

A Knapsack-Based Message Scheduling and Drop Strategy for Delay-Tolerant Networks

En Wang^{1,2}, Yongjian Yang¹, and Jie Wu²

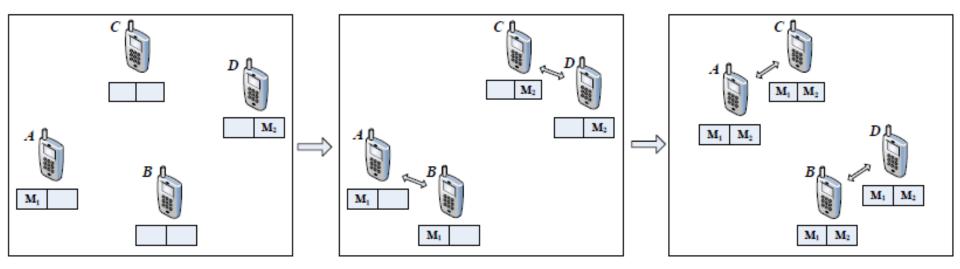
1 Department of Computer Science and Technology, Jilin University, Changchun, China

2 Department of Computer and Information Sciences, Temple University, Philadelphia, USA

wangen0310@126.com; yyj@jlu.edu.cn; jiewu@temple.edu

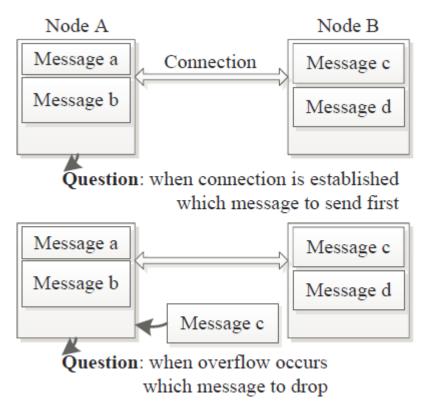
Outline

- 1. Introduction
- 2. Model Description
- 3. Scheduling and Drop Strategy
- 4. Evaluation
- 5. Future Work


1.1 Motivation

- The dramatic change of topology and the frequent interruption of connections make it difficult to forward the message to the destination in DTNs
- Routing protocols seek to improve the delivery ratio through increasing the number of message copies

• Excessive message copies lead to the occurrence of buffers overflowing because of limited storage space


1.2 Problem

• The message flooding process

1.2 Problem

- When a connection is established, which message to send first
- When overflow occurs, which message to drop

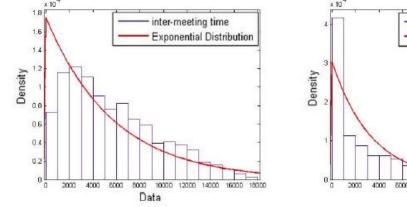
1.3 Challenge

• The utility model to decide the priority of a message

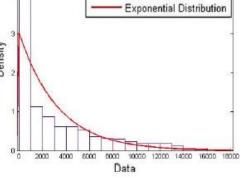
• The communication bandwidth is limited

• The message sizes are different

Outline

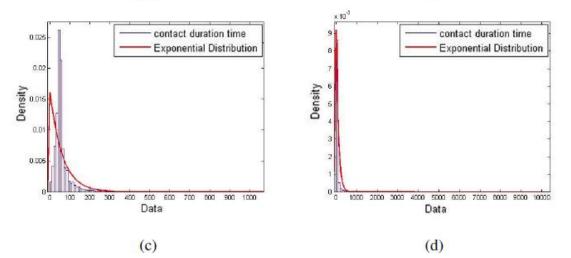

- 1. Introduction
- 2. Model Description
- 3. Scheduling and Drop Strategy
- 4. Evaluation
- 5. Future Work

2.1 Mobility Model


- Definition 1: Intermeeting time: the elapsed time from the end of the previous contact to the start of the next contact between nodes in a pair
- Definition 2: Contact duration: the duration time during which the nodes in a pair stay in each other's communication range
- Intermeeting times and contact durations are exponentially distributed under many popular mobility patterns such as random walk, random waypoint, and random direction.

