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Abstract—The advancements in information and communica-
tion technology have led to the emergence of innovative edge
computing models that incorporate the computing power of
vehicles into the energy sector. Electric vehicles (EVs), functioning
as edge computing nodes, offer flexible computing offloading
services for charging stations (CS). However, coordinating EV
computing and charging should consider the interdependence
with CS’s specific computing requirements due to information
asymmetry. Additionally, it is crucial to consider EV’s charging
demands and their social distance to computing tasks. In this
context, it is natural to view EVs and CSs as self-interested
prosumers who prioritize their individual utilities. To address the
integration of strategic EV-CS interactions and uncertainties into
the joint computing scheduling and energy trading, this paper
proposes a parameterized deep Q-network-based reinforcement
contract design framework, which employs a hybrid action space
to design contracts that facilitate CSs in pairing computing tasks
and charging resources with EVs. The objective is to incen-
tivize EV participation and maximize long-term social welfare
by incorporating incentive compatibility, individual rationality
constraints, and capacity constraints into the contract design.
Experimental results demonstrate that the proposed framework
surpasses parameterized deep deterministic policy gradient-based
and greedy-based contract designs, and achieves near-optimal
solutions by solving deterministic optimizations.

Index Terms—Smart charging network, vehicular edge com-
puting, charging scheduling, contract design, parameterized deep
Q-network, social welfare.

I. INTRODUCTION

Mobile edge computing revolutionizes the mobile network
landscape by bringing computation and storage resources to
the network edge, enabling the execution of resource-intensive
applications while meeting stringent latency requirements [1],
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[2]. In this context, mobile vehicles play a crucial role in
supporting the sustainability and functionality of sensors and
connected devices by leveraging their computational capa-
bilities for complex computing tasks [3], [4]. With the rise
of electric vehicles (EVs), there is a growing expectation
to integrate them into edge computing networks, fostering
synergistic interactions between information processing and
energy management [5], [6]. Charging stations (CSs) have the
potential to act as edge nodes in these networks, aggregating
energy data and performing computing tasks such as analyzing
charging behaviours and predicting traffic conditions. Addi-
tionally, CSs can establish data exchange and communica-
tion channels with EVs, effectively extending computational,
communication, and storage capabilities to the edge of the
EV ecosystem. As a result, offloading computations to more
resourceful edges, such as EVs, becomes a viable solution
to enhance the capabilities of CSs [7]. This paradigm shift
towards a smart charging network also transforms traditional
CSs and EVs into prosumers who manage private information
and resources.

Computing offloading involves task partition, offloading
decision, and resources allocation [8]. Given the limited com-
putation and charging resources, it becomes crucial to jointly
address computation offloading and resource allocation chal-
lenges [9]. However, since charging and computing resources
are widely distributed among CSs and EVs, the decentralized
nature of the environment needs to be considered. Addition-
ally, it is no longer feasible to assume the presence of a
central authority with complete knowledge and control over
EV behaviours [10]. Instead, a more realistic approach is to
deem CSs and EVs as self-interested agents driven by their
individual utilities. Consequently, incomplete or unreliable
disclosure of EV’s private preferences can hinder the effective
management of energy and computing resources. The evolving
smart charging network, reliant on EV-edge computing, is
transforming into a dynamic, distributed market that facilitates
contract design. In light of these complexities, the integration
of EVs into the charging network entails information gathering
and distributed decision-making, making contract design an
essential interaction process between CSs and EVs. In such
market setting, CSs must provide appropriate incentives to
EVs, encouraging their participation in computation offloading
through enticing rewards [11]–[13].

A thoughtful contract design for joint computing scheduling
and energy trading presents three key challenges. Firstly, both
CSs and EVs function as resource requesters and suppliers



IEEE TRANSACTIONS ON MOBILE COMPUTING 2

(prosumer) within their respective capacities, posing diffi-
culties in optimizing the scheduling of computation tasks
and energy trading. CSs require computing resources while
providing charging services, whereas EVs require charging
while offering computing power. Secondly, the presence of
partially-known asymmetric information and conflicting ob-
jectives between EVs and CSs adds complexity to deriving an
optimal contract. The efficiency of scheduling computations
and charging relies on the information provided by EVs and
CSs, with EVs potentially lacking a complete understanding
of their own preference profile. Thirdly, dynamic factors and
uncertainties that can impact decision-making need to be
considered in scheduling computing and charging resources.
Evaluating the effectiveness of the current contract in light
of future outcomes presents a challenge as well. In summary,
an effective contract design should address user discomfort
and incorporate human feedback into the control loop [14]. To
tackle task offloading and resource allocation issues in mobile-
edge computing within dynamic environments, reinforcement
learning (RL) offers effective solutions that enable centralized
policy training with decentralized execution [15].

This study focuses on addressing the aforementioned chal-
lenges by proposing a reinforcement contract design for the
coordination of vehicular-edge computing scheduling and en-
ergy trading in a smart charging network. The main question
this study aims to answer is: considering the limited capacity
and partial information revelation, how can a charging station
maximize its long-term rewards by effectively coordinating
EVs’ computing resources with their charging requirements?
The objective is to maximize the utility and social welfare
across both EVs and CSs. To tackle this problem, the study
formulates the joint optimization of vehicular-edge comput-
ing scheduling and energy trading as a unified problem.
A reinforcement contract design framework is implemented,
leveraging solutions from reinforcement learning, to facilitate
interactions and coordination between EVs and CSs.

The contributions of this study are specified as follows:
• We propose an optimal contract design scheme for the

joint vehicular-edge computing scheduling and energy
trading problem, where incentive compatible, individual
rationality, and system constraints are integrated into a
mixed-integer linear program to ensure a voluntarily par-
ticipation and truthful information revelation. The aim is
to achieve efficient computing resource and energy trad-
ing, manage information disclosure, and defend against
malicious behaviours of selfish participants.

• We incorporate economic constraints and system un-
certainties into a sequential, collective contracting pro-
cess by proposing a parameterized deep Q-network (PA-
DQN) based contract design framework. This framework
enables CSs to simultaneously coordinate EV’s charg-
ing and computing capability using a hybrid discrete-
continuous action space, such that the resources are effi-
ciently scheduled while maximizing the social welfare.

• We conduct extensive experiments to validate the rein-
forcement contract design (RCD) framework. The results
demonstrate that RCD achieves close-optimal solutions
and outperforms other baseline approaches that rely on

RL. Notably, our approach efficiently handles uncertain-
ties without requiring information sharing among EVs.

The remainder of this paper is organized as follows. Section
II reviews the related work. Section III presents the EV-
CS architecture. Section IV introduces the optimal contract
design problem. Section V develops a reinforcement learning-
based framework for contract design. Section VI carries out
an experiment study to validate the proposed methodology.
Finally, Section VII draws a conclusion.

II. RELATED WORK

This section reviews the existing literature on the models,
strategies, and related approaches with EV-based edge com-
puting and charging scheduling problems, which have been
extensively studied recently [13], [16], [17]. The traditional
way is to develop mathematical models to optimally schedule
the resources. For example, S. Yu et al. [17] formulated the
energy-efficient task assignment problem by considering the
necessary constraints and proposed a Monte Carlo Tree Search
based algorithm for the task assignment problem. Although
the optimization techniques are still widely used today, they
exhibit several limitations in dealing with the distributed and
dynamic nature of the joint computing task and charging
scheduling problems. Specifically, many optimization-based
approaches rely on linearized models and static assumptions
of the system, which may not accurately capture the system
dynamics and the market behaviours of agents therein. More-
over, solving optimization problems is often computationally
expensive and time-consuming in practical scenarios.

