringent demands for such latency-sensitive users. Thus,
with the growth of the number and types of SC services, these
simple centralized systems have become increasingly unable to
meet users’ needs. Distributed SC (DSC) systems, which can
support diverse and efficient services, are becoming popular.

In this article, we focus on the edge resource allocation
problem in a DSC system. Generally, a DSC system can
support a diversity of location-related services provided by
different service providers (SPs). By the aid of edge comput-
ing, the DSC system can dynamically deploy these services
on specified decentralized edge clouds (ECs) according to the
demands of SPs. The ECs can be formed of a number of
small-scale computing and storage servers, which are placed
at network edges. Consequently, services are closer to mobile
users, which can significantly reduce high bandwidth costs and
time latency. Fig. 1 illustrates an example of a DSC system.
Three SPs hope to provide requesters with their SC services,
each of which corresponds to one or more locations. SP1 pro-
vides the traffic condition monitoring service with collecting
data from locations {d1, d2, d3}, the service s2 provided by SP2
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Fig. 1. DSC system model.

needs data from locations {d2, d4} for air quality monitoring,
and SP3 collects data from locations {d3, d4} for free parking
monitoring. To satisfy these demands, the DSC system can
deploy three services to nearby ECs, which cover the related
locations. Afterward, the corresponding SPs can recruit mobile
users to perform their SC tasks and return the collected data
to requesters.

Different from traditional SC systems, which mainly rely on
a centralized cloud server, the DSC system needs to deploy
services on distributed ECs where the computation and com-
munication resources are generally restricted. Hence, SPs have
to compete for the limited edge resources so as to deploy
their desired SC services [11]. As we know, designing an auc-
tion mechanism is one of the most efficient and fair manners
to deal with resource competition issues, and thus, it is also
adopted in this article. There are three challenges in the auction
mechanism design.

First, there is a need to design a fast and adaptive method
for SPs to efficiently predict the usage of resources, such
as CPU and memory. Requesting too many resources might
result in waste and unnecessary pay, while requesting too few
resources might not satisfy service level agreements (SLAs).
However, it is difficult to determine accurate resource demands
while guaranteeing SLAs and improving resource utilization.
Second, the resources that each SP applies for might be dis-
tributed among multiple ECs and must be allocated together
to support the corresponding SC service. For instance, the ser-
vice s1 provided by SP1 needs to collect the traffic congestion
information from three locations {d1, d2, d3} during a certain
time period, shown in Fig. 1. Because only collecting partial
data under the time constraint is meaningless, s1 is either suc-
cessfully deployed on an EC bundle {e1, e2, e3} simultaneously
or fails. Therefore, it actually involves a distributed combina-
torial resource allocation issue. Third, bids play a vital role
in auctions and may imply some private information (e.g., the
valuation of SC services, SPs’ interests, and so on). If such
sensitive information is divulged, potential adversaries might
harness the information to manipulate the auction, leading to
unfair edge resource competition. Hence, we must prevent the
bids of SPs from being disclosed [12], [13].

Resource prediction using historical sequential data is
a widely-studied and long-existing problem. Many typical
approaches are derived from traditional or heuristic neural
networks [14]–[17] and regression theories [18], [19], which
require resource usage with a clear tendency or obvious regu-
larity so as to fulfill the accurate resource prediction. Besides,
the traditional neural networks cannot completely explore
the correlation between highly variable resource usage. With
the superb capability on sequential processing, a state-of-the-
art sequence prediction technique, recurrent neural networks
(RNNs), has received growing attention. Based on RNNs,
some variants [e.g., gated recurrent unit (GRU) [20]] display
a great power to learn long-term memory dependencies and
avoid gradient vanishing. However, data generated from the
real world usually contain some noise, resulting in inaccu-
rate prediction results. Faced with the complexity of uncertain
data, one way is to increase the length of the latent vec-
tor in networks, but it will sacrifice time efficiency due to
the increase of the number of network parameters. Thus, we
employ a GRU with particle filter (GRUPF) network for SPs
to predict their resource usage. Particle filter (PF) is a dynamic
time-discrete filter based on the Monte Carlo method to sim-
ulate the transference of particles and to update the estimated
state with observation from sensors recursively [21]. Inspired
by the idea of using particles to approximate the posterior state
distribution, we combine PF with GRU to improve predictive
accuracy without lengthening the latent vector.

Although a large number of resource allocation mechanisms
based on combinatorial auctions have been proposed [22],
[23], most of existing works concentrate on achieving critical
economic properties and ignore the significance of bid pri-
vacy. Thus far, only a few studies take the privacy issues into
account, which generally can be classified into two categories.
One category is to encrypt bids by leveraging cryptogra-
phy techniques [13], [24]–[26]. This category of methods can
provide theoretically provable security guarantee while suf-
fering from high computational overheads. The other is to
perturb bids by harnessing differential privacy [12], [27]–[29].
Nevertheless, most of such solutions usually rely on a trusted
third party. To get around these thorny problems, we cus-
tomize a differentially private resource auction (DRA) in a
DSC system. Specifically, each round of resource allocation
process is modeled as a combinatorial auction, which includes
a secure winning bid selection problem and a secure payment
determination problem. Due to the NP-hardness of winning
bid selection, we design an approximation algorithm. Faced
with the competitive SPs and the semihonest [30] third-party
auctioneer, we take full advantage of differential privacy to
achieve bid protection.

Overall, our multifold contributions are listed as follows.
1) A novel DSC system is presented, which can support

a diversity of location-related services provided by dif-
ferent SPs. To deal with the edge resource allocation
problem in the DSC system, we propose a DRA mech-
anism, where SPs can compete for the edge resources
of ECs so as to deploy their desired SC services.

2) A GRUPF network-based resource prediction algorithm
is designed for SPs to learn memory dependencies
from historical resource usage. Trace-driven experiments
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show that the algorithm can work well on highly variable
resource usage and predict more accurately compared
with popular networks.

3) We construct a secure combinatorial auction to model
the competitive edge resource allocation process with
the indivisible requested resources, which includes the
secure winning bid selection and the secure payment
determination. In addition, we prove the NP-hardness
of the bid selection problem, and a greedy algorithm
is designed to determine winners and the corresponding
reasonable payments.

4) In order to safeguard bid privacy from the untrusted
third-party and rivalry SPs, we design a bid confusion
strategy in a differentially private manner. By means of
this strategy, SPs are allowed to upload confused bids
to replace true bids.

5) Through theoretical analysis, we prove that the DRA
mechanism satisfies some essential properties, including
ε-differential privacy, individual rationality, computa-
tional efficiency, and γ -truthfulness. Moreover, we carry
out lots of simulations on real and synthetic data sets
to demonstrate the excellent performance of the DRA
mechanism.

The organization of this whole article is presented as fol-
lows. Section II introduces our problem in the DSC system
model. Section III gives the resource prediction algorithm. The
detailed design of the DRA mechanism and the theoretical
analysis are elaborated in Sections IV and V, respectively. In
Section VI, the simulations and results will be presented. We
review some related works in Section VII. After discussing
the limitations and the potential future research directions in
Section VIII, we make a conclusion in Section IX.

II. MODEL AND PROBLEM FORMULATION

In this section, we put forward a general DSC system model
with the distinct workflow among various parties, followed by
the problem description and preliminary.

A. System Model

The DSC model is mainly composed of three parties:
1) many services; 2) a collection of ECs; and 3) the auc-
tioneer. Services proposed by different SPs request the edge
resources of ECs, denoted by S = {s1, s2, . . . , sn}. Let E =
{e1, e2, . . . , em} denote the set of ECs, and these ECs hold
certain limited resources to be used for deploying services.
Thus, the ECs can be regarded as sellers, and the services are
considered as buyers. The semihonest auctioneer determines
the auction results, including the set of winning bids (denoted
by W) and the corresponding payments (denoted by P).

