
CRSM: Crowdsourcing based Road Surface

Monitoring

Kongyang Chen1,2, Mingming Lu3, Guang Tan1, and Jie Wu4

1SIAT, Chinese Academy of Sciences, Shenzhen 518055, China
2University of Chinese Academy of Sciences, Beijing 100049, China

3Central South University, Changsha 410083, China
4Temple University, PA 19122

Email: {ky.chen, guang.tan}@siat.ac.cn, ming.lu@gmail.com, jiewu@temple.edu

Abstract—Detecting road potholes and road roughness levels
is key to road condition monitoring, which impacts transport
safety and driving comfort. We propose a crowdsourcing based
road surface monitoring system, simply called CRSM. CRSM can
effectively detect road potholes and evaluate road roughness levels
using our hardware modules mounted on distributed vehicles.
These modules use low-end accelerometers and GPS devices to
obtain vibration pattern, location, and vehicle velocity. Consider-
ing the high cost of onboard storage and wireless transmission,
a novel light-weight data mining algorithm is proposed to detect
road surface events and transmit potential pothole information
to a central server. The server gathers reports from the multiple
vehicles, and makes a comprehensive evaluation on road surface
quality. We have implemented a product-quality system and
deployed it on 100 taxies in the Shenzhen urban area. The
results show that CRSM can detect road potholes with up to 90%
accuracy, and nearly zero false alarms. CRSM can also evaluate
road roughness levels correctly, even with some interferences from
small bumps or potholes.

Keywords—Road surface monitoring, Pothole detection, Gaus-
sian Mixture Model, Road surface roughness.

I. INTRODUCTION

Road surface conditions have been a public concern in our
society. City municipalities have paid millions of dollars to
detect, maintain, and repair the roadways each year. A study
by the U.S. department of transportation has shown that road
condition is an essential factor of highway quality [1]. One
of the main road surface condition metrics is the density of
road potholes, which can cause serious damage, and should be
repaired as early as possible. In addition, the roughness level
of road surfaces is also an important metric that reflects the
condition of road health. This paper seeks to evaluate these
two metrics in an efficient way, following a crowdsourcing
approach.

Our basic observation is that accelerometers will expe-
rience significant vibration when the vehicle is passing an
”abnormal” section of road (e.g., potholes, manholes, and
expansion joints), thus producing abnormal readings compared
with data from smooth road surfaces. We only store and
transmit data associated with these abnormal events to a
central server. Meanwhile, we try to establish a relationship
between the road surface roughness level and acceleration

signal. According to the Technical Code of Maintenance for
Urban Road CJJ36-2006 [13], one of the industry standards
in China, we provide a low-cost solution for road roughness
detection.

We describe the design and implementation of a crowd-
sourcing based road surface monitoring system, simply called
CRSM. It can detect road potholes and evaluate road roughness
levels with our hardware modules installed on distributed
vehicles, which are wirelessly connected to a central server.
A CRSM module consists of an accelerometer and a GPS
module to identify road vibration and obtain location and
vehicle velocity. To minimize storage and transmission costs, a
light-weight data mining algorithm, namely i-GMM (improved
Gaussian Mixture Model), is proposed to detect road surface
events, and transmit pothole information to the server. CRSM
also presents a road roughness classification algorithm to
determine the road roughness level. Experimental results show
that CRSM can detect road potholes with up to 90% accuracy,
with nearly zero false alarms. CRSM can also evaluate road
roughness levels correctly, even with some interferences from
small bumps or potholes.

In summary, we make the following contributions:

• We design and implement a crowdsourcing-based road
surface monitoring system for both pothole detection
and road surface roughness evaluation.

• We propose a mining algorithm for event detection.
We analyze two drawbacks of the traditional Gaussian
Mixture Model (GMM), and propose an improved ver-
sion to compensate for the different vibration patterns
with different velocities.

• We present an online algorithm for road surface rough-
ness evaluation in compliance with industry standards.

• We show the evaluation results from a product system
deployed on 100 taxies in the Shenzhen urban region.

The remainder of this paper is organized as follows. Sec-
tion II provides a brief overview of previous works. Section III
gives an overview of our system architecture. Section IV
and Section V discuss the road pothole detection and road
roughness level classification, respectively. Section VI presents
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our actual evaluation on real taxies. Finally, Section VII
concludes this paper.