Considerable research has been dedicated to developing
RL-based approaches for addressing the challenges outlined
above. Several notable examples can be found in the literature
[16], [18]–[20]. For instance, a model-free deep RL-based
distributed algorithm is proposed in [16], where each device
determines its offloading decision without knowing the task
models and decisions of other devices. The model considered
non-divisible and delay-sensitive tasks with an objective of
minimizing the expected long-term cost. Y. Zhang et al.
[18] proposed a distributed scheme based on multi-agent RL,
where each cloud center jointly determines the task offloading
and resource allocation strategy based on its inference of
other cloud center’s decisions. A vehicular edge computing-
based offloading scheduling problem is investigated in [19],
which considers diverse task characteristics, dynamic wireless
environment, and frequent handover events caused by vehicle
movements. A multi-agent reinforcement mechanism design
framework is proposed in [21] for dynamic pricing in a charg-
ing network, where the station-user interaction is modelled as
a mechanism design problem, and station-station cooperation
is captured by the Markov game and solved by multi-agent
deep deterministic policy gradient.

Most RL algorithms deal with either discrete or continuous
action space solely. For instance, Ref. [22] modelled resource
allocation and trajectory design of multiple unmanned aerial
vehicles as a decentralized partially observable Markov de-
cision process and solved by multi-agent RL. In terms of
more complicated action space, J. Xiong et al. [23] extended
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NOMENCLATURE

Abbreviations
CS Charging Station
EV Electric Vehicle
IC Incentive Compatible
IR Individual Rationality
PA-DDPG Parameterized Deep Deterministic Policy Gradient
PA-DQN Parameterized Deep Q-Network
RCD Reinforcement Contract Design
RL Reinforcement Learning
SoC State of Charge
Parameters
x, X Action profile of all users
a, A Markov decision process: charging station action
i, I , I Index, number, and set of charging stations
j, J , J Index, number, and set of electric vehicles
k, K, K Index, number, and set of types
m, M , M Index, number, and set of computing task
o, O Markov decision process: observation
s, S Markov decision process: system state
t, T , T Index, number, and set of time step
Index and Set
αn Tendency index of EV to connect to CS
βi,k Probability of the CS i’s type being θk
ϵi,t The decayed noise
η The profit coefficient of CS
γ Reward discount factor
Λmin
i,k ,Λmax

i,k The maximal and minimal payment for CS i’s k type
µ∗ The optimal deterministic policy
µi(oi,t−1) The deterministic policy trained by PA-DDPG
νj , ρj The CPU-cycle frequency (cycles/second), and computing den-

sity (cycles/byte) of EV j
θµi The deterministic policy parameter of target critic for charging

station i
θk,Θk Charging station’s type
m̃j , g, fg Mass, gravitational acceleration, ground friction coefficient of

EV
ccpuj , cc, cm The unit cost of computing energy consumption, charging,

and mobile consumption
Cin

i Penalty for the unfinished computing task
di,j , sdi,j Physical distance and Social distance between CS i and EV j
ei,j The energy consumption of EV j for moving to CS i
Ej , ∆Ej The battery capacity and the required energy of EV j
fg , ϕ Air resistance, and windward area of EV when moving
Hi, Si, Fi The type, size and feature of CS i’s computing task
m, n The number of computing task type, and number of social

distance’s attributes
Ph
i ,P l

i The charging power of Level 2 and Level 3 of CS i
Pmax
i The maximum output power of CS i

qi Number of chargers of CS i
ucs
i,j,k Utility function of CS i served by EV j

uev
i,j Utility function of EV j serving CS i

vj EV j’s moving speed
Decision Variables
λi,j,k The payment by CS i to EV j for the computing resources
Ii,t The number of plugged-in EVs being charged at station i at t
pi,j,t The charging power of EV j in CS i at t
ri,t Hourly revenue (immediate reward) of station i at t
Ri The accumulated reward of charging station i
si,j,k The computing resources provided by EV j to CS i’s type k
SoCj,t The State-of-Energy of EV j at time t

tchgi,j , tcomi,j Charging time and task computing time of EV j
Ti,j,k The stay time of EV j at CS i when serving i’s k-type task
zi,j,t Binary variable, equals to 1 if EV j accepts CS i’s contract

deep Q-network and proposed a PDQN for the discrete-
continuous hybrid action space. Furthermore, M. Hausknecht
and P. Stone extends the deep deterministic policy gradient
(DDPG) algorithm into a parameterized action space by fea-
turing a small set of discrete action types, each of which
is parameterized with continuous variables [24]. Ref. [20]
proposed a Dirichlet DDPG algorithm to optimize the task
partitioning and computational power allocation for compu-
tation offloading in a dynamic environment with multiple
Internet of Thing devices and edge servers. The goal is to
maximize the number of tasks processed before deadlines and
minimize the energy cost and service latency. L. Hsieh et al.
[25] compared three task assignment algorithms for the edge-
to-edge horizontal cooperation and the edge-to-cloud vertical
cooperation, based on different deep reinforcement learning
approaches, value-based, policy-based, and hybrid approaches.
Ref. [26] proposed an evolutionary multi-objective RL algo-
rithm to address the trajectory control and task offloading
problems of unmanned aerial vehicles. However, the proposed
RL algorithms in the literature lack capability to deal with the
information asymmetry and selfishness of agents in the joint
vehicular-edge computing scheduling and energy trading, so
its applicability to market setting should be further enhanced.

Economic theory can capture the assumptions arising from
the self-interest nature of agents [27]. C. Li et al. [5] de-
veloped a contract-based incentive mechanism to motivate
parked EVs to contribute their idle on-board resources, and
the objective is to maximize the utility of the service provider.

Ref. [13] formulated the CSs’ profit maximization as a non-
collaborative energy contract problem under the smart grid
provider’s unknown information and common constraints as
well as other CSs’ contracts. A novel contract-based incentive
mechanism is proposed by [28] based on deep RL that
combines resource contribution and utilization. An auction
mechanism is developed by [29] to deal with multi-charge
scheduling of EV users on highway. By considering edge
server such as EVs as self-interested agent, H. Zhou et al.
proposes a reverse auction-based computation offloading and
resource allocation mechanism for the mobile cloud-edge com-
puting [9]. However, these approaches are less incorporated
with reinforcement learning-based solutions in dealing with
dynamics or uncertainties underlying in the joint scheduling
of offloading and charging problem in this study.

To sum up, this study improves the existing literature from
three aspects: Firstly, unlike works that focus on isolated
topics where computing scheduling and energy trading are
not simultaneously considered [17], [27], this study considers
computing scheduling and energy trading as a joint opti-
mization problem in a decentralized environment. Secondly,
unlike contract-based incentive mechanism which motivates
EVs to provide computing resources [5], mechanism design-
based solutions for mobile edge computing [9] or EV charging
scheduling [29], our model captures the dynamics in maximiz-
ing long-term benefits using reinforcement learning. Thirdly,
unlike other reinforcement learning-based solutions [16], [20],
we consider the economic constraints of contract design and
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Fig. 1. The topology of the smart EV-CS network under investigation.

achieve utility-maximum scheduling scheme that maximizes
the social welfare. To the best of our knowledge, this is the
first work to develop a RL-based contract design scheme for
the joint energy and computing scheduling.