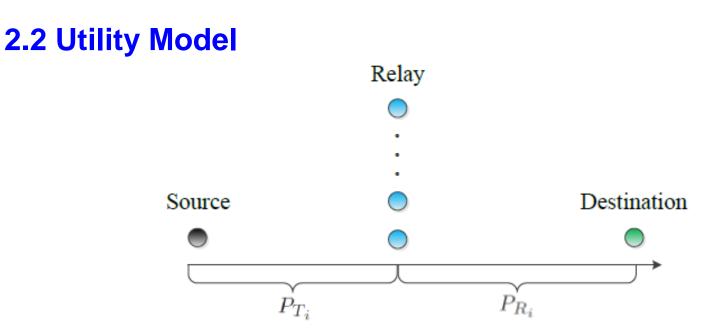
$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \mathbf{x} > \mathbf{0} \\ 0 & \mathbf{x} \le \mathbf{0} \end{cases}$$

2.1 Mobility Model: random-waypoint (a,c), EPFL (b,d)



(b)

inter-meeting time



2.2 Utility Model

N	Total number of nodes in the network	
$n_i(T_i)$	The copy number of message i in the network after	
	the elapsed time T_i	
$m_i(T_i)$	Number of nodes (excluding source) that have seen message i	
	from its creation time to the elapsed time T_i	
P_{T_i}	Probability that message i has been successfully	
	delivered at the present moment	
P_{R_i}	Probability that undelivered message i will	
	reach the destination within time R_i	
P_i	Probability that message i can be successfully delivered	
ε_i	Probability that message i can be forwarded successfully during contact	
M_i	Size of message i	
W	Bandwidth of the contacts between nodes in a pair	

 The copy number is less than the number of nodes that have seen message *i* as some copies are discarded

 The probability of message *i* being delivered is given by the probability that message *i* has been delivered and the probability that message *i* has not yet been delivered, but will be delivered during the remaining time R_i

$$P_i = (1 - P_{T_i})P_{R_i} + P_{T_i}$$

2.2 Utility Model

• Due to the reason that all the nodes including the destination have an equal chance of seeing the message *i*:

$$P_{T_i} = \frac{m_i(T_i)}{N}$$

 Probability that message *i* can be forwarded successfully during a contact:

$$\varepsilon_i = e^{-\lambda_2 \frac{M_i}{W}}$$

2.2 Utility Model

• 1- P_{Ri} gives the probability that the $n_i(T_i)$ nodes at T_i will not contact the destination node during R_i , and the new infected nodes will also not reach the destination node.

$$1 - P_{R_i} = e^{-\lambda n_i (T_i) R_i} \prod_{t=0}^{R_i} e^{-\lambda n'_i (T_i+t)(R_i-t)}$$
$$= \frac{e^{-\lambda n_i (T_i) R_i} \prod_{t=0}^{R_i} e^{-\lambda n'_i (T_i+t)(R_i)}}{\prod_{t=0}^{R_i} e^{-\lambda n'_i (T_i+t)(t)}}$$
$$= \frac{e^{-\lambda n_i (T_i+R_i) R_i}}{e^{-\lambda \int_0^{R_i} n'_i (T_i+t) t dt}}$$

2.2 Utility Model

• The probability P_{Ri} represents the likelihood that the undelivered message *i* at T_i can reach the destination in the remaining time R_i

$$P_{R_i} = 1 - \frac{N^{\frac{1}{\varepsilon_i}}}{e^{\lambda N R_i} [n_i(T_i) - n_i(T_i)e^{-\varepsilon_i\lambda N R_i} + Ne^{-\varepsilon_i\lambda N R_i}]^{\frac{1}{\varepsilon_i}}}$$