II. RELATED WORK

A. Road pothole detection

Many road pothole detection solutions have been proposed
in the literature. In [2], citizens are encouraged to share and
upload the pothole information to public online websites.
Various sensors such as 3D laser scanning devices, along with
3D reconstruction algorithms, are used to measure the size of
road potholes [3], [4], [5]. In [6], [7], cameras are installed on
vehicles to record road videos, from which road condition is
inferred. These pothole detection techniques are not convenient
enough for deployment, or too expensive for wide adoption.

Recently, accelerometers have been increasingly utilized in
road condition monitoring. Intuitively, a vehicle vibrates more
significantly than normal when passing potholes, contraction
joints, manholes, expansion joints, etc. The vibration can be
effectively captured by an onboard accelerometer. Given an
accelerometer and a GPS device, we can identify a road
vibration situation and its corresponding location [8]. This
method needs to sense, store, and upload all the acceleration
and GPS data to a central server for further processing [9],
[10], [11]. However, the high demand for data storage and
data transmission remains a challenging issue.

B. Road roughness level classification

City municipalities are very concerned with road surface
roughness information, and the whole road will be repaired
when it is considered to be unqualified. Xu et al. [14] present a
criterion of road roughness based on power spectral density of
vehicle vibration. Semiha et al. [15] study the random vibration
characteristics of the quarter car model to describe the vehicle
vibration. Zhang et al. [16] discuss a roughness measurement
system based on the laser range finder. Dyer et al. [17] describe
how to estimate international roughness index from noisy
profilograph measurements. Hostettler et al. [12] summarize
current equipments for road condition measurement, composed
of accelerometers, distance instruments, graphic displays, or
some other instruments. These road condition evaluation sys-
tems are highly expensive, costing 8,000 to 220,000 dollars
for a single vehicle.

III. SYSTEM OVERVIEW

CRSM uses a set of hardware devices installed on vehicles
for data collection and a central server for multi-source data
fusion. The system architecture is illustrated in Figure 1.

Each onboard hardware device is composed of a micro-
controller (MCU), a GPS module, a three-axis accelerome-
ter, and a GSM module. When the vehicle is traveling, the
accelerometer reads continuous acceleration data; the GPS
module outputs accurate time, location, and velocity of the
vehicle; the MCU executes algorithms to extract useful data,
and the GSM module transmits the results to the central server.

Fig. 1: CRSM system architecture.

The GSM traffic presents a major cost in the system. In
our system, for example, the GSM data budget is no more
than 30 mega bytes per month. We therefore cannot transmit
the raw data to the central server, as the data is too large in size.
Because of this, we transmit only useful information, which is
determined by a light weight online data mining algorithm.

IV. ROAD POTHOLE DETECTION

The CRSM system selectively reports useful data to the
central server by discarding acceleration data on smooth roads.
First, we design an event detection algorithm to identify
“abnormal” vibrations. Then the central server will further
analyze the data from multiple vehicles to obtain more accurate
results.

A. The improved GMM (i-GMM) algorithm

Event detection is a process for identifying potential pot-
holes on the road surface [18]. An onboard accelerometer can
sense the vehicle vibration by examining the z-axis acceler-
ation. Normally, the vibration on abnormal road sections is
greater than that on smooth sections, so an abrupt increase of
z-axis acceleration often signify a pothole.

The Z-peak method declares an event if the current z-axis
acceleration is larger than a predefined threshold. However,
the vehicle vibration and acceleration vary greatly on different
roads, or even different driving velocities. It is therefore
impossible to determine a universal threshold that applies to
all possible situations.

To address this problem, we introduce a Gaussian Mixture
Model (GMM) algorithm for event detection. The GMM can
learn the background signal online, without the need to train
parameters for different road conditions beforehand, which
has great distinction with previous methods. Furthermore, we
propose an i-GMM algorithm to overcome the drawbacks of
GMM.