III. SYSTEM ARCHITECTURE

This section provides an overview and explanation of the
system model for the investigated smart charging network. The
architecture of the electric vehicle-charging station (EV-CS)
network is depicted in Fig. 1. It is structured as an Internet of
Energy, incorporating information and communication devices
that enable interaction and resource exchange between EVs
and CSs. Electric vehicles, functioning as intelligent comput-
ing devices, can engage with CSs to exchange computing and
energy resources. The operational period, denoted as T , is
defined as one day, which is further divided into equal-length
time slots represented by t ∈ T . Within this network, there are
two types of EVs interested in providing computing services
to CSs while simultaneously recharging their batteries. These
EVs are classified as individual EVs and commercial EVs,
such as taxis, and they differ in terms of battery capacity and
computing capability. Each CS randomly generates different
types of computing tasks and publishes information specifying
the computing resources required from EVs. In particular, a CS
accomplishes computing tasks by coordinating one or several
EVs that possess the necessary computation capabilities for
the specific task. CSs are primarily concerned with long-
term objectives, such as maximizing cumulative revenue over
the course of a day. To achieve this, CSs offer attractive
contracts that outline the required resources and corresponding
payments to EVs, thereby incentivizing them to accept and
complete the tasks.

The formulation of a well-designed contract is essential for
eliciting and integrating the private preferences of EVs regard-
ing coordinated charging and computing. In a decentralized
setting, EVs are not under the control of any CS; instead,
both EVs and CSs prioritize their individual benefits. The main
objective is to identify a successful contract design, from the
perspective of charging stations, that can efficiently facilitate
in-vehicle computation tasks while maximizing the benefits for
both CSs and EVs.

A. Charging Network Model

In the smart charging network, computing tasks originate
from different stakeholders, each with their own unique char-
acteristics. These tasks are then transmitted to the charging

network for processing. The charging network controller as-
sumes a crucial role in consolidating essential information
regarding CSs, including their size, location, and availability
status. Using this comprehensive information, the controller
effectively assigns tasks to CSs at different times. To facilitate
this allocation process, the charging network is equipped with
a total of I charging stations, denoted by the set I. There
are M types of tasks which can be load forecasting, charging
demand prediction, EV charging habit analysis, traffic data
analysis, image processing, among many others. A task m ∈
M is randomly assigned to a CS i ∈ I at a time, characterized
by a 3-tuple: ⟨Hi,m, Si,m, Fi,m⟩, where Hi,m is the task type,
Si,m is the task size that determines the required workload,
and Fi,m is the feature of this task. To ensure reasonable
computing times and avoid excessive delays, it is assumed
that the sizes of different tasks are evenly distributed. The
tasks assigned to a CS are divisible and can be partitioned
into multiple parts of varying sizes. In addition, it is assumed
that the number of CPU cycles required for computing each
input bit remains constant.

Charging stations can earn by completing the computation
tasks given by the charging network and provide charging
services to EVs. The maximum output power Pmax

i of CS
i is limited by the transformer, and the charging power of EV
j at CS i is denoted by pi,j . CS i owns qi chargers with two
charging modes, i.e., level-3 DC fast charge and level-2 AC
slow charge with power Ph

i and P l
i , respectively. In order to

overcome the limitations of EVs’ limited computing capability
for large computing tasks, a solution is to decompose the task
and assign it to a group of EVs. In return for completing
the sub-tasks, EVs are rewarded with a share of the profits
as their payment. This involves establishing a one-to-many
relationship between the CS and EVs, where each EV can
choose only one CS while a CS can invite multiple EVs to
undertake computing tasks.

B. Electric Vehicle Model

Consider J EVs which are classified into two types: indi-
vidual EV and commercial EV with set represented by J , and
EV j ∈ J ’s with the battery capacity of Ej . EVs can provide
low-cost and flexible computing services for nearby charging
station nodes, and EVs can gain by providing computing
services to CSs and have preferences on the charging power
provided by CS based on its current state-of-charge (SoC)
SoCj,t. The computing capability of EV j can be represented
by νj which denotes the CPU-cycle frequency.

The physical distance di,j between CS i and EV j is the
Euclidean distance in a urban area. The average moving speed
of EV j is represented by vj , and its energy consumption due
to overcome friction resistance and air resistance for moving
to CS i is defined by [30] as follows:

ei,j =
di,j
vj

·

{
m̃j · g · fg · vj

3, 600
+

fa · ϕ · v3j
76, 140

}
, (1)

where m̃j , g, fg, vj , fa, and ϕ represent the mass of EV i,
gravitational acceleration, ground friction coefficient, speed of
EV i, air resistance, and windward area, respectively.
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EVs should ensure they have enough energy to arrive at CS.
The stay time Ti,j of EV j in CS i takes the largest part of
the charging time tchi,j and the task computing time tcoi,j :

Ti,j = max
{
tchgi,j , tcomi,j

}
= max

{
∆Ej

pi,j
,
si,j,k · ρj

νj

}
, (2)

where tchgi,j = ∆Ej/pi,j , ∆Ej is the energy that EV j desires
to charge, pi,j is the charging power that CS i provides
for EV j in the contract. The computing time tchi,j of EV j
serving k-type CS i is tchi,j =

si,j,k·ρj

νj
, where si,j,k is the

computing task allocated to EV j, ρj denotes the computing
density (in cycles/byte), νj denotes its CPU-cycle frequency
(in cycles/second), which measures EV’s computing ability.

C. EV-CS Interaction

The architecture of the EV-CS system comprises both social
interactions and physical interactions involving EVs and CSs.
Physical interactions refer to the need for EVs to recharge
when their power levels are insufficient. In this context, when
offering a contract to EVs, CSs must consider the availability
of idle chargers at their stations. On the other hand, social
interactions involve a many-to-many contract framework that
connects CSs with EVs in an energy Internet. Within this
framework, EVs provide computing resources to assist in
completing smart charging station tasks, while CSs provide
charging services to EVs. Social interactions are more complex
than physical interactions due to the continuous closed-loop
feedback between agents and the presence of uncertainties
[31]. The interaction between CSs and EVs requires intricate
decision-making processes, compelling CSs to generate opti-
mal contracts and EVs to carefully consider whether to accept
the contract offered by a CS.

In this study, we propose a social interaction-based def-
inition of the contract design problem as follows: “A dy-
namic sequence of actions that mutually consider the actions
and reactions through a decision-making and information
exchange process between EVs and CSs to maximize economic
benefits.” In this context, both EVs and CSs are considered
rational and self-interested agents that strive to maximize
their own utility. However, there exists information asymmetry
during the trading process, where each side is unaware of the
other’s type or characteristics. This lack of information poses
challenges in the trading of computing tasks and energy in
this two-sided market. Factors such as the distance between
EVs and CSs, transformer capacity limitations, and space
restrictions within the charging network further constrain the
trading process. Given these constraints, it becomes crucial
to design contracts thoughtfully in order to capture EVs’
preferences and appropriately match them with suitable tasks.
By doing so, we aim to maximize long-term social welfare
by efficiently utilizing available resources and optimizing
interactions between EVs and CSs. This approach seeks to
strike a balance between the selfishness of individual agents
and the overall societal benefit.

Despite the physical distance di,j between CS i and EV j,
their social distance sdmi,j measures the degree of acceptance
or rejection of contract offered by CS i for completing a

specific task m. Correspondingly, the physical distance and
social distance should be considered in assigning computing
task to EVs with proper payment. Therefore, we define the
social distance of our model based on [32] as:

sdmi,j =

N∑
n=1

ζn · sdmi,j,n, (3)

where ζn is a normalized weight factor measuring the impor-
tance that each social attribute has in the process of formation
of connections. Each attribute represents a distinctive social
feature of EV (individual or commercial) and computing task,
such as task type Hi,m, profession, geographic location, and so
on. It is possible to define a set of social distances correspond-
ing to each attribute, and sdmi,j,n ∈ [0,∞), n = 1, ..., N . The
social distance will influence EV’s willingness or probability
to accept a specific computing task.