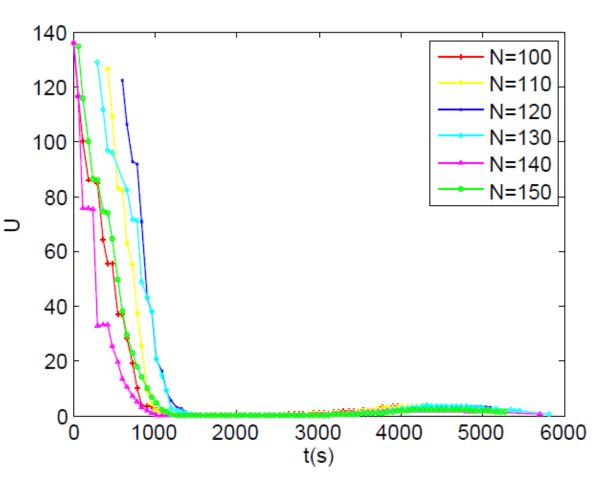
• The probability that message *i* can be successfully delivered:

$$P_i = \frac{m_i(T_i) - N}{N} N^{\frac{1}{\varepsilon_i}} \frac{1}{e^{\lambda N R_i} [n_i(T_i) - n_i(T_i)e^{-\varepsilon_i\lambda N R_i} + Ne^{-\varepsilon_i\lambda N R_i}]^{\frac{1}{\varepsilon_i}}} + 1$$

2.2 Utility Model

Three cases:

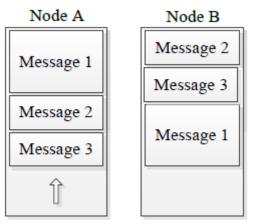
 $\begin{cases} \Delta(n_i) = 1 & \text{If replicate message } i \text{ during contact.} \\ \Delta(n_i) = 0 & \text{If no action for message } i \text{ is taken.} \\ \Delta(n_i) = -1 & \text{If drop an already existing message } i. \end{cases}$


Therefore, the utility of message *i* is precisely the derivative of ٠ the delivery ratio P_i

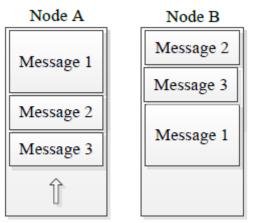
$$U_{i} = [N - m_{i}(T_{i})]N^{\frac{1-\varepsilon_{i}}{\varepsilon_{i}}}e^{-\lambda NR_{i}}\frac{1}{\varepsilon_{i}}(1 - e^{-\varepsilon_{i}\lambda NR_{i}})$$
$$[n_{i}(T_{i}) - n_{i}(T_{i})e^{-\varepsilon_{i}\lambda NR_{i}} + Ne^{-\varepsilon_{i}\lambda NR_{i}}]^{\frac{-\varepsilon_{i}-1}{\varepsilon_{i}}}$$

The higher U_i indicates that the message i is more important ۲

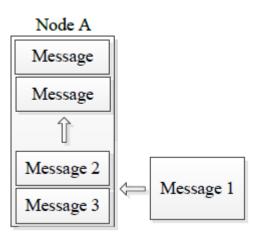
2.2 Utility Model


Parameter	Value
Mobility Pattern	random-waypoint
Simulation Area	4500m×3400m
Number of Nodes	100-150
Moving Speed	2m/s
Transmission Speed	250Kbps
Buffer Size	25MB
TTL	6000s

Outline


- 1. Introduction
- 2. Model Description
- 3. Scheduling and Drop Strategy
- 4. Evaluation
- 5. Future Work

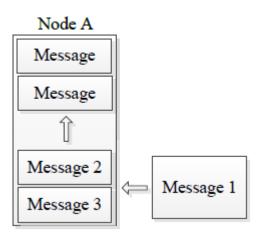
3.1 Scheduling Strategy


- The utilities satisfy: $U_1 > U_2 > U_3$, and $U_2 + U_3 > U_1$.
- The message sizes satisfy: $M_1 = 2M_2$ and $M_2 = M_3$.
- Condition: only messages with no greater than M₁ can be successfully forwarded due to the limited contact duration and bandwidth

3.1 Scheduling Strategy

- Traditional strategy: schedule the messages in decreasing order of U_i . Gain: U_1
- Our strategy: schedule the messages in decreasing order of $\frac{U_i}{M_i}$. Gain: $U_2 + U_3$
- Conclusion: due to the reason that $U_2 + U_3 > U_1$, our strategy is better than the traditional strategy

3.1 Drop Strategy



- The utilities satisfy: $U_1 > U_2 > U_3$, and $U_2 + U_3 > U_1$.
- The message sizes satisfy: $M_1 = 2M_2$ and $M_2 = M_3$.
- Condition: the local buffer is already full