For each EC ej, we use 〈Aj, cj〉 to represent the state
information where Aj means resource capacity and cj denotes
the unit cost of resources. We use 〈Di, Qi, bi〉 to describe the
state information of each service si. SPs bid on a bundle rather
than an individual EC. We assume that an SP who possesses
si is li-minded, which indicates that the SP can submit at
most li bundles Di = {Di,1, Di,2, . . . , Di,li} along with a set
of requested resources Qi = {Qi,1, Qi,2, . . . , Qi,li} and a set

Fig. 2. Workflow of whole system.

of the unit bids bi = {bi,1, bi,2, . . . , bi,li}, where Di,k ⊆ E
(∀k ∈ [1, li]) is a bundle and Qi,k is the set of the correspond-
ing requested resource usage {qi,j|∀ej ∈ Di,k}. Let B denote
the set of all true bids.

Fig. 2 illustrates the interactions among the SPs, ECs, and
the auctioneer in each round of resource allocation. Now, we
present the workflow of the whole system.

Step 1: On the basis of the preference for various bundles,
the SP who provides the service si (∀i ∈ [1, n]) predicts
its demanded resource usage {qi,j|∀ej ∈ Di,k} through his-
torical usage (to be presented in Section III), and decides
the unit bid for each preferred bundle, forming a bundle-bid
pair (Di,k, bi,k). By using the public key kp publicized by the
auctioneer, SPs encrypt bids via the asymmetric encryption
technology, so that the bid information can be protected dur-
ing the transmission process. Then, all SPs upload encrypted
bids to diverse ECs through anonymous communication tech-
nology [31]. Note that each SP can upload different encrypted
bids to varied ECs but any one encrypted bid only can be
uploaded to at most one EC.

Step 2: Each EC executes the shuffle operation, and then
transfers all encrypted bids in disorder to the auctioneer.
Because of the anonymous transmission, the auctioneer cannot
know which bundle a bid belongs to.

Step 3: The auctioneer makes use of its private key ks to
decrypt all encrypted bids. Next, it invokes statistical analy-
sis to obtain the distribution of true bids. Based on this, a
confusion function can be generated by taking advantage of
the exponential mechanism (to be presented in Section IV-C).
Afterward, the auctioneer will broadcast the designed confu-
sion function to all SPs.

Step 4: According to the received bid confusion function,
the SP who provides the service si (∀i ∈ [1, n]) computes a
confused bid�bi,k to replace the corresponding true bid bi,k, and
then communicates the bundle-confused bid pairs (Di,k,�bi,k)

to the auctioneer.
Step 5: When the auctioneer receives all SPs’ pairs, the

auction process can be triggered. That is, the auctioneer will
execute the combinatorial auction algorithm to find out the
winning bids (to be elaborated in Algorithm 2). Then, the auc-
tioneer will announce the auction results and notify the
corresponding SPs and ECs.

Step 6: Finally, the DSC system deploys the winning
services on requested ECs according to the auction results.
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The winning SPs can recruit workers to accomplish their tasks
and provide their SC services for requesters. Meanwhile, the
winning SPs need to pay for the ECs’ resources, in which the
payment is determined by the auctioneer.

Remark: The auctioneer can define a time interval used
for triggering the auction. That is, when the current auction
has been accomplished, the auctioneer can start another edge
resource auction after the preset time interval. In addition,
all requested resources (i.e., {Q1, Q2, . . . , Qn}) must have the
same type in one resource allocation round, but the resource
types of different rounds can be allowed to have diversity.
Therefore, each service can have diverse resource requirements
(e.g., CPU and memory).

B. Problem Formulation

Our design objective is to maximize the social welfare (SW)
while guaranteeing prediction accuracy and bid privacy. The
SW is defined as follows.

Definition 1: The SW is the total valuations of the winning
services minus the total cost.

Next, the DRA problem can be formulated as follows.
Definition 2 (DRA Problem):

Maximize SW =
�

bi,k∈W

�

qi,j∈Qi,k

�
vi,k − cj

� ∗ qi,j (1)

Subject to
�

i:(bi,k∈W∩qi,j∈Qi,k)

qi,j ≤ Aj ∀ej ∈ E (2)

li�

k=1

1{bi,k∈W} ≤ 1 ∀si ∈ S (3)

where vi,k denotes the true unit valuation that the SP evaluates
if it deploy its own service si on bundle Di,k. More specifically,
the SP makes preestimation of the reward (paid by requesters)
and the recruitment cost (used for recruiting workers). The
reward can be estimated according to the historical service
records. The recruitment cost arises from the worker recruit-
ment process, which is beyond the scope of this article and
can be calculated by adopting many existing state-of-the-art
policies [32]–[34]. Then, the true valuation (i.e., vi,k ∗ qi,j) is
approximately equal to the difference between the reward and
the recruitment cost.

Here, (2) indicates the capacity constraint, that is, the total
demanded resource usage of services cannot go beyond each
EC’s capacity. Equation (3) claims that a service can be only
deployed on a bundle at most.

Apart from achieving the bid privacy protection, we are
reluctant to discard several essential properties, e.g., individ-
ual rationality, truthfulness, and computational efficiency. They
can be defined in great detail as follows.

Definition 3 (Individual Rationality): For each winning bid
bi,k, if the corresponding SP has a nonnegative utility, i.e.,

ui = vi,k − pi,k ≥ 0 (4)

then the mechanism meets individual rationality.
Definition 4 (γ -Truthfulness): An auction mechanism is γ -

truthful in expectation iff E[ui(b′
i, b−i)] ≥ E[ui(bi, b−i)] − γ

holds for any bid bi 
= b′
i and any bid profile of other services

b−i, where γ is a small positive constant.
Definition 5 (Computational Efficiency [13]): If an auction

mechanism can generate results and terminate in a polynomial
time, the mechanism is computationally efficient.

C. Preliminary

For a better understanding, we present the introduction on
PF and the GRUPF network briefly, which are used in the
design of resource prediction.

Definition 6 (PF [21]): The PF is a Bayesian filter, which
estimates the belief bt (i.e., a posterior distribution of the state
ht) given the history of actions a1:t and observations o1:t. PF
approximates the belief bt with a set of weighted particles
{(hτ

t , wτ
t )}N

τ=1, where {hτ
t }N

τ=1 are N latent states learned by
policy-oriented training, and {wτ

t }N
τ=1 stands for the corre-

sponding weights. Importantly, the mean state can be estimated
as the mean particles, i.e., mean(ht) = �N

τ=1 wτ
t hτ

t . Moreover,
the PF algorithms update the particles in a Bayesian manner.
The particle updates include transition update, measurement
update, and resampling.

1) Transition Update: We sample the next state hτ
t from a

generative transition model, i.e., hτ
t ∼ p(ht|hτ

t−1, at).
2) Measurement Update: We update the particle weights

with the observation model p(zt|hτ
t ).

wτ
t = ηp(ot|hτ

t )wτ
t−1

η = 1/

N�

i=1

p
�
ot|hτ

t

�
wτ

t−1

where η is a normalization factor.
3) Resampling: To diminish particle degeneracy, the new

particles are resampled based on the weight of impor-
tance, with a mean weight of 1/N.

Definition 7 (GRUPF Network [35]): The GRUPF network
is derived from RNNs for improving belief approxima-
tion without increasing the length of the latent vector. The
GRUPF network not only contains the belief representation
and approximate Bayesian inference adopted in PF but also
possesses the data-driven approximation capabilities of GRU.
Specifically, a GRUPF network approximates the belief as a set
of weighted particles {(hτ

t , wτ
t )}N

τ=1, and updates them with the
stochastic particle filtering algorithm instead of with a deter-
ministic nonlinear function in the GRU. What is more, the state
transition model and the observation model are approximated
directly as the learned functions.

On the other hand, differential privacy is a lightweight tool
for data privacy protection, which can provide a strong theoret-
ical privacy guarantee for statistics publishing. The exponential
mechanism has been widely applied in the privacy-preserving
mechanism designs to protect bids. Also, we give some related
definitions about differential privacy.