Understanding the underlying rules governing the formation
of social networks is a challenging task due to the multitude of
factors that influence human interactions. Individuals sharing
the same interests, common places, similar ideas or akin
objectives, for example, tend to form acquaintances [32]. In the
investigated clusters of EVs, both individual and commercial
EVs exhibit similar social distances when it comes to their
association with specific types of computing tasks.

IV. CONTRACT DESIGN FOR COMPUTING SCHEDULING
AND ENERGY TRADING

In this section, we present a mathematical model for the
contract design of joint computation scheduling and energy
trading between CSs and EVs. To begin with, we establish
the contract design problem by introducing the necessary
terminology and concepts.

A. EV-CS Contract

Definition 1 (Contract design [33]). A general form of con-
tracting problem considers a principal (CS in our model) who
interact with an agent (EV). They play the following game:

• The CSs offers a contract: < s, λ, p >, s: computing
resource, λ: payment for task, p: charging power;

• The EV publicly accepts or rejects this contract. Rejection
ends the game;

• If the EV accepts the contract, he privately chooses an
action (F ; c), where F is a probability distribution and
c is a cost. If the EV accepts the contract, the utility for
EV and CS are calculated.

We consider a three-party contract design structure involv-
ing the charging network, individual EVs, and commercial
EVs. The optimal contract design determines the division and
allocation of task resources and the pricing policy based on its
distance to EVs, task type, and the available chargers provided
for EVs. The CSs aim to offer contracts to individual EVs for
small tasks, while aggregating multiple commercial EVs to
collaborate on more complex tasks, often accompanied by a
group price. This approach efficiently utilizes edge computing
resources while meeting the charging demands of EVs.
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In the proposed model, CSs are considered self-interested
agents motivated to acquire larger computing resources while
minimizing their payments. To prevent EVs from gaining
knowledge of the true value of computing resources, CSs
strategically conceal their demands for computation resources.
Based on contract theory principles, CSs are classified into
multiple types based on their specific computing resource
requirements. Specifically, let CS’s possible types be θk, and
θk ∈ {θ1, · · · , θK}, which satisfies θ1 < · · · < θK . The CS
with a higher type requires more computing resources and
needs to pay more rewards. Assuming that the types of CSs
obey a uniform distribution. In general, a type θ encapsulates
all the information possessed by agents that is not publicly
known, which includes their beliefs about others’ utilities,
and beliefs about their own utilities [10]. In our model, a
type of a CS is the social distance of the current task and
an EV. To cope with the information asymmetry on EVs’
computing resource and CSs’ requirements, each CS owns m
types of contracts, and EV maximizes utility by selecting the
contract item designed for its type. Finally, according to the
contract items selected by EV, it will consume corresponding
resources to provide services, and CS will pay corresponding
remuneration.

The contract built for CS i’s k-th task is denoted by
(si,j,k, λi,j,k, pi,j) , θk ∈ Θk, where si,j,k is the amount of
computing resources provided by EV j to CS i’s type k and
λi,j,k is the payment by CS i to EV j for the computing
resources, pi,j is the charging power for EV, pi,j ∈ {Ph

i , P l
i }.

The payment model is introduced as service level agreement
between the individual EVs and commercial EVs, which is
dependent on the task type, required workload and CS’s type,
and limited by λi,j,k ∈ [Λmin

i,k ,Λmax
i,k ]. The CS must give EVs

the incentive to accept the contract, which is guaranteed by
the incentive compatible (IC) constraint, and anticipating this
effort, the CS must be willing to offer the contract guaranteed
by the individual rationality (IR) constraint, which will be
explained in details in later subsection.

B. Utility Function

1) Utility of electric vehicles: EVs choose task assigned
by CS i at time t based on its SoC status, availability, the
social distance with this CS, and the incentive signal from
CS. To quantify EV acceptance probability, it is necessary to
understand the psychological impact of the internal economic
stimuli. Specifically, the decision is made on EV’s utility
which is the difference of the benefits for providing computing
services and the cost that includes the calculation cost for
computing task, the charging cost, and the energy cost for
moving. The utility function1 of EV j serving CS i’s kth type
is defined as follows:

uev
i,j,k =

∑
k∈K

βi,k

[
λi,j,k − ccpuj wνj(si,j,k)

2 − cctchgi,j − cmei,j

]
,

(4)
where βi,k denotes the probability of CS’s θk type, ccpuj is EV
j’s CPU unit cost of energy consumption for computing, w

1For simplicity, we omit the subscript t in the utility function and the
following optimization model.

is constant power coefficient based on CPU chip architecture
of EV j, si,j,k is the computing resources allocated by CS i,
cc and cm denotes the unit cost of charging time ($/min) and
mobile energy consumption, respectively.

2) Utility of charging station: The utility of CS i is
calculated by the difference between profits for complet-
ing task η log

(
1 + θk

Ti,j,k

)
and providing charging services∑

j∈J zi,jc
ctchgi,j minus payment λi,j,k to EV j, and Ti,j,k

is the stay time of EV j at CS i when serving i’s k-type
computing task. In real-world scenarios, it is always hard to
precisely model utility function, whereas different functions do
not significantly affect the problem formulation and solutions.
Due to this, the profit (the first item in (5)) for the computing
task of our model adopts a Logarithm function of the ratio
of θk-type and the computation delay, which indicates that
CSs have a decreasing marginal value and its revenue will not
increase indefinitely, similar use cases can be found in [34],
[35]. The utility of CS i served by EV j is defined by:

ucs
i,j,k = η log

(
1 +

θk
Ti,j,k

)
+

∑
j∈J

zi,jc
ctchgi,j − λi,j,k − Cin

i ,

(5)

where η denotes the profit coefficient. This utility function
is twice continuously differentiable, concave, and has range
R+. The Cin

i is the penalty for CS i as it cannot finish the
computing task Si,m. If a CS does not engage enough EVs or
computing task timeout caused by irrational allocation within
one time step, then CS has to pay the incompletion costs with
unit price cin for the unfinished part, which is expressed by
Cin

i = cin[Si,m −
∑

j∈J zi,j,tsi,j,k]
+, and [h]+ = max{0, h}

according to [21].

C. The Optimal contract design problem
Building upon the previous section’s explanation, an EV

can choose a maximum of one CS, whereas a CS can cater
to multiple EVs simultaneously. Consequently, this scenario
presents a many-to-one selection problem. Assuming the EV
engages in the optimal contract, the CS’s optimal contract en-
tails solving a constrained maximization problem. The optimal
contract design problem for the joint vehicular-edge computing
scheduling and energy trading is formulated as a mixed-integer
linear program, where IC and IR, and system constraints such
as non-overlapping, capacity constraints are incorporated into
the model outlined below to ensure voluntarily participation
and truthful information revelation. This model determines
which EVs should be assigned contracts, which computing
tasks should be allocated to these EVs with corresponding
payment, and the charging power for EV charging requests.
Let zi,j,t = 1 if EV j is assigned to CS i at time t, otherwise
zi,j,t = 0. The objective of contract design is to maximize the
social welfare, i.e., the utilities of CSs and EVs. Specifically,
the optimal contract design problem solves φ∗

opt:

φ∗
opt : max

z,s,λ,p

T∑
t=1

I∑
i=1

J∑
j=1

zi,j,t(u
cs
i,j,k,t + uev

i,j,k,t), (6)

s.t.
0 ≤ uev

i,j,k,t, ∀k ∈ K, i ∈ I, j ∈ J , t ∈ T (7a)
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uev
i,j,k′,t ≤ uev

i,j,k,t, ∀k′ ̸= k, i ∈ I, j ∈ J , t ∈ T (7b)

∑
j∈J

zi,j,tpi,j,t ≤ Pmax
i , ∀i ∈ I, t ∈ T (7c)

Si,m,t ≤
∑
j∈J

zi,j,tsi,j,k,t, ∀i ∈ I, t ∈ T (7d)

∑
j∈J

zi,j,t ≤ qi,t, ∀i ∈ I, t ∈ T (7e)

∑
i∈I

zi,j,t ≤ 1, ∀j ∈ J , t ∈ T (7f)

zi,j,tei,j ≤ SoCj,t, ∀j ∈ J , t ∈ T (7g)

Λmin
i,k ≤ λi,j,k,t ≤ Λmax

i,k , ∀i ∈ I, j ∈ J , k ∈ K, t ∈ T (7h)

pi,j,t ∈ {Ph
i , P

l
i }, ∀i ∈ I, j ∈ J , t ∈ T (7i)

zi,j,t ∈ {0, 1}, ∀i ∈ I, j ∈ J , t ∈ T , (7j)

where the objective function (6) maximizes the social welfare
which consists of the utilities of EVs and CSs. (7a) is the
IR constraint, which guarantees that the participation of EVs
can benefit from the trading; (7b) is the IC constraint, which
indicates that each EV can obtain the maximum utility when
it selects the contract item that suits CS’s type. Constraints
(7c) indicate that the total charging power of all charged EVs
in CS i is limited by Pmax

i . Constraints (7d) denote that
CS i’s computing task should acquire enough resources from
EVs who accept the contract. Constraints (7e) restrict that the
number of all charging EVs should not exceed the idle number
of chargers qi,t of CS i at time t. Constraints (7f) denote that
an EV can select at most one CS for completing the task.
Constraints (7g) ensure that an EV has enough energy to arrive
at the destination. Constraints (7h), (7i), and (7j) define the
range of λi,j,k, zi,j,t, and pi,j,t.

D. EV acceptance

Once the optimal contract is derived and sent to EVs, EVs
need to decide whether to accept it. The acceptance probability
of EVs depends on two key factors: the EV’s preference
and the social distance. We expect that the probability of
acquaintance decreases with larger social distance. Following
the connection probability proposed in [32], we define the
acceptance probability of EV j on CS i’s contract as:

Prbn(i, j) =
1

1 + [λi,j,k · sdmi,j ]αn
, (8)

where αn > 1 measures the tendency of EVs to connect to a
CS. The probability of accepting a contract also depends on
the payment λi,j,k offered by CS i.

V. REINFORCEMENT CONTRACT DESIGN FRAMEWORK

This section develops a reinforcement contract design
(RCD) framework as depicted in Fig. 2, where the CS-EV
interaction is modelled as a Markov decision process (MDP)
and trained by a parameterized deep Q-network (PA-DQN)-
based algorithm with hybrid actions [23]. Specifically, the
environment describes the charging network between EVs
and CSs. The contract design of each CS (learning agent) is
acquired by the task allocator and will be sent to ambient EVs.
Each CS then trains its own policy, receives and processes
the data from the environment and obtains the observation
vector to calculate the reward. The policy of each CS is to
take an action (i.e., assign contracts to EVs) based on its
observation from the last time slot. To train and acquire the
optimal policy, we represent each policy as neural networks
whose parameters are tuned based on PA-DQN, and model the
contract {s, λ, p} as a discrete-continuous hybrid action. In this
PA-DQN framework, the action is defined by the hierarchical
structure. The idea is that a high-level action zi,j (CS i’s
contract allocated to EV j) is first chosen from a discrete set Z;
upon choosing Z, a low level parameters {si,j,k, λi,j,k, pi,j}
is then chosen associated with the high level action zi,j .

A. MDP formulation

The CS-EV interaction is formulated as an Markov decision
process [36], characterized by a 5-tuple ⟨S,A, P, r, γ⟩, where
S denotes the global state space of the environment and st =
{o1, ..., oI} ∈ S denotes the observation of each CS. A is the
action space at ∈ A. The function P : S × A × S → [0, 1]
defines the Markov transition probability distribution, where
p(st+1|st, at) represents the transition probability from st to
st+1 after at is taken. The function r : S × A → R defines
the expected rewards for state–action pairs, where r(st, at) is
the immediate reward received when at is taken at st. Let
Rt denote the discounted sum of rewards from the state st,
then Rt =

∑
t∈T γtr(st, at), where γ ∈ (0, 1] is the discount

factor. A deterministic policy π : S → A maps each state to
a particular action in A. In the case of RCD, a CS chooses
a hybrid action from the given set in the current state, and
EVs respond strategically based on the social distance. At the
end of t, CS receives an immediate reward associated with
the outcome, the system then progresses to t + 1 with all
information of CSs and EVs updated accordingly.

In what follows, we will elaborate on these components.
1) Agent: We model each CS i ∈ I as a learning agent who

calls for the neighbor EVs to implement a series of computing
tasks by offering contracts to them throughout the day.

2) Observation: The observation oi,t of CS i at t is defined
as a 6-tuple: ⟨Dl,t,SoCl,t,Nl,t, Hi,t, Si,t, Fi,t⟩, where l rep-
resents the group of EVs that a CS observes, Dl,t, SoCl,t and
Nl,t correspond to the computing resource, SoC level, the type
of these EVs of CS i, respectively. The information specific
to CS includes Hi,t (type of computing task), Si,t (size of
computing task), and Fi,t (features of computing task). Each
CS obtains this observation at the beginning of time t.
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Fig. 2. The PA-DQN based reinforcement contract design framework with discrete-continuous action space.

3) Action: The action ai,t = {zi,j,t, si,j,k, λi,j,t, pi,j,t}j∈J
is taken by CS i at time t to design a contract based on the state
si,t. The EV selection zi,j,t corresponds to a discrete action
which is encoded to represent a bunch of EVs j ∈ J that a CS
sent contract to. {si,j,k}j∈J is the computing task allocated
to these EVs and constraint (7d) holds. And {λi,j,k}j∈J is
the payment of CS i to EVs, λi ∈ Λi = [Λmin

i ,Λmax
i ], where

all CSs share the same payment set, i.e., Λ1 = ... = ΛI = Λ.
The charging power {pi,j,t}j∈J provided for these EVs are
chosen from level-2 Ph

i and level-3 P l
i option.

4) Reward: The reward (social welfare) ri,t of agent i
includes EV utility

∑
uev
i,j,t and CS utility

∑
ucs
i,j,t, i.e.,

ri,t =
∑

j∈J zi,j,t(u
ev
i,j,k,t + ucs

i,j,k,t). The quality of con-
tract will influence the computing task completion while the
unfinished task or insufficient acceptance on the contracts
might cause potential profit loss to CSs in the long run.
Let Rπ

i =
∑T

t=1 γ
t−1ri,t denote the accumulated discounted

rewards of CS i under policy π. RCD aims to find an optimal
collective policy π∗ that maximizes the sum of the expected
E[Rπ

i ]i∈I of all CSs. Therefore, the objective function of
station i is formulated as J(θπi ) = E[Rπ

i ], the key is to train
the optimal parameter vector θ∗k for its policy π∗

i .
The actions taken by the learning agent during training sat-

isfy the constraints introduced in the mathematical formulation
φ∗
opt. Specifically, the size of computing task si,j,k to each EV

satisfies Si,m ≤
∑

j∈J zi,j,tsi,j,k (constraint (7d)). The size
of actor zi,j,t equals to the number of chargers qi,t, which
corresponds with constraint (7e). In addition, the IR in (7a)
and IC in (7b) constraints also hold by adding penalty to the
reward function and by EV acceptance based on the social
distance, respectively. EVs will stay until its SoC reaches to
the expected level, and EV with unfinished charging will be
automatically put into this CS’s contract list for the next time
step, which corresponds with constraint (7g). By refining the
range of the hybrid action and defining reward function, we
can transform the optimization problem φ∗

opt into the MDP
considering long-term objectives.