B. The Gaussian Mixture Model (GMM)

The z-axis acceleration signal captured from a smooth
road can be fitted by a Gaussian distribution. An example
of empirical z-axis acceleration is shown in Figure 2, which
confirms this hypothesis. The Gaussian distribution with mean
μ and variance σ2:

η(x|μ, σ2) =
1√
2πσ

e−(x−μ)2/2σ2 (1)
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Fig. 2: Distribution of the z-axis acceleration from a smooth road.

can be dynamically updated from historic information. In our
situation, the magnitude of vibration caused by a pothole is
much greater than that caused by a smooth road surface. So a
signal X is considered as a pothole if it deviates widely from
the mean μ of the smooth road. That is to say, X is a pothole
signal if the absolute difference of X and μ is greater than a
predefined threshold Mth times the standard variance σ, that
is

∣∣∣∣
X − μ

σ

∣∣∣∣ > Mth (2)

Otherwise, X is considered to be a smooth road signal,
and its mean μ and variance σ will be modified as follows:

μ′ = (1 − δ)μ + δX

σ′2 = (1 − δ)σ2 + δ(X − μ)2

δ = αη(X|μ, σ2)
(3)

where α is a learning rate, and δ is α time probability density
function learnt from the past signals.

The above method is the single Gaussian model, which
is only a rough approximation of the background signal. A
better solution with more accuracy is given by the Gaussian
Mixture Model (GMM), which uses K Gaussian distributions
to capture the background signals [18], [19], as is evident
from the multiple peaks in Figure 2. An intuitive idea is
that acceleration signals are developed by various sources and
errors which follow their respective Gaussian distributions. So
the GMM assigns a weight ωk to each of the K Gaussian

distributions ωkη(μk, σ
2
k, ωk) following

∑K
k=1 ωk = 1.

Consider a newly sampled signal X . The GMM first
updates the parameters of each Gaussian distribution to best
fit X , and then estimates X as a background or an event.

1) Online update: If the signal X matches any of the K
Gaussian distributions, it means that the current GMM is robust
for X . Suppose η(μk, σ

2
k, ωk) is a matched distribution. We

add its weight and update its mean and variance as follows

μ′
k = (1 − δ)μk + δX

σ′2
k = (1 − δ)σ2k + δ(X − μk)

2

ω′
k = (1 − α)ωk + α

δ = αη(μk, σ
2
k, ωk)

(4)

where α is a learning rate.

In this case, an unmatched distribution holds the same mean
and variance, but its weight should be decreased. Its parameters
are updated as follows

μ′
k = μk

σ′2
k = σ2k

ω′
k = (1 − α)ωk

(5)

If the signal X does not match any of the K Gaussian
distributions, it means that the current GMM is not robust
for X . The least probable distribution with the lowest ωk is
replaced with a new distribution to better fit the current signal
X . This new distribution takes on the current signal X as its
mean value, with a predefined high variance and a low weight.

k = argmin
k

ωk

μ′
k = X

σ′2
k = σ20

ω′
k = ω0

(6)

where weights are normalized so that
∑K

k=1 ω
′
k = 1;

2) Background model estimation: After online update, we
would like to determine whether the current signal X is an
event. Among the K Gaussian distributions, we are interested
in distributions which are most likely to be produced by the
background. Intuitively, these distributions have the highest
weights and lowest variances. At the same time, the least likely
distributions are likely modeled as old historical signals or
updated distributions with a predefined value, whose effect we
will downplay.

Next, the K Gaussian distributions are sorted with the value
of ω′

k/σ
′
k to place the most likely distributions in a list. Then,

the B most likely distributions are selected as the background
model,

B = argmin
b

(

b∑

k=1

ω′
k > T ) (7)

where T is a predefined threshold to determine how many
distributions are used to represent the current background.

Finally, the current signal x is estimated with the B
selected distributions. Similar to the single Gaussian model,
X is considered as an event if all these B distributions
η(μ′

k, σ
′2
k , ω

′
k) satisfy

Mk =

∣∣∣∣
X − μ′

k

σ′
k

∣∣∣∣ > Mth (8)

where Mth is a predefined event detection threshold. Other-
wise, X is not considered as an event.
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C. Two drawbacks of the GMM

When we used the GMM for event detection, we found
two drawbacks caused by the variation in velocity.