Definition 8 (Differential Privacy (DP) [36]–[38]): A ran-
domized mechanism M satisfies ε-differential privacy if for
any two input sets D1 and D2 differing on at most one element,
and for any set of outcomes O ⊆ Range(M ), there exists
Pr[M (D1) ∈ O] ≤ exp(ε) × Pr[M (D2) ∈ O]. Here, ε > 0
is a parameter called as the privacy budget that controls the
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TABLE I
DESCRIPTION OF MAJOR NOTATIONS

strength of privacy protection—the smaller the ε, the higher
privacy protection level and the lower the data availability.

Definition 9 (Exponential Mechanism): Given an input set
A, an outcome space O, a score function f , and a privacy
budget ε, if a mechanism M has M (A, o) = {o : |Pr[o ∈
O] ∝ exp([εf (A, o)]/[2�f ])}, M satisfies ε-differential pri-
vacy. Here, �f is the sensitivity of the score function f (A, o).

For ease of reference, we list the frequently used notations
throughout this article in Table I.

III. DESIGN OF RESOURCE PREDICTION

In this section, we leverage the GRUPF network for SPs to
predict the edge resource usage, such as CPU and memory.
The objective is to obtain the requested resource usage as
accurately as possible so as to alleviate the resource-wasting,
unnecessary payments, and inability to satisfy SLAs.

A. Workflow of Prediction

Given a historical resource usage X = (x1, x2, . . . , xt), we
aim to predict the future resource usage at the time t + 1.
We let yreal

t = xt+1 denote the real resource usage, and yt

denotes the predicted resource usage after inputting xt to the
network. For ease of exposition, we use xt or yt instead of
qi,j to indicate the requested resource usage, which can avoid
confusion caused by the redundant subscripts. The prediction
process can be explicitly described as the following steps.

1) Data Preprocessing: The value range of resource usage
may be heterogeneous at different time slots. In order to
speed up the convergence rate of learning-based algorithms,
the origin input should be normalized before the model train-
ing process. In this article, we make use of the min–max
normalization methods for data preprocessing as follows:

xnorm
t = xt − min(X)

max(X) − min(X)
. (5)

2) Network Model Training: After data preprocessing, the
normalized usage data Xnorm = (xnorm

1 , xnorm
2 , . . . , xnorm

t ) is
forwarded to the network model training.

First, it is difficult to set the state equation and observa-
tion equation of the system in advance when adopting PF.
Therefore, we harness neural network prediction instead of
the state transition equation of the system. Specifically, we
directly approximate the transition model p(ht|hτ

t−1, at) as a
learned function ftr(hτ

t−1, at) with hτ
t−1 and at as inputs, instead

of formulating it as a generative distribution. Similarly, the
observation model p(ot|hτ

t ) is replaced by a learned func-
tion fob(hτ

t ). Thus, the update equations can be represented as
follows:

hτ
t ∼ ftr

�
hτ

t−1, at
�

(6)

wτ
t = ηfob

�
hτ

t

�
wτ

t−1, η = 1/

N�

τ=1

fob
�
hτ

t

�
wτ

t−1. (7)

Second, multiple neural networks with different parameters
are established for sampling particles. Each particle can be
regarded as the predicted result of a neural network. Thus, the
posterior state distribution can be approximated by a set of N
weighted particles {(hτ

t , wτ
t )}N

τ=1, for latent state hτ
t and weight

wτ
t . Each latent state hτ

t represents a hypothesis in the belief,
and the set of particles provides an approximate representation
for the belief.

Finally, we use the learned functions from the GRUPF
network to update latent states and predict the resource
usage. Specifically, we suppose that the predicted usage is
Y train = (ŷ1, ŷ2, . . . , ŷt). Then, the GRUPF network is trained
by comparing the errors between the actual usage xnorm

t+1 and
the predicted usage ŷt, where xnorm

t+1 denotes the actual resource
usage at the time t + 1.

3) Prediction: The fitted GRUPF model can be used for
1-step-ahead or multistep-ahead resource usage prediction.
Based on the mean particle, the output ŷt can be calculated
by ŷt = fpredict(mean(ht)), where mean(ht) = �N

τ=1 wτ
t hτ

t and
fpredict is a prediction function, which transforms the latent
state to the output. At last, by converting normalized data
to original data, we can obtain the final predicted usage yt.
In order to realize the usage prediction for different future
periods, we measure the usage of each trace at each time
slot and add it into historical usage, which will be used
as the input of the GRUPF network. Thus, after setting the
prediction length Len, we can obtain the predicted sequence
Y = (yt, yt+1, . . . , yt+Len). In this article, we employ the mean
absolute error (MAE) to compute the accuracy of resource
usage prediction

MAE = 1

Len

Len�

len=0

���yreal
t+len − yt+len

���. (8)

B. Network Architecture

A standard GRU network architecture for resource
prediction needs to maintain a deterministic latent state ht used
for capturing the correlation of the input history, and update ht
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Fig. 3. GRUPF network architecture.

sequentially with new inputs. In order to tackle highly variable
noisy resource usage and better mine the sufficient statistic of
the input history, the GRUPF network borrows the idea of
PF, forming multiple hypotheses over ht to approximate the
posterior state distribution.

As illustrated in Fig. 3, the GRUPF network architecture
operates on a variable-length sequence Xnorm with the three
units (i.e., reset gate, update gate, and memory update), so as to
maintain a series of latent states {hτ

t }N
τ=1 and particle weights

{wτ
t }N

τ=1. Then, in order to avoid particle degeneracy, we con-
duct resampling to construct a new particle set {(h̄τ

t , w̄τ
t )}N

τ=1
for prediction. Similar to a standard GRU network, GRUPF
maintains the latent state ht, and designs two gates (i.e., the
update gate zt and the reset gate rt) to update it. The dif-
ference is that the memory state is comprised of a set of
weighted particles {(hτ

t , wτ
t )}N

τ=1, and stochasticity is added to
the update process. We first present the mathematical formu-
lation of GRUPF units before diving into the intuition behind
this design

Reset gate: rτ
t = σ

�
Wr

�
hτ

t−1, xnorm
t

	 + Ir
�

(9)

Update gate: zτ
t = σ

�
Wz

�
hτ

t−1, xnorm
t

	 + Iz
�

(10)

Memory update:

h̃τ
t = ReLU

�
Wh

�
hτ

t−1 ◦ rτ
t , xnorm

t

	 + Ih + ζ τ
t

�
(11)

ζ τ
t ∼ N

�
0, 	τ

t

�
, 	τ

t = W	

�
hτ

t−1, xnorm
t

	 + I	 (12)

hτ
t = �

1 − zτ
t

� ◦ hτ
t−1 + zτ

t ◦ h̃τ
t (13)

Particle weight update:

wτ
t = η

�
Wp

�
xnorm

t , hτ
t

	 + Ip
�
wτ

t−1 (14)

where xnorm
t is the current input, W(·) is coefficient weight,

I(·) is bias term, η is a normalization factor, ζ τ
t is a learned

noise term, and ◦ is the elementwise product. We give some
intuitive interpretations about the above equations.

1) Reset Gate: The gate is used to decide how much past
information is forgotten. According to (9), rτ

t will belong
to (0, 1) after using the sigmoid function σ(x) = [1/(1+
e−x)]. If rτ

t is close to 0, the latent state is compelled to
ignore the previous latent state and reset with the current

input only. Simply speaking, the reset gate can allow the
latent state to drop any information that is found to be
irrelevant to the computation of the new memory in the
future.

2) Update Gate: It is devoted to deciding what information
is thrown away and what new information is added.
According to (13) and zτ

t ∈ (0, 1), we have: if zτ
t ≈ 0,

the current input will be ignored and hτ
t−1 will be almost

entirely copied out to hτ
t ; if zτ

t ≈ 1, the previous latent
state will be thrown away and h̃τ

t will be forwarded to
hτ

t . In short, the update gate can determine whether or
not the input and the previous latent state are worth
retaining.