B. System state transition

EVs are faced with the decision of accepting or rejecting the
contract offered by CS i at a given time t, taking into account

their SoC level and utility. When EVs enter into contracts
with CSs, each CS calculates its utility, updates its state, and
proceeds to the next time step. The system’s overall status
is also updated to reflect the transitions occurring between
consecutive time slots. For agent i, the observation transition
encompasses various elements. These include the completion
of computing tasks, where unfinished tasks are carried over
to the next time step, updates to the EV’s SoC level, changes
in the EV’s position due to movement, and whether the EV
remains at the CS to continue charging in the subsequent
time step. The state transformation of agent i after taking
ai,t is defined as (oi,t, ai,t, oi,t+1), where oi,t is the current
observation, and oi,t+1 is for time t+ 1.

1) EV SoC level: The SoC level of EVs are updated by:

SoCi,t+1 = SoCi,t + zi,j,t(pi,j,t − ei,j − wνj(si,j,k)
2), (9)

where wνj(si,j,k)
2 is the energy consumption for completing

the computing task.
2) CS task completion: The stay time of EV j depends on

the charging time and computing time, and j will stay at this
CS if it cannot accomplish the charging or computation task.
Thus, we have zi,j,t = zi,j,t+1, t = 1, ..., Ti,j , if Ti,j > |t|.

3) Computing task completion status: If a CS fails to
engage enough computing power (the number of accepted
EVs) to complete a task at time t, it has to postpone the
unfinished task to time t + 1, which may degrade the profits
and affect the successive contract offered to EVs.

4) CS availability: The charging station should update the
availability, i.e., the idle number of chargers qi,t at time t based
on the task completion status.

C. DQN-based solution for hybrid action space
We develop an independent multi-agent reinforcement learn-

ing using PA-DQN [23] to train the optimal policy π∗ of
RCD. PA-DQN extends DQN to address hybrid action space
rather than approximation or relaxation. Specifically, each
agent trains its own policy and actor-parameter for discrete
and continuous action. DQN is employed to capture the high-
dimensional observations and generate plausible policies in
order to maximize long-term rewards. The pseudo-code of the
PA-DQN-based reinforcement contract design framework is
depicted in Algorithm 1.
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Algorithm 1 Contract design training by PA-DQN
1: Exploration parameter ϵ, CS i’s Qi(·) and µi(·) with parameters

θQi and θµi with He initialization;
2: Initialize the target Q′

i(·) and µ′
i(·) with parameters θQ

′

i ← θQi ,
θµ

′

i ← θµi , and the replay buffer D;
3: for episode = 1 to 2, 000 do
4: for t = 1 to T do
5: for Agent i = 1 to I do
6: Each agent obtains observation oi,1 independently;
7: Agent i select a random action ai,t with prob-

ability ϵ; and selects ai,t = (z, xz), such that z =
maxz Q

∗ (si,t, z, xz;ωt) with probability 1− ϵ;
8: Take action ai,t, observe reward ri,t, and the next

state st+1;
9: Store the transition (si,t,ai,t, ri,t, si,t+1) in Di;

10: Sample a random minibatch of NB transitions from Di;
11: Update the Q net Qi(·) by minimizing Eq. (16);
12: Update the policy µi(·) based on the Eq. (17);
13: Soft-update the target Q′

i(·), µ′
i(·):

θQ
′

i ← τ · θQi + (1− τ) · θQ
′

i ;
θµ

′

i ← τ · θµi + (1− τ) · θµ
′

i .
14: end for
15: end for
16: end for

We define the discrete-continuous action and its space as:

at = {zt, xzt}, at ∈ At, (10)

A = {(z, xz) | xz ∈ Xz,∀z ∈ [Z]} , (11)

which indicates that we first choose a discrete action z from
the set [Z]; upon choosing z, we further choose its associated
continuous action xz = {si,j,k, λi,j , pi,j}j∈J , and xz ∈ Xz

is associated with the z-th high level action, where Xz is a
continuous set for all z ∈ [Z]. For a ∈ A, we denote the
action value function by Q(s, a) = Q (s, z, xz), where s ∈ S,
z ∈ Z , and xz ∈ Xz . Let zt be the discrete action selected
at time t and let xzt be the associated continuous parameter.
Then the Bellman equation becomes:

Q (st, zt, xzt) = E
rt,st+1

[rt+

γ max
z∈[Z]

sup
xz∈Xz

Q (st+1, z, xz) | st = s, at = (zt, xzt)],
(12)

where on the right-hand side of (12), we denote x∗
z =

argsupxz∈Xz
Q (st+1, z, xz) for each z ∈ [Z], and then take

the largest Q(st+1, z, x∗
z). When the function Q is fixed, for

any s ∈ S and z ∈ [Z], we can view argsupxz∈Xz
Q (s, z, xz)

as a function xQ
z : S → Xz .

Then, the Bellman function can be rewritten as:

Q (st, zt, xzt) =

E
rt,st+1

[
rt + γ max

z∈[Z]
Q
(
st+1, z, x

Q
z (st+1)

)
| st = s

]
.

(13)

Similar to deep Q-network, we use a deep neural network
Q(s, z, xz;ω) to approximate Q(s, z, xz), where ω is network
weight. For Q(s, z, xz;ω), we approximate xQ

z (s) with a
deterministic policy network xz(·; θ) : S → Xz , where θ

denotes the network weights of the policy network2. In other
words, when ω is fixed, we try to find a θ such that

Q (s, z, xz(s; θ);ω) ≈ sup
xz∈Xz

Q (s, z, xz;ω) , ∀z ∈ [Z]. (14)

Following the approach of DQN, we estimate the weights
ω by minimizing the mean-squared Bellman error through
gradient descent. Let ωt and θt represent the weights of the
value network and the deterministic policy network at time t,
respectively, and the target yt is defined as follows:

yt = rt + γ max
z∈[Z]

Q (st, z, xz (st, θt) ;ωt) . (15)

To optimize the parameter θ while keeping ω fixed and
maximizing Q (s, z, xz(s; θ);ω), we employ the least squares
loss function. The loss function for θ is formulated as follows:

ℓQt (ω) =
1

2
[Q (st, zt, xzt ;ω)− yt]

2
, (16)

ℓµt (θ) = −
Z∑

z=1

Q (st, z, xz (st; θ) ;ωt) . (17)

To address the issue of unbounded continuous parame-
ters, such as the payment from CSs to EVs, the charging
power of CSs, and the computing tasks assigned to EVs,
it is essential to establish reasonable boundaries for these
parameters. Without these boundaries, successive parameter
updates during training over multiple episodes can lead to
values exceeding their intended ranges, potentially resulting in
parameter values approaching infinity. To mitigate this issue,
a technique called Inverting Gradients [24] can be employed,
which aims to restrict the values of continuous parameters
within a reasonable range:

∇σ = ∇σ ·

{
(σmax − σ) / (σmax − σmin) , increase σ,

(σ − σmin) / (σmax − σmin) , otherwise,
(18)

where σ is continuous parameter bounded by [σmin, σmax].
Gradients are down-scaled as the parameter approaches to the
boundaries and inverted if the parameter exceeds the range.