3.1 Drop Strategy

```
Algorithm 1. Dynamic programming to solve 0-1 knapsack problem
1: for j = 0; j \leq totalWeight; j + + do
      for i = 0; i \le n; i + i + do
 2:
        if (i = 0 || j = 0) then
 3:
 4:
          bestValues[i][j]=0;
 5:
        else
          if j < sizes[i-1] then
6:
             bestValues[i][j] = bestValues[i-1][j];
 7:
8:
          else
             iweight = sizes[i-1];
9:
             ivalue = values[i-1];
10:
             bestValues[i][j] = MAX(bestValues[i-1][j]);
11:
             ivalue=ivalue+bestValues[i-1][j-iWeight];
12:
13: if bestSolution=null then
14:
      bestSolution=int[n];
15: tempWeight=totalWeight;
16: for i = n; i \ge 1; i - - do
      if bestValues[i][tempWeight] > bestValues[i-1][tempWeight] then
17:
        bestSolution[i-1]=1;
18:
19:
        tempW eight = sizes[i-1];
20:
      if tempWeight=0 then
21:
        break;
22: bestValue=bestValues[n][totalWeight];
```

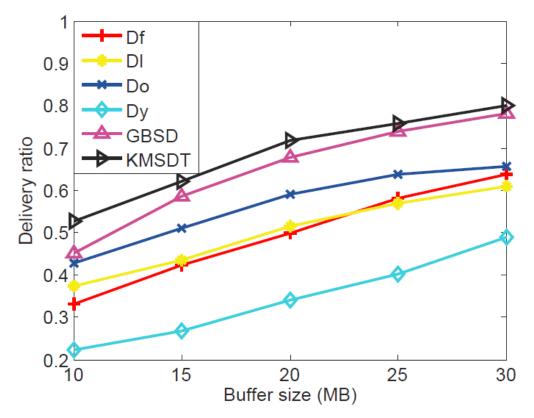
3.1 Drop Strategy

- Traditional strategy: drop the message with lowest utility Loss: $U_2 + U_3$
- Our strategy: drop the message according to the solution of the following 0 1 knapsack problem Loss: U₁
 Restriction: ∑_{k=1}ⁿ M_kx_k ≤ M, x_k={0,1}, k=1, 2, 3 ··· n,
 Objective: Max ∑_{k=1}ⁿ U_kx_k.

Outline

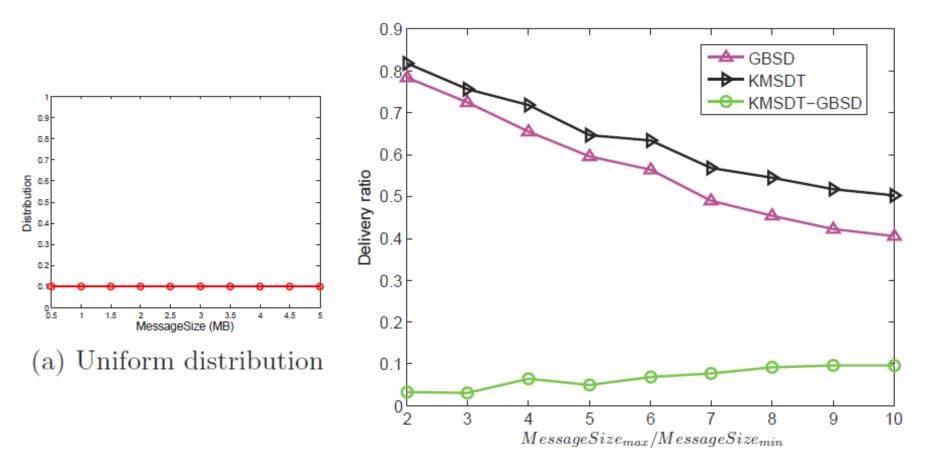
- 1. Introduction
- 2. Model Description
- 3. Scheduling and Drop Strategy
- 4. Evaluation
- 5. Future Work