3) Memory Update: A new memory h̃τ
t is updated by par-

tially forgetting the existing memory and adding a new
memory according to (11). Especially, we inject the
noise ζ τ

t into h̃τ
t based on (12). We assume that the noise

is subject to the Gauss distribution and use the repa-
rameterization trick [39] to imitate the transition in a
differentiable way. The advantages of stochastic memory
update using ζ τ

t are adding particle diversity to relieve
particle depletion and capturing the randomness of the
latent dynamics. Moreover, we adopt the ReLU acti-
vation to alleviate the overfitting problem and avoid
gradient vanishing. Based on zτ

t , hτ
t−1, and h̃τ

t , the latent
state can be updated by (13).

4) Particle Weight Update: The particle weight wτ
t is

updated according to (6) and (7). Recall that we employ
a learned function fob(hτ

t ) to replace the observation
model, so that we can circumvent the design of the
observation equation. Therefore, (14) is used for updat-
ing the particle weight wτ

t , in which Wp and Ip need to
be learned.

Based on the presented GRUPF network architecture, the
prediction algorithm for resource usage can be proposed in
Algorithm 1. After initialization, we call the normalization
method to attain the normalized usage Xnorm. The learning rate
decay α is used for controlling the learning rate ξ . Reducing ξ

appropriately can improve the efficiency of learning at differ-
ent stages and is conducive to training the GRUPF network.
Then, we begin to train the model using (9)–(14) in the
GRUPF network. In order to avoid the particle set degeneration
problem (i.e., except for a few particles, the weights of other
particles are small enough to be negligible.), resampling parti-
cles is necessary. We adopt the soft-resampling strategy [40],
which provides approximate gradients for the nondifferentiable
resampling step. Specifically, we sample particles {w̄τ

t }N
τ=1

from a softened distribution p(τ ) = θwτ
t +(1−θ)(1/N), where

θ denotes a tradeoff parameter and we set θ = 0.5 in our
experiments. Using important sampling w̄τ

t = ([wτ
t ]/[θwτ

t +
(1 − θ)(1/N)]), we can get new particles {(h̄τ

t , w̄τ
t )}N

τ=1. For
each training sequence, the prediction loss designed in this
article is Loss = LMSE+ψLELBO, LMSE = (1/|O|)�t∈O(yreal

t −
yt)

2, LELBO = − �
t∈O log(1/N)

�N
τ=1 p(yt|κτ

1:t, xnorm
1:t ) [35],

where O is the set of time indices with outputs, κτ
1:t is a

historical chain for the particle τ , and ψ is a weight parame-
ter. Especially, we leverage the backpropagation through time
(BPTT) as the training algorithm for GRUPF.
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Algorithm 1 GRUPF-Based Prediction Algorithm for
Resource Usage
Require: Historical usage X = (x1, x2, . . . , xt).
Ensure: Predicted usage yt.

1: Initialize: epoch number EP, the learning rate ξ , the
learning rate decay α;

2: Data preprocessing: normalization using (5) and obtain
the new input Xnorm = (xnorm

1 , xnorm
2 , . . . , xnorm

t );
3: Model training:
4: Segment the epoch EP and get breakpoints set BP;
5: for each training epoch ep = 1, 2, . . . , EP do
6: if ep ∈ BP then
7: ξ = ξ ∗ α;
8: end if
9: for each batch do

10: Update model using (9)∼(14);
11: Resampling: w̄τ

t = wτ
t

θwτ
t +(1−θ)(1/N)

;
12: Calculate Loss and use BPTT for training;
13: end for
14: end for
15: Prediction: ŷt = fpredict(

�N
τ=1 wτ

t hτ
t );

16: Anti-normalization to get final predicted usage yt.

IV. DESIGN OF THE DRA MECHANISM

After each SP determines its requested resource usage by
conducting Algorithm 1, we propose a DRA mechanism to
cope with edge resource allocation. It begins with the analysis
of the DRA problem hardness and then figures out the basic
idea of DRA, followed by the detailed design of bid confusion
and the auction process.

A. Problem Hardness Analysis

First, we analyze the complexity of the DRA problem.
Theorem 1: The DRA problem is NP-hard.

Proof: We consider a special case of the DRA problem
without the privacy concern, where there is only one EC
totally and each SP submits a bid for the EC at most.
Without loss of generality, we choose e1 as the EC. Next,
the DRA problem is reduced to determine a subset B′ ⊆ B
so as to maximize

�
bi,1∈B′(vi,1 − c1) ∗ qi,1, while meeting�

i:bi,1∈B′ qi,1 ≤ A1. This special problem is equivalent to
the 0-1 knapsack problem: under the condition that the con-
straint

�n
i=1 wi ∗ xi ≤ C, xi ∈ {0, 1} is satisfied, the goal is to

maximize the total value (i.e.,
�n

i=1 vi ∗ xi). As we all know,
the 0-1 knapsack problem is a typical NP-hard problem, so
that the special DRA problem is also NP-hard. Consequently,
the general DRA problem while considering privacy protection
is at least NP-hard.

B. Basic Idea

We customize the DRA mechanism in a DSC system, in
which the exponential mechanism is embedded into the com-
binatorial auction skillfully. The objective of our mechanism
design is to maximize the SW while achieving bid-privacy
preservation, truthfulness, individual rationality, and computa-
tional efficiency simultaneously.

In order to conceal the sensitive information of bids, we
design a global bid confusion function through which the bids
of SPs will be perturbed using the exponential mechanism.
Unlike the general bid protection designs that need to rely on
a trusted third party, our design can provide a stronger privacy
assurance to protect bid privacy for SPs. More specifically,
we take full advantage of the asymmetric encryption and the
anonymous communication technologies to acquire encrypted
bids, which can keep the ECs from knowing true bids and
will generate the bid confusion function. Moreover, we employ
local differential privacy to shield bids from the untrusted third
party.

Given the bundle-confused bid pairs, we model the com-
petitive edge resource allocation problem as a secure com-
binatorial auction, which is composed of the secure winning
bid selection and the secure payment determination. Without
knowing true bids, we take the expectation of bids accord-
ing to the bid confusion function as the input of the auction
algorithm. Owing to the NP-hardness of the DRA problem, we
propose a greedy algorithm to determine winning bids with the
objective of optimizing the SW, and design the pricing strat-
egy for winners without sacrificing some critical economic
properties.

C. Bid Confusion

In order to protect the bid privacy, we make full use of the
exponential mechanism to design a bid confusion function,
which can map a true bid b to a confused bid b̃. Based on
Definition 9, we can define the confusion function as

P



b̃|b
�

∝ exp

�



εf



b, b̃

�

2�f

�

�. (15)

Here, P(b̃|b) is the probability of mapping the true bid b to the
confused bid b̃. f (b, b̃) denotes the score function measuring
the closeness of the confused bid b̃ to the true bid b. The
higher the score is, the closer the two are.

In our article, a monotonically nonincreasing function can
be put to use so as to meet the properties of the score function.
The score function is designed as

f



b, b̃
�

= − ln

���b − b̃

��� + 1
�
. (16)

Based on (16), the score function is satisfactory because the
smaller the difference between a true bid b and a confused bid
b̃, the higher the probability P(b̃|b). Meanwhile, the sensitivity
of the score function is ln(|b̂ − b̌| + 1) = ln(�b + 1), where
b̂ and b̌ denote the maximum value and minimum value in B,
respectively, and we define �b = b̂ − b̌.