Each CS is modelled as an independent learning agent
whose continuous action uses a deterministic policy network,
and the discrete action adopts a value network based on the
outcomes of continuous action network. After that, the state
transition computes the optimal contract at each time step and
update the system status. If an EV receives multiple contracts
from CSs, it has to choose one with the closest social distance
or one can maximize its utility.

VI. EXPERIMENT STUDY

To validate the reinforcement contract design framework,
we perform a comparative analysis with several benchmark
approaches: the optimal solutions obtained by solving the
deterministic optimization problem denoted as φ∗

opt, the pa-
rameterized Deep Deterministic Policy Gradient (PA-DDPG)-
based contract design [24], and the greedy strategy. For the
greedy strategy, the CSs send contracts to the nearest EVs

2In Section V, we slightly abuse θ to represent network weights in
reinforcement learning, notably θ also denotes type in contract design.
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TABLE I
PARAMETER SETTING

Parameter Value
Number I of CSs [3, 5, 10]
Number J of EVs [30, 50, 100]
Charging load capacity of CSi P

max
i 300kW

Number of chargers qi of CS i 6
The probability of type-θk CS βi 1/I
Speed vj of EV j [30, 40] km/h
Fast and Slow charging power Ph

i , P l
i 50kW, 12kW

The cost of computing energy consump-
tion ccpuj

2.8×10−4 $/J [37]

The parameter of computing energy con-
sumption ω

10−8 [38]

The CPU unit time speed νj of EV j [1, 2] GHz [39]
The size of computing task Bi 1, 800− 2, 200 M
Cost of mobile energy consumption ce 0.79
Profit coefficient η 15
Number of CPU cycles of computation
task cd

2.4381 × 109 cy-
cles/M

with a fixed payment for evenly-allocated computing tasks.
The charging power provided to the EVs is based on their state
of charge (SoC), ensuring that EVs with lower SoC receive
faster charging services.

A. Experimental Setting

We designed three groups, namely G1, G2, and G3, each
with a different number of charging stations (learning agents):
I = 3, 5, and 10, respectively. Each charging station is
equipped with three chargers capable of providing Level-2
AC (240-volt) slow charging and Level-3 DC fast charging
to three EVs simultaneously. We define one time step as 30
minutes, and an operation period for our model is set to one
day, consisting of |T | = 48 steps. Following the approach
in [40], we assume that the arrival rate It of EVs in the
charging network at time t follows a Poisson distribution,
given by P (It) = δ(t)Ite−δ(t)/It!, where It ∈ I . The payment
for computing tasks [Λmin

i ,Λmax
i ] of CS 1-3 is chosen from

the range of [6.00,6.67], [6.67,7.33], [7.33,8.00], respectively.
The EVs are randomly distributed in an area of 10km×10km
for G1, 15km×15km for G2, and 20km×20km for G3. The
distance between any two charging stations is approximately
5km, and the positions of each charging station are fixed.
The level-2 and level-3 charging of the charging price to EV
is $0.04/min and $0.25/min. The parameters of the social
distance between EV and CS is defined as: the tendency factor
αn is set as 1.2, and sdi,j is taken from the range of [0,1],
where a lower value indicates a closer social distance. The
battery capacity of private and commercial EV is 55kWh and
60kWh, respectively. For EVs, the mass m̃j is set to 1,000kg,
the gravitational acceleration g is 9.8m/s2, the ground friction
coefficient fg is 0.018, the moving speed vj of EV i is
randomly chosen from the range of [30,40]km/h, the air
resistance fa is 0.4, and the windward area ϕ is 2m2. The
rest parameter setting of the system model is listed in Table I.

Both of the parameter actor and Q networks have three
hidden layers with [512, 256, 128] nodes in each layer where
Leaky ReLU is used as the activation function. The activation
functions of the Parameter Actor output layer use ReLU, Tanh,

Fig. 3. Training process of different approaches (G1: 3 CSs/30 EVs).

Fig. 4. Training process of different approaches (G2: 5 CSs/50 EVs).

Softmax for CS payment, charging power and computing task
allocation, respectively, for different branches of continuous
actions. As for the parameter setting of PA-DQN, the learning
rate is set as 0.001 and 0.0001 for Parameter Actor and Q
networks, and the soft-update parameters are τ = 0.01 and
0.001. The discount factor γ is set to 0.99. The replay buffer
capacity is 100,000. The initial value of exploration parameter
ϵ is set as 0.8 with a decay to 0.01 during 1,000 episodes. The
minibatch size is 128, and the number of training episodes is
2,000. We compare our PA-DQN-based RCD framework with
a PA-DDPG-based approach, a greedy method, and the optimal
solutions as a baseline by solving optimization problem φ∗

opt.
The parameters used in PA-DDPG-based RCD is the same as
the proposed RCD with PA-DQN, using OU-Noise to explore.
These hyperparameters are selected empirically to accelerate
the policy improvement.

To guarantee the solution optimality, the model φ∗
opt is

coded in Python and solved by Gurobi. The greedy policy is
also coded in Python. The reinforcement contract design using
PA-DQN and PA-DDPG is coded in Python with PyTorch
library. All experiments are carried out on an Intel Xeon E5-
2620 v4 server with two RTX 2080Ti-11G GPU.
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TABLE II
PERFORMANCE COMPARISON OF THREE GROUPS (G1: 3 CSS/30 EVS; G2: 5 CSS/50 EVS; G3: 10 CSS/100 EVS)

No. Social welfare (/$) Efficiency (/%) CS utility (/$) EV utility (/$) Penalty (/$) EV acceptance rate Time (/min)
G1-RCD-PADQN $9,015.7 92.3% $9,925.7 $-910.0 $1,091.3 413/432 170.5

G1-RCD-PADDPG $8,527.3 87.3% $9,505.7 $-978.4 $1,527.3 401/432 665.1

G1-Greedy $3,196.6 32.7% $4,243.9 $-1,047.3 $5,841.1 363/432 2.3

G1-Optimization $9,767.4 100% $10,655.6 $-888.2 $402.2 425/432 11.5

G2-RCD-PADQN $15,851.7 93.2% $16,650.5 $-798.8 $2,540.4 678/720 289.9

G2-RCD-PADDPG $14,460.3 85.0% $15,326.1 $-865.8 $3,560.3 657/720 1,125.8

G2-Greedy $10,541.3 62.0% $11,442.8 $-901.5 $6,670.9 626/720 3.9

G2-Optimization $17,014.9 100% $17,758.3 $-743.4 $1480.5 698/720 21.6

G3-RCD-PADQN $32,825.4 94.1% $33,373.5 $-548.1 $6,964.0 1,331/1,440 599.3

G3-RCD-PADDPG $26,970.4 77.3% $27,459.4 $-489.0 $11,965.3 1,269/1,440 2,208.1

G3-Greedy $21,178.5 60.7% $21,818.4 $-639.9 $15,930.5 1,229/1,440 9.9

G3-Optimization $34,876.7 100% $35,345.6 $-468.9 $4,993.8 1,362/1,440 112.4

Fig. 5. Training process of different approaches (G3: 10 CSs/100 EVs).