4.1 Simulation parameters (random-waypoint)

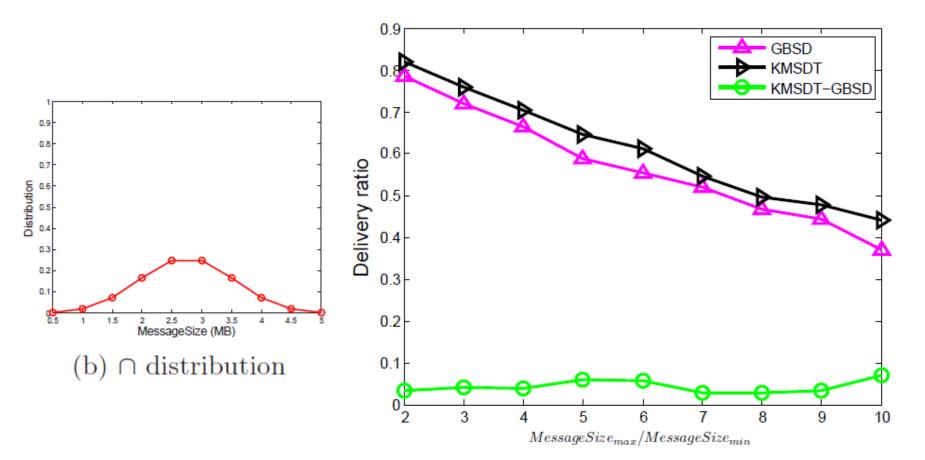

Parameter	Value
Simulation Time	18000s
Simulation Area	$4500 \mathrm{m} \times 3400 \mathrm{m}$
Number of Nodes	100
Moving Speed	2m/s
Transmission Speed	250Kbps
Transmission Range	100m
Buffer Size	$10\mathrm{MB},\!15\mathrm{MB},\!20\mathrm{MB},\!25\mathrm{MB},\!30\mathrm{MB}$
Interval of Message Generation	[5,15][15,25][25,35],[35,45]
TTL	300

4.2 Comparative method (GBSD [10])

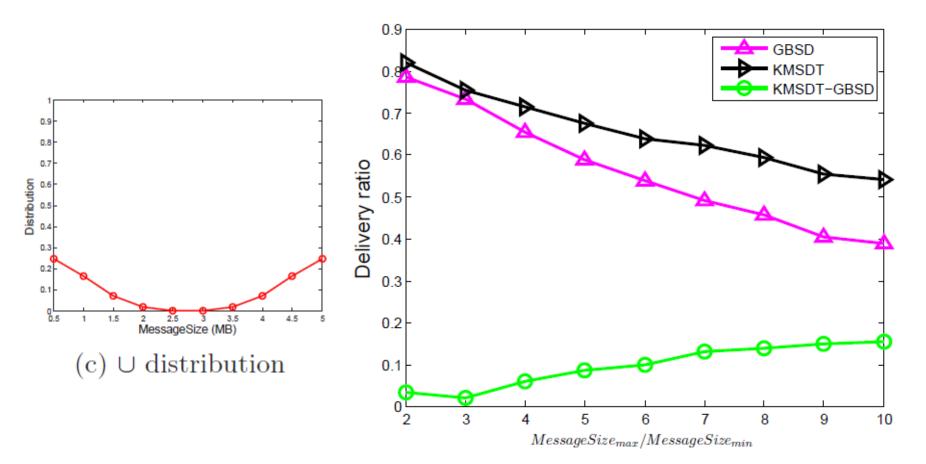
- Without considering the following three problems:
- 1. Different message sizes.
- 2. Limited contact duration.
- 3. The impact on delivery ratio of message copies, which will be generated in R_i (remaining TTL).


[10] Krifa, A, Barakat, C, "Message Drop and Scheduling in DTNs: Theory and Practice", IEEE Transactions on Mobile Computing, 11 (9) (2012) 1470-1483.

4.3 Same Message Size



Df: drop the message first enters the buffer Dl: the last enters
 Do: the oldest Dy: the youngest


4.4 Different Distributions of Message Sizes

4.4 Different Distributions of Message Sizes

4.4 Different Distributions of Message Sizes

Outline

- 1. Introduction
- 2. Model Description
- 3. Scheduling and Drop Strategy
- 4. Evaluation
- 5. Future Work

1. Future Work

- Other replication-based routing schemes
 - Spread-and-wait, delegation forwarding, etc

• The fairness of messages in different sizes

Thank You