By substituting the score function into (15), the confusion
function can be expressed as follows:

P



b̃|b
�

∝ exp

�


−
ε ∗ ln


���b − b̃
��� + 1

�

2 ln(�b + 1)

�

�

=
exp

�

− ε∗ln

���b−b̃

���+1
�

2 ln(�b+1)

�

�
b′∈B exp



− ε∗ln(|b−b′|+1)

2 ln(�b+1)

� . (17)
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Algorithm 2 Secure Winning Bid Selection
Require: S, E, B
Ensure: W

1: Initialize G = ∅, W = ∅;
2: //Compute Grade:
3: for si ∈ S do
4: Initialize Gi = ∅;
5: for Di,k ∈ Di do
6: Initialize gi,k = 0, count = 0;
7: for ej ∈ Di,k do
8: gi,k = gi,k + cj, count = count + 1;
9: end for

10: gi,k = E[bi,k] − gi,k
count ;

11: Gi = Gi + {gi,k};
12: end for
13: G = G + {Gi};
14: end for
15: //Greedy Selection:
16: while S 
= ∅ and E 
= ∅ and B 
= ∅ do
17: Record the index with the maximum grade gi,k as

(i∗, k∗);
18: Initialize flag = 1;
19: for qi∗,j ∈ Qi∗,k∗ do
20: if qi∗,j > Aj then
21: flag = 0 and break;
22: end if
23: end for
24: if flag = 1 then
25: for qi∗,j ∈ Qi∗,k∗ do
26: Aj = Aj − qi∗,j;
27: end for
28: W = W + {E[bi∗,k∗ ]};
29: S = S − {si∗};
30: G = G − {Gi∗};
31: else
32: Gi = Gi − {gi∗,k∗} and Update G;
33: if Gi = ∅ then
34: S = S − {si∗};
35: end if
36: end if
37: end while

Finally, all SPs receive the designed confusion function broad-
casted by the auctioneer. Then, each SP utilizes its true bid
bi,k and the confusion function to compute the probability
P(�bi,k|bi,k). According to different perceptions about privacy
and the urgent need level, each SP selects a confused bid �bi,k

from the probability distribution judiciously.

D. Auction Mechanism Design

1) Secure Winning Bid Selection: With the ultimate goal
of maximizing the SW, the biggest obstacle of selecting win-
ning bids is that the auctioneer only knows the confused bids
without the ability to infer the true bids. In response to the dif-
ficulty, we harness the expected bids to approximate the true
bids. Given the confused bid �bi,k and the confusion function,

the expected bid E[bi,k] can be calculated as follows:

E[bi,k] =
�

bi,k∈B P
��bi,k|bi,k

�
P
�
bi,k

�
Pe

�
bi,k

� ∗ bi,k
�

bi,k∈B P
��bi,k|bi,k

�
P
�
bi,k

�
Pe

�
bi,k

� (18)

where P(bi,k) = num(bi,k)/|B| denotes the probability of bi,k

in the set B. The function num(bi,k) counts the frequency of
bi,k in the set B and | · | denotes the cardinality of the set.
We use Pe(bi,k) to represent the probability that a true bid bi,k

exists in the bundle-bid pairs for bundle Di,k, which can be
estimated by the following formula:

Pe
�
bi,k

� =
�

�bi,k∈Bk
P
��bi,k|bi,k

�

�
bi,k∈B

�
�bi,k∈Bk

P
��bi,k|bi,k

� (19)

where Bk denotes the set of confused bids of the SPs who
desire to purchase resources from the bundle Di,k.

On the basis of the above designs, the secure winning bid
selection process can be completed by the following steps.

Step 1 (Compute Grade): We first give a grade vector for
each service (∀si ∈ S). The grading rule is based on (20). gi,k

means the grade for the bundle Di,k

Gi =
�

gi,k = E
�
bi,k

	 −
�

ej∈Di,k
cj

|Di,k| |∀k ∈ [1, li]

�

. (20)

Step 2 (Greedy Algorithm): The DRA problem is proven to
be NP-hard in Theorem 1. Hence, we design a greedy algo-
rithm to determine the winning services in polynomial time.
The basic idea is to compute grades and then pick out an
expected bid with the highest grade.

Algorithm 2 exhibits the detailed process of secure winning
bid selection, which mainly contains two components. At the
beginning, we initialize the set G (used to record all grades)
and the set W (used to record final winning bids) as empty sets
(line 1). In the first part (lines 2–14), we compute the selection
criteria. Specifically, for each bundle Di,k of service si, we use a
variable gi,k to sum up {cj|ej ∈ Di,k} with a counter (lines 5–9).
Then, gi,k is transformed into the grade for the bundle Di,k

according to (20). Finally, we update the sets Gi and G. In the
second part (lines 15–37), we perform the greedy winning bid
selection strategy. More concretely, we first find the bundle
with the highest grade from G and save its index as (i∗, k∗)

(line 17). Then, we set an indicator flag, indicating whether the
remaining resource capacity can satisfy the requested resource
usage (lines 18-23). If flag = 0, there must exist an EC, which
cannot provide the demanded resource usage for the selected
bundle. Thus, the bundle should be removed (line 32). Note
that Gi = ∅ suggests that service si does not have any eligible
request and should be removed (lines 33–35). If flag = 1, a
winning bid is found and the specified ECs will allocate the
requested resource usage Qi∗,k∗ to the corresponding service
si∗ (lines 25–27). Also, E[bi∗,k∗ ] will be added into W. Since
a service can be only deployed on a bundle at most (i.e., (3)),
we remove the service si∗ and the grade set Gi∗ from the set
S and the set G, respectively (lines 28–30).

2) Secure Payment Determination: Even though the auc-
tioneer does not know the true bundle-bid pairs, it is certainly
a fact that each true bid must belong to the interval between b̌
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and b̂. To ensure the individual rationality, we design the pay-
ment of each SP who holds the corresponding winning service
as follows:

pi,k = min
����E

�
bi,k

	 −



b̂ − b̌
����, b̌

�
. (21)

V. THEORETICAL ANALYSIS

We analyze that the DRA mechanism can achieve the
desired properties of differential privacy, individual rationality,
γ -truthfulness, and computational efficiency.

Theorem 2: The DRA mechanism can meet ε-differential
privacy, ε is the privacy budget.

Proof: We assume that there exists two different bids b1
and b2 (i.e., b1 
= b2), both of them are transformed into the
confused bid b̃ according to Section IV-C. P(b̃|b1) means that
the probability of mapping the bid b1 to the confused bid b̃.
Similarly, the probability of mapping the bid b2 to the confused
bid b̃ is P(b̃|b2). Now, we need to derive an exponential upper
bound for P(b̃|b1)/P(b̃|b2). The specific derivation process is
as follows:

P



b̃|b1

�

P



b̃|b2

� =

exp

�
− ε∗ln(|b1−b̃|+1)

2 ln(�b+1)

�

�
b′∈B exp



− ε∗ln(|b1−b′|+1)

2 ln(�b+1)

�

exp

�
− ε∗ln(|b2−b̃|+1)

2 ln(�b+1)

�

�
b′∈B exp



− ε∗ln(|b2−b′|+1)

2 ln(�b+1)

�

=
exp

�

− ε∗ln

���b1−b̃

���+1
�

2 ln(�b+1)

�

exp

�

− ε∗ln

���b2−b̃

���+1
�

2 ln(�b+1)

�

∗
�

b′∈B exp


− ε∗ln(|b2−b′|+1)

2 ln(�b+1)

�

�
b′∈B exp



− ε∗ln(|b1−b′|+1)

2 ln(�b+1)

� . (22)

According to (22), P(b̃|b1)/P(b̃|b2) can be computed by mul-
tiplying two parts. We denote the first half of (22) (i.e., the
left part) as L , and further have

L =
exp

�

− ε∗ln

���b1−b̃

���+1
�

2 ln(�b+1)

�

exp

�

− ε∗ln

���b2−b̃

���+1
�

2 ln(�b+1)

�

= exp

�


ε ∗
ln


���b2 − b̃
��� + 1

�
− ln


���b1 − b̃
��� + 1

�

2 ln(�b + 1)

�

�

= exp

�

����



ε ∗
ln

���b2−b̃
���+1

���b1−b̃
���+1

2 ln(�b + 1)

�

����
�

≤ exp

�
ε ∗ ln(�b + 1)

2 ln(�b + 1)

�
= exp


ε

2

�
. (23)

Next, we denote the last half of (22) (i.e., the right part) as R .
In order to derive the bound of P(b̃|b1)/P(b̃|b2), we continue
to compute the upper bound of right as follows.