B. Result Analysis

1) Performance comparison: We run each policy for du-
plicated 2,000 episodes (days) and draw the training process
in Figs. 3, 4 and 5, where RCD with PA-DQN is compared
with PA-DDPG-based RCD, the greedy policy, and the de-
terministic optimization as a baseline. In Figs. 3 and 4, we
observe that the median of the social welfare (we take the
mean value of converged rewards of the last 200 episodes)
of PA-DQN $9,015.7 for Group 1 (3CSs and 30 EVs) and
$15,851.7 for Group 2 (5CSs and 50 EVs) is higher than
the the approach with PA-DDPG $8,527.3 and $14,460.3 by
5.73% and 9.62%, respectively. Unlike PA-DDQG which does
not properly connect these hybrid actions by updating their
policy weights independently, PA-DQN sequentially chooses
the discrete and continuous actions. With the merits of both
DQN and DDPG, PA-DQN can find the optimal discrete action
as well as avoid exhaustive search over continuous action
parameters. As a result, PA-DQN outperforms PA-DDPG in
terms of computing time and efficiency. For G1, PA-DQN
takes 170.5 mins while PA-DDPG costs 665.1 mins for 2,000
episodes. Moreover, PA-DQN takes around 1,000 episodes to
converge while PA-DDPG takes 1,100 episodes.

The RCD framework can achieve 92.3% and 93.2% ef-
ficiency for G1 and G2 compared to the optimal solution
(represented by the red dashed line) of $9,767.4 and $17,014.9

(deemed as 100% efficiency). Moreover, our approach sur-
passes the rewards obtained from the greedy policy, which
amounts to $3,196.6 and $10,541.3 for G1 and G2, respec-
tively, by a margin of 182.0% and 50.4%. This highlights the
limitations of the greedy policy, as CSs following it prioritize
short-term gains without considering potential long-term ben-
efits. Uncoordinated charging and computing scheduling often
lead to a significant number of unfinished tasks and penalties.

The detailed indices of the performance comparison are
listed in Table II. The acceptance rate represents how many
EVs accept the contracts from CSs in light of the social
distance. For the acceptance rate, taking the last episode as
an example, our approach accommodates 413 out of 432 EVs,
achieving a 95.6% acceptance rate during a day. RCD with
PA-DDPG achieves 92.8%, while the greedy policy only sees
84.0% of EVs accepting the contracts. Compared to RCD with
PA-DDPG, CSs using our approach receive fewer penalties
due to a reduced number of unfinished computing tasks accu-
mulated during a day. This indicates a more reasonable sched-
ule for computing and charging resources. It is worth noting
that EVs receive negative utility across different approaches, as
the payment for implementing computing tasks does not fully
cover the charging costs. However, EVs providing computing
services still pay less compared to solely charging at CSs,
indicating potential cost savings.

2) Scalability testing: We design Group 3 (10 CSs with 100
EVs) to test the scalability of our RCD framework, the results
are shown in Fig. 5 and Table II, which depicts that PA-DQN
$32,825.4 improves the rewards by 21.7% compared to PA-
DDPG with $26,970.4. Moreover, we observe from Table II
that the performance of the RCD framework for different
problem sizes. Specifically, the RCD framework achieves a
higher efficiency of 94.1% compared to the optimal solution
with a reward value of $34,876.7. In contrast, the greedy
policy only achieves a reward of $21,178.5 but incurs a
penalty of $15,930.5 due to a large number of unfinished tasks
during a day. Notably, our approach is more time-efficient
compared to PA-DDPG, despite the increasing problem scale.
PA-DQN requires only 25.6%, 25.7%, and 27.4% of the
computation time costed by PA-DDPG for G1-G3. Although
reinforcement learning-based approaches require more time
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Fig. 6. Number of EVs served by each CS (RCD-PADQN).

Fig. 7. Task allocation result (3 CSs and 30 EVs).

for the offline training, they are advantageous in dealing with
online decision-making. Our approach takes less than one
minute to design a one-day contract.

3) Contract design of one episode: To explicitly explain the
EV-CS contracting process during a day, we take one episode
of G1 (3 CSs and 30 EVs) as an example to illustrate the total
number of EVs served and the utility of each CS in Fig. 6,
the computing task allocation and charging process in Fig. 7,
as well as the task completion level in Fig. 8 during a day.

Especially, Fig. 6 depicts the number of EVs served (the
bar graph on the left side) by these three CSs during a
day and the utility made by each CS, taking one episode
as an example. Furthermore, we specify the task allocation
results of this episode (3-CS/30-EV case) in Fig. 7. Taking
CS-1 as an example, Fig. 7 illustrates the task execution of
three chargers during a day, where the left side (bar graph)
reveals the computing tasks (/MB) executed by each charger
in CS-1 at each time step, and the right side displays the
sum of EV utility during a day. It can be observed that
after CS-1 sends the contract to three EVs, most of the
EVs accept their contracts. Furthermore, there is a correlation
between the size of computing tasks and the corresponding
EV utilities, indicating that larger computing tasks result in
higher EV utilities. Figure 8 demonstrates the CS utility curve

Fig. 8. Task completion level (3 CSs and 30 EVs).

Fig. 9. Sensitivity test of different EV acceptance level (3 CSs and 30 EVs).

with penalty (right side) accompanied with the amount of
incomplete tasks (left side) during a day. The irrational task
allocation or low EV acceptance will result in a sharp decrease
of CS’s utility.

4) Sensitivity testing: To examine the correlation between
EV acceptance and social welfare, we conducted three addi-
tional experiments to compare different EV acceptance rates
by manipulating the social distance between CSs and EVs.
Specifically, we compared the acceptance rates of [0.7, 0.8] and
[0.8, 0.9] with the existing results of G1 (consisting of 3 CSs
and 30 EVs), which demonstrated a relatively high acceptance
rate of [0.9, 1.0]. As depicted in Fig. 9, the mean reward for
the case with an acceptance rate of [0.7, 0.8] and [0.8, 0.9]
was found to be $5,761.7 and $3,092.7, respectively. These
findings indicate that a lower EV acceptance rate corresponds
to a greater social distance between CSs and EVs, which can
potentially compromise the benefits for both parties involved.
Moreover, each 10% increase in EV acceptance probability led
to an approximate $2,961.5 increase in rewards. From above,
we conclude that the key to successful contract design lies
in obtaining sufficient information and accurate estimation of
EV users’ preferences. Due to the presence of information
asymmetry and privacy concerns, CSs can leverage historical
data to acquire this knowledge and propose more efficient in-
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centive mechanisms. These mechanisms aim to encourage EVs
to truthfully disclose their preference information, ultimately
enhancing the effectiveness of the overall charging system.

VII. CONCLUSION

This paper introduces a novel reinforcement contract de-
sign framework for addressing the vehicular-edge computing
scheduling and energy trading problem. The framework uti-
lizes a parameterized Deep Q-Network and draws inspiration
from contract theory and reinforcement learning principles.
By integrating the preferences of EV users, the utilities of
charging stations, and various system constraints, the proposed
model enables sequential decision-making in the presence
of information asymmetry. To maximize long-term social
welfare and handle discrete and continuous action spaces, we
developed a reinforcement learning algorithm based on PA-
DQN to leverage the sequential contract design with discrete
and continuous action space. The experimental results demon-
strated that our approach, utilizing PA-DQN, consistently out-
performed the PA-DDPG-based RCD model. On average, our
framework achieved a 15.5% improvement in social welfare
and reduced computing time by 26.2%. Furthermore, our
approach achieved near-optimal solutions when compared to
deterministic optimization methods and significantly outper-
formed the greedy policy.
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