1) Drawback 1: fixed event detection threshold: Obviously,
vehicle vibration is highly affected by driving velocity. For
example, when driving at a high velocity, the vehicle vibrates
greatly and our onboard accelerometer will generate higher
vibration amplitude. In fact, Watts et al. [20] have carried out
some experiments on ground vibration levels with different
vehicle velocities, and pointed out that vehicle vibration levels
and driving velocities are roughly in linear relationship when
velocities are in the range from 15km/h to 45km/h. So, we can
view z-axis accelerations as roughly proportional to vehicle
velocity.

Suppose an experimental vehicle moves at a high velocity
on a smooth road, causing z-axis acceleration to vary greatly.
When applying the GMM on this smooth road, unmatched
distributions keep their means and variances, and matched
distributions update their means and variance as follows:

μ′
k = (1 − δ)μk + δX

σ′2
k = (1 − δ)σ2k + δ(X − μk)

2

δ = αη(μk, σ
2
k, ωk)

(9)

where α is a learning rate.

In our experimental scenario, accelerometers have a 100 Hz
sampling rate, so even a short segment of road will generate
highly redundant raw data. In this case, we should not set
the learning rate α too high, otherwise the GMM keeps little
historic information and becomes very unstable. Generally, we
initialize the learning rate α to 0.03. Obviously, the probability
density function η(μk, σ

2
k, ωk) is less than 1, and we have δ <

α and 1− δ � δ.

When the vehicle is traveling on a smooth road, the kth

mean of Gaussian distribution μk are at the same order of
magnitude of the current signal X . Hence, we can deduce
that (1 − δ)μk � δX and μ′

k ≈ (1 − δ)μk. In other words,
the matched distributions decrease their means with a small
slope 1− δ. For simplicity, we may consider their means as a
constant C1 in a short time interval. Similarly, we can conclude
that the matched distributions decrease their variance with a
small slope 1 − δ, and can be approximated with a constant
C2 in a short time interval.

Therefore, the event detection expression Mk is as follows:

Mk =

∣∣∣∣
X − μ′

k

σ′
k

∣∣∣∣ ≈
∣∣∣∣
X − C1

C2

∣∣∣∣ (10)

Clearly, Mk is roughly linear with the acceleration signal X ,
and then approximately proportional to vehicle velocity V , too.

Suppose the vehicle is traveling at a high velocity, then
the GMM event detection expression Mk becomes larger.
This causes false alarms when Mk is greater than the fixed
threshold Mth. Figure 3 shows the z-axis acceleration and
event detection expression on a smooth road surface. We see
that the GMM event detection expression (Figure 3(b) real line)
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Fig. 3: Event detection at high velocity, (a) z-axis acceleration, (b)
event detection with false alarms.

is very similar to the z-axis acceleration (Figure 3(a)). We also
observe that the event detection expression Mk is sometimes
greater than the predefined threshold Mth (Figure 3(b) red
dashed line), which causes false alarms.

For similar reasons, a low traveling velocity leads to event
missings when a fixed event detection threshold is applied.

2) Drawback 2: fixed learning rate: The GMM uses a
fixed learning rate α to update the mean, variance, and weight
of each Gaussian distribution, as if the current signal and
historic information were equally important. However, this
rule no longer applies when the vehicle velocity changes. For
instance, when the vehicle’s velocity increases greatly, the z-
axis acceleration will also increase greatly, which results in
a relatively large distance to historic information. With fixed
learning rate, it will take a long time to learn and build accurate
Gaussian distributions [21].

To deal with this problem, we need to increase the GMM
learning rate and bias the learning process toward the current
signal. Similarly, we should increase the learning rate when
the velocity decreases greatly, while use a small learning rate
when the vehicle velocity is almost the same.

In summary, we can conclude that a large learning rate is
suitable for a big velocity changes, and a small learning rate
for small velocity changes.

D. i-GMM

To overcome these above two drawbacks of the GMM,
we propose a novel i-GMM algorithm to accommodate to the
variability of velocity.