Owing to [1/(�b + 1)] ≤ [(|b2 − b̃| + 1)/(|b1 − b̃| + 1)] ≤
�b + 1, we can obtain ln [1/(�b + 1)] ≤ ln [(|b2 − b̃| +
1)/(|b1 − b̃| + 1)] ≤ ln (�b + 1). Therefore, we get

R =
�

b′∈B exp


− ε∗ln(|b2−b′|+1)

2 ln(�b+1)

�

�
b′∈B exp



− ε∗ln(|b1−b′|+1)

2 ln(�b+1)

�

≤
�

b′∈B exp


− ε∗ln(|b2−b′|+1)

2 ln(�b+1)

�

�
b′∈B exp



ε∗[−ln(|b2−b′|+1)−ln(�b+1)]

2 ln(�b+1)

�

=
�

b′∈B exp


− ε∗ln(|b2−b′|+1)

2 ln(�b+1)

�

�
b′∈B exp



− ε∗ln(|b2−b′|+1)

2 ln(�b+1)

�
∗ exp

�− ε
2

�

= exp

ε

2

�
. (24)

Finally, according to the induction of L and R , we derive the
upper bound of P(b̃|b1)/P(b̃|b2), i.e.,

P



b̃|b1

�

P



b̃|b2

� = L ∗ R ≤ exp

ε

2

�
∗ exp


ε

2

�
= exp(ε). (25)

Based on Definition 8, the proof of the theorem is completed,
i.e., the DRA mechanism satisfies ε-DP.

Theorem 3: The DRA mechanism satisfies the property of
individual rationality.

Proof: We need to prove that each winning SP can
acquire a nonnegative utility in the DRA mechanism. Without
loss of generality, we consider an arbitrary confused bid �bi,k.
According to (18), we compute the corresponding expected
bid E[bi,k]. Afterward, the expected bid would undergo two
situations: 1) E[bi,k] /∈ W and 2) E[bi,k] ∈ W. If E[bi,k] /∈ W,
the payment pi,k equals to 0. Otherwise, the SP who provides
the service si should pay pi,k = min{|E[bi,k] − (b̂ − b̌)|, b̌}.
Obviously, there is pi,k ≤ b̌. Hence, given that vi,k ∈ [b̌, b̂],
the utility of the SP is vi,k − pi,k ≥ 0. Based on Definition 3,
the theorem holds.

Theorem 4: The DRA mechanism satisfies 2ε�b-truthful.
Proof: We use b1 and b2 to denote two different true

bids for the same bundle Di,k of service si. According to
Theorem 2, we have P(b̃|b1) ≤ exp(ε)P(b̃|b2). Thus, the
utility expectation of the SP who provides the service si is

E[ui(b1)] =
�

b̃∈B

�
ui



b̃
�

P



b̃|b1

��

≤
�

b̃∈B

�
ui



b̃
�

exp(ε)P



b̃|b2

��
= exp(ε)E[ui(b2)].

Since ui = vi,k − pi,k ≤ b̂ − (E[bi,k] − (b̂ − b̌)) = (b̂ − b̌) +
(b̂ − E[bi,k]) ≤ 2�b, we further get

E[ui(b2)] ≥ exp(−ε) ∗ E[ui(b1)] ≥ (1 − ε) ∗ E[ui(b1)]

≥ E[ui(b1)] − εE[ui(b1)]

≥ E[ui(b1)] − 2ε�b. (26)

Based on Definition 4, the proof has been completed.
Theorem 5: The mechanism is computationally efficient.
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Proof: The computation overhead of the DRA mecha-
nism is mainly dominated by the bid confusion and the secure
winning bid selection. During the process of the bid confu-
sion, each SP can bid for at most lmax = max{li|i ∈ [1, n]}
bundles for each service, and there are at most n services
in a certain period of time, so the computational overhead is
O(nlmax). When we compute the grade vectors in the secure
winning bid selection, lines 7–9 are enclosed in a loop that
iterates at most m times and lines 5–12 are enclosed in a
loop that repeats at most lmax times. Thus, lines 3 and 14
are enclosed in a loop that iterates n times having the worst
case complexity of O(nmlmax). For the process of the greedy
selection, line 17 needs at most nlmax times to find the max-
imum grade. Lines 19–23 (or lines 25–27) are enclosed in a
loop that iterates at times. Lines 16–37 are enclosed in a loop
that repeats at most nlmax times and have the complexity of
O(nlmax(nlmax + m + m)). The rest have constant time com-
plexities. Consequently, the overall computational overhead of
Algorithm 2 is According to Definition 5, the theorem holds.

VI. EVALUATIONS

By conducting a series of simulations, we corroborate the
performance of the GRUPF-based prediction algorithm for
resource usage and the DRA mechanism for edge resource
allocation. It starts with the introduction of the compared algo-
rithms and basic simulation settings, followed by the detailed
evaluation results. Additionally, we conduct the simulations
on a computer with Inter Core i5-10400 CPU @2.9 GHz and
16-GB RAM under a Windows platform, and all experiments
are implemented in MATLAB language.

A. Algorithms in Comparison

For the prediction evaluation, we compare the GRUPF
network model with the corresponding GRU model and RNN
model. Then, since the proposed DRA mechanism is the first
solution for the combinatorial auction and the bid-privacy pro-
tection in DSC systems against the untrusted third party, we
compare our DRA mechanism with some state-of-the-art bid
protection algorithms with a trustworthy third party [27], [28].
Nevertheless, we cannot directly compare them since their
problems and models in these studies are different from ours.
Thus, we extract the basic idea from these algorithms for our
model and carefully design three secure resource allocation
algorithms for comparison: 1) LIN-M [27]; 2) LOG-M [27];
and 3) DPS [28].

B. Simulation Setup

We implement the GRUPF model for resource usage
prediction based on PyTorch. A real data set called Alibaba
cluster traces [41] is used in our experiments, which contains
the runtime resource usage of 4000 machines in eight days.
We select a host machine and feed its CPU usage data into
our resource prediction model in batches. Specifically, we ran-
domly split the Alibaba cluster data set into the testing set and
the training set. We make use of the training set to train the

TABLE II
SIMULATION SETTINGS

GRUPF model, i.e., determining the parameters of the neu-
ral network. Then, the testing set is used for evaluating the
performance of the trained GRUPF model. Besides, we set the
initial learning rate, the number of training epochs, and the
batch size as 0.01, 50, and 32, respectively. Also, the num-
ber of particles is set as 30 and the latent state size is 64.
Given a fixed training data set, we hope to get better learn-
ing performance by increasing the number of particles, but
the results fail to meet our expectations because of the greater
computational complexity. Owing to the randomness of the
neural network model, we set seeds from 100 to 2000 so as
to get the averaged results.

In order to evaluate the auction mechanism, we artificially
generate some ECs. Each EC possesses a restricted resource
capacity and a unit cost. The edge resource capacity and
the unit cost are uniformly distributed over [10, 20] and [1,
5], respectively. For simplicity, we assume that bundles are
determined, but the generation of bundles in each round of
simulations is random. Next, various SPs hope to deploy some
SC services on ECs and can bid for determined bundles. The
requested resource usage is generated randomly from [1, 5].
Each bid is approximately equal to the true unit valuation due
to the property of truthfulness. Thus, we calculate the differ-
ence between the reward and the recruitment cost, and divide
it by the demanded resource usage, so as to generate the value
of the bid. Specifically, the reward is generated randomly from
[20, 30]. The recruitment cost is the product of the unit recruit-
ment cost and the number of recruited workers. We vary the
unit recruitment cost from 0.1 to 0.4 with a step of 0.05, and
attain the number of recruited workers by adopting the greedy
selection solution similar to that in [32]. Then, the number
of services ranges from 50 to 250 and the number of ECs
is selected from 20 to 60. The values of the privacy budget
used in the DP technology belong to [0.1, 1.1] and its default
value is set as ε = 0.5. Note that under the same setting, all
experimental results are averaged on 1000 random repetitions.
Moreover, Table II lists some simulation parameters, in which
default values are in bold fonts.

To evaluate the performance of our DRA mechanism and
compared algorithms, we apply the following metrics.

1) SW: It is defined in Section II.
2) Total Payment: The payments paid by the winning SPs

to the DSC system.
3) Privacy Leakage: We measure the privacy leakage of

DRA by applying the Kullback–Leibler divergence [27].
We use b and b̃ to denote the true bid and the confused
bid, respectively. P(b = b̃) indicates the probability
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Fig. 4. Evaluation of prediction: minute-level prediction and hour-level prediction.

Fig. 5. Prediction accuracy (MAE).

when b equals b̃. Then, the privacy leakage can be
defined as PL = (1/[

�
b∈B Pe(b) ln(1/[P(b = b̃)])]).

C. Simulation Results

1) Evaluation of Prediction: We first evaluate the
performance of the GRUPF network for resource usage
prediction, i.e., measuring the CPU usage under differ-
ent levels of prediction length. Specifically, we depict the
performance of GRUPF at minute-level prediction and hour-
level prediction, as illustrated in Fig. 4. From the perspective of
CPU usage, we can see that the GRUPF network can achieve
a highly accurate resource usage prediction. It demonstrates
that the GRUPF network can still acquire excellent prediction
results even though there exists highly random usage (i.e.,
exhibiting an extremely random feature) in Alibaba cloud data
centers. Moreover, increasing the prediction length will lead
to the growth of the prediction errors, but it can also control
within a certain range.

Next, we evaluate the performance of the GRUPF network
and other recent RNN-based approaches for resource usage
prediction, such as the RNN and gated recurrent unit. We
mainly compare the prediction accuracy among these meth-
ods by measuring MAE. In Fig. 5, we change the hour-level
prediction length and then record the MAE of different RNN-
based approaches. Generally, increasing the prediction length
will result in the growth of MSE for all these methods. It is
noteworthy that the GRUPF network obviously exceeds RNN
and GRU in terms of prediction accuracy and has a dramatic
performance improvement. The reason is that we can make
full use of data through particles. Each particle of GRUPF

Fig. 6. Evaluation of convergence efficiency.

independently aggregates information based on the input his-
tory, and then the final output is derived from the averaged
particle.

Finally, we evaluate the convergence efficiency among the
GRUPF model, GRU model, and RNN model. We provide
a fixed number of 100 testing sets, and then change the
number of training sets from 200 to 900. Fig. 6 reports the
changing trends of MAE under different methods of resource
usage prediction. When we enlarge the training set size, the
prediction errors of three curves are reduced, and the final aver-
aged MAE of GRUPF is lower than GRU and RNN, which
is consistent with the results in Fig. 5. More importantly, we
can note that the speed of convergence of GRUPF is faster
than GRU, which means the GRUPF has better convergence
efficiency.

2) Evaluation of Social Welfare: We compare the SW val-
ues of different algorithms (i.e., DRA, LIN-M, LOG-M, and
DPS), and the results are shown in Fig. 7. When the number
of ECs is 20, Fig. 7(a) illustrates the effect of the number of
services on the SW. It can be observed that the SW values of
all implemented mechanisms increase along with the growth
of the number of services. This is because, with more candi-
date services, the auctioneer may select more suitable services
to allocate resources. Moreover, we can notice that the SW of
DPS is higher than that of DRA, LIN-M, and LOG-M. The
reason is that DPS can be regarded as an optimal circumstance
when selecting winners. That is, there exists a trustworthy third
party in the DPS algorithm, which can know all true bids so
as to pick out the services with the highest grade. It is worth
noting that the SW of DRA is higher than LIN-M and LOG-
M according to Fig. 7(a). This reason is that though DRA
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(a) (b) (c)

Fig. 7. Evaluation of SW. (a) Effect of the number of services. (b) Effect of the number of ECs. (c) Effect of privacy budget.

(a) (b) (c)

Fig. 8. Evaluation of total payment. (a) Effect of the number of services. (b) Effect of the number of ECs. (c) Effect of privacy budget.

(a) (b)

Fig. 9. Effect of unit recruitment cost. (a) SW versus unit recruitment cost. (b) Total payment versus unit recruitment cost.

perturbs the true bids, we opt for the winning SPs based on
their expected bids rather than choose them randomly with a
certain probability in the LIN-M mechanism and the LOG-M
mechanism.

When we change the number of ECs from 20 to 60 with a
step of 5 under the circumstance that SPs provide 100 services,
we evaluate the SW values of all implemented mechanisms.
Fig. 7(b) illustrates the SW values of four mechanisms will
raise if the number of ECs grows. This is because each SP
would hold more choices on different ECs when deploying
their desired services, so that more services will be selected
as winners by the auctioneer. Meanwhile, our proposed mech-
anism DRA can achieve a higher SW compared with LIN-M
and LOG-M.

As shown in Fig. 7(c), we vary the values of the privacy
budget from 0.1 to 1.5 with a step of 0.05 to evaluate the SW
values. The SW values of all implemented algorithms show an
increasing trend. It happens because a larger privacy budget

indicates a lower privacy protection level. Therefore, a large
privacy budget will narrow the gap between the true bids and
the expected bids, so as to acquire the high SW.

3) Evaluation of Total Payment: We evaluate the total pay-
ments of four mechanisms by changing the number of services,
the number of ECs, and the privacy budget. The results are
depicted in Fig. 8(a)–(c), respectively. We can see that the
changing trend of the total payment is the same as the SW, i.e.,
the total payment grows slightly when we increase the number
of services, the number of ECs, and the privacy budget. The
reason is similar to that discussed in Fig. 7. More importantly,
the total payment of LIN-M/LOG-M/DPS is higher than that
of DRA. This is because the payment determined by the DRA
mechanism is less than b̌ so as to ensure individual rationality
based on (21).

4) Effect of Unit Recruitment Cost: In Fig. 9(a) and (b),
we can observe the impact of the unit recruitment cost on the
SW and the total payment, respectively. When we increase
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Fig. 10. Evaluation of privacy leakage.

Fig. 11. Evaluation of computational efficiency.

the unit recruitment cost from 0.1 to 0.4, the results show
that both the SW and the total payment will have a decrease.
This is because, with a higher unit recruitment cost, the SPs
might invest more expenses in the worker recruitment process.
In such a case, SPs could tend to cut down the payments of
resources (i.e., bids) appropriately. Therefore, the total pay-
ment also shows a downward trend. Moreover, we can also
see that the SW of DRA is higher than LIN-M and LOG-M,
and the total payment of DRA is the lowest among all imple-
mented algorithms. The results are consistent with the above
simulations (i.e., Figs. 7 and 8).

5) Evaluation of Privacy Leakage: Different privacy bud-
gets might lead to diverse degrees of privacy leakage, and thus,
we evaluate the effect of privacy budgets on privacy leakage.
Fig. 10 shows that the privacy leakage risk of DRA becomes
higher along with the growth of the privacy budget. When we
select a small privacy budget, the probability of perturbing any
bid to others will be higher according to (17). Thus, the leak-
age of the bid privacy is small. More importantly, the privacy
leakage values of compared mechanisms are positive infinity.
The reason is that these mechanisms work with a trusted third
party and all bidders will upload true bids to it.

6) Evaluation of Computational Efficiency: As illustrated
in Fig. 11, we run our DRA mechanism to verify the com-
putational efficiency. When the number of services and the
number of ECs increase, the running time of DRA will grow
slowly. Especially, the running time of DRA is less than 6 s
when the number of services is 250 and the number of ECs is
60. This time is much smaller than the auction cycle, which
indicates that the DRA mechanism can work well in many
practical applications. Our theoretical analysis is in accordance
with the results of the experiment.

VII. RELATED WORK

Both the resource prediction problem and the resource allo-
cation problem have attracted much attention all the time,

while many researchers have worked on addressing two prob-
lems separately. Since we focus on dealing with two problems
simultaneously and protecting bid privacy, we discuss some
related studies in the following three aspects. Specifically, we
first review the classical approaches and RNN-based methods
for resource usage prediction, then we review some auction-
based resource allocation mechanisms and privacy-preserving
mechanisms.

A. Methods for Resource Prediction

The prediction of time series is generally conducted by
applying the family of autoregressive (AR) models, moving
average (MA) models, and Integrated models (I). These tra-
ditional models have a strong assumption that the time series
may be modeled linearly with some given statistical distribu-
tion. Guo et al. [18] constructed high-dimensional composite
features based on basic features and predicted driver revenue
by developing a linear regression model. Although the lin-
ear model has interpretability, it is not suitable for long-term
prediction. A regressive ensemble method has been proposed
in [19] for CPU usage prediction, in which the final prediction
results would take the accuracies of eight regression models
into account. However, the limitation of this approach lies
in consuming the long training time for various models. In
the past few years, the emergence of RNN provides a new
pathway for usage prediction. For instance, Jiao et al. [15]
proposed a deep RNN architecture to predict the remaining
useful life of the rollers. Duggan et al. [42] implemented
the RNN to predict host CPU utilization, which can retain
information and make predictions with greater accuracy when
resolving short-term dependencies. However, the problem of
gradient varnishing cannot be addressed by the traditional
RNN. To cope with this problem, long short-term memory
(LSTM) [43] and GRU were proposed as an improvement of
RNN. For example, Bi et al. [44] integrated the bidirectional
LSTM model and the grid LSTM model to capture the depen-
dence characteristics and different dimension information,
which achieves the high-accurate prediction of workloads and
resources. Chen et al. [45] combined the GRU block and the
top-sparse autoencoder (TSA) to solve the long-term memory
dependencies, which can attain accurate workload prediction
results. Nevertheless, these works need a longer latent vector
to achieve accuracy. In [35], PF-RNNs exploit the general idea
of sequence prediction. Nevertheless, it does not refer to the
resource usage prediction.

B. Auction-Based Resource Allocation Mechanisms

Since auctions can allocate resources in an efficient man-
ner and cater to our goal of maximizing the SW, we focus
on investigating auction-based resource allocation mecha-
nisms. So far, auctions have been widely adopted in many
state-of-the-art systems for resource allocation. For exam-
ple, Shi et al. [22] introduced an online combinatorial auc-
tion framework for resource provisioning dynamically, which
achieves truthfulness, SW maximization, and computational
efficiency. Kumar et al. [23] designed a truthful combinato-
rial double auction mechanism and payment schemes to trade
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the cloud resources, which is truthful and weakly budget-
balanced. Gao et al. [46] devoted to allocating virtual machine
resources in network edges by using the auction theory, which
achieves an approximately optimal solution and a series of
excellent properties. Jiao et al. [47] focused on the efficient
computing resource allocation between the fog/cloud SPs and
miners, and presented an auction-based market model to pur-
sue the optimal SW. Nie et al. [6], [48] proposed an incentive
mechanism based on the Stackelberg game, which aims to
achieve an equilibrium state among all participants, rather
than to maximize the SW. Different from the above works,
we take the resource competition and security requirements
into consideration simultaneously.

C. Privacy-Preserving Mechanisms

In order to achieve the privacy preservation of sensitive bid
information, a wide variety of efforts has been devoted to this
aspect based on classic techniques (e.g., cryptography tech-
niques and DP). For example, Xiao et al. [13] protected the
privacy of workers’ quotations from being revealed to oth-
ers by adopting homomorphic encryption. Even though these
mechanisms [24]–[26] can keep sensitive information secret
completely, they would bring in a large quantity of computa-
tion and communication costs. To circumvent the drawback,
DP has been proposed to protect bid privacy since it is a
lightweight privacy-preserving technique. DP was first intro-
duced by Dwork et al. [36]. The first differentially private
auction mechanism was introduced in [49], where the mecha-
nism design and the exponential mechanism are incorporated
to realize the DP property under different objectives. Hu and
Zhang [28] designed a differentially private reverse auction
mechanism under a budget constraint for crowdsourcing-based
spectrum sensing, and it can protect crowdsourcing workers’
bids based on DP and ensure the accuracy of the radio envi-
ronment map. Han et al. [50] developed a dynamic pricing
mechanism by using DP and multiarmed bandits for mobile
crowdsourcing, which can keep users’ costs (i.e., bids) private.
The research [27] devised two frameworks (i.e., BidGuard
and BidGuard-M) with two score functions based on the
exponential mechanism, which can protect bid privacy and
approximately minimize the social cost. However, it has a
strong assumption that there exists a trusted platform and only
protects bids from being leaked to other bidders. That is, if the
platform is vulnerable or semihonest, the private information
of bids might be disclosed with a high probability.

To address these open challenges, we propose a DRA mech-
anism in a DSC system. First, we can use the GRUPF network,
which combines the GRU and PF into an RNN structure
to achieve the accurate prediction of future resource usage.
Then, the proposed DRA mechanism can ensure the series of
properties in the auction.

VIII. LIMITATION AND DISCUSSION

In this section, we discuss other issues that are not addressed
in this work due to space and time constraints, and then point
out the potential future research directions.

Unknown Worker Quality and Incomplete Historical
Resource Usage: In this article, we need a worker recruitment
policy to estimate the recruitment costs, in which a critical
issue is how to identify the quality of each worker. Most exist-
ing researches assume that the quality information of workers
is known in advance, which is not practical. On the other hand,
the resource prediction process applies a sequence of histor-
ical edge resource usage as input. However, some SPs may
hold incomplete or even unknown information about the his-
torical resource usage. Reinforcement learning techniques may
be required to learn these unknown or incomplete information.
In the future, we will attempt to integrate the unknown worker
recruitment mechanism and incomplete resource prediction
mechanism into DRA to extend the functionality of the DSC
system.

Dynamic Arrival of Services and Workers: Usually, an EC
covers a specific geographical area so that workers within its
overage can connect to it via wireless access. We assume that
all connections between ECs and workers remain unchanged
and stable. Meanwhile, all services proposed by different SPs
in our DSC system are already fixed and known. Nevertheless,
in a multiservice-oriented DSC system, new online services
might be publicized anytime. Besides, the smooth mobility of
workers should be supported and new workers may participate
in the system freely. Therefore, a newly emerging challenge is
how to deal with the dynamics of new services and new work-
ers. Based on this challenge, some potential directions may
be worth investigating in our future work, e.g., the accurate
prediction of the arrival time for new services and workers.

Privacy Protection of Bundle-Bid Pairs: In order to safe-
guard the privacy of bids from being leaked, all SPs depend
on the anonymous communication technology to upload
encrypted bids to different ECs, and then report the bundle-
confused bid pairs to the auctioneer. Apart from the bid values,
the bundle-confused bid pairs of an SP may still involve some
sensitive information. For example, the set of bundles may
imply the SP’s preferences and demands for some ECs. Thus,
it would be better to encrypt each SP’s bundles via homomor-
phic encryption locally. On the other hand, the DSC system
needs an auctioneer to perform the combinatorial auction algo-
rithm, so as to find out the winning bids and determine the
corresponding payments. To further enhance the security and
trustworthiness of the whole DSC system, we may take full
advantage of the blockchain technology and smart contracts to
replace the auctioneer. In future work, we will consider more
potential attacks and adopt more sophisticated mechanisms,
which may lead to an entirely new research direction.

IX. CONCLUSION

In this article, we have studied the edge resource allocation
problem in a DSC system where SPs need to compete for the
finite EC resources so as to deploy their desired SC services.
For the purpose of making rational use of resources, we
have designed an efficient GRUPF network for SPs to predict
demanded resource usage used in the subsequent competitions.
Then, the competitive problem of edge resources among SPs
can be formalized as a secure combinatorial auction, and we
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have proposed a DRA mechanism to address this problem. To
safeguard the bid privacy from the untrusted third-party and
rivalry SPs, we further design a bid confusion strategy based
on the exponential mechanism, which can avoid the leakage of
SPs’ sensitive information by letting SPs upload their confused
bids. Moreover, we have proved that the DRA mechanism has
some desired properties, including ε-differential privacy, indi-
vidual rationality, computational efficiency, and γ -truthfulness.
Extensive simulations have been performed to confirm the
excellent performance of DRA.
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