1) Event detection threshold: With a fixed event detection
threshold, a high velocity will produce more false alarms, and
a low velocity will increase missed events. For this reason,
the event detection threshold is changed to a parameter which
is roughly linear with the current velocity. The above event
detection rule is modified as follows:

The current signal X is considered as an event only if all
the B distributions η(μ′

k, σ
′2
k , ω

′
k) satisfy

Mk =

∣∣∣∣
X − μ′

k

σ′
k

∣∣∣∣ > Mth
V

Vth
(11)
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where V is the current velocity, and Vth is a velocity threshold.

2) Learning rate update: Based on the above discussion,
the learning rate is related to the change of velocity. A high
learning rate is used for big velocity changes, and a small
learning rate for small velocity changes.

It is found empirically that the learning rate at the moment
t can be adjusted as follows:

αt = αmin + (αmax − αmin) · (1 − e−(�Vt/V0)
2

)

�Vt = Vt − Vt−1

(12)

where αmin and αmax are the minimum and maximum
learning rates; �Vt is the velocity change at time t; V0 is
a velocity threshold; Vt and Vt−1 are velocities at t and t− 1
moments, respectively.

E. Pothole filters and data fusion

The CRSM system uses an i-GMM for event detection.
Our central server will gather, clean, and fuse event data from
these multiple vehicles.

1) Pothole filters: We apply four pothole filters to remove
anomalous events, similar to Pothole Patrol [9]:

• Velocity filter: it removes events with zero velocity
or very low velocity, such as opening or closing the
vehicle panels. It rejects events whose velocity is
lower than a threshold TV .

• Z-axis acceleration filter: it takes out events with
low z-axis acceleration peaks like small bumps. It
refuses events whose z-axis acceleration is lower than
a threshold TZ .

• X-z acceleration ratio filter: it deletes events with a
small ratio of x-axis acceleration to z-axis accelera-
tion, such as expansion joints and contraction joints.
It discards events whose x-z acceleration ratio is lower
than a threshold TXZ .

• Velocity vs. z-axis acceleration ratio filters: it removes
events with a high ratio of velocity to z-axis accel-
eration, mainly caused by high velocity vibration. It
rejects events whose velocity vs. z acceleration ratio
is higher than a threshold TV Z .

2) Data fusion: After pothole filtering, the central server
gathers multiple vehicles’ pothole detection results. Next, it
counts report times of each potential potholes. Finally, it de-
clares a pothole where report times are larger than a threshold
P ; otherwise it marks these pothole detection results as false
alarms.

V. ROAD SURFACE ROUGHNESS CLASSIFICATION

We propose an online data mining algorithm to classify
road surface roughness into four levels.

A. Distributed road roughness classification

1) International roughness index: International Roughness
Index (IRI) is the most widely used metric to evaluate road
roughness in highway transportation. It reflects the global
vibration of the road, which can be measured by an accelerom-
eter.

Lou el al. [22] show that the empirical relationship between
IRI and standard deviation of vibration σ approximates to the
following regression equation:

IRI =
σ − 0.013

0.5926
(13)

2) Road roughness level classification: Technical Code of
Maintenance for Urban Road CJJ36-2006 [13] is an industry
standard in China. This industry standard indicates that road
roughness levels can be evaluated by a comprehensive driving
comfortable metric, namely Riding Quality Index (RQI).

Generally, road roughness is classified into four levels,
including excellent, good, qualified, and unqualified, with dif-
ferent RQIs and driving velocities. These evaluation standards
for pavement roughness are listed in Table I.

Yang [13] shows that the relationship between RQI and IRI
can be described mathematically as follows:

RQI = 4.98− 0.34 · IRI (14)

Additionally, the numberical value of RQIs varies from 0 to 5
normally. We set RQI to 0 when it is negative.

In the CRSM system, the onboard hardware devices collect
accelerations, calculate the standard deviation σ and IRI, clas-
sify road roughness into these above four levels, and transmit
recent road roughness levels to the central server periodically.

B. Central server data fusion

The central server collects reports from these distributed
CRSM hardware devices, and then makes a comprehensive
evaluation of these road roughness levels of different road
sections in a city region.

VI. EVALUATION

This section presents the evaluation of the CRSM system.

A. Experimental setting

We conducted experiments with a total of 100 vehicles in
the Shenzhen urban region. Each vehicle is equipped with a
CRSM device, and can generate GPS and acceleration read-
ings. To get ground truth for our experiments, we employed
another vehicle with a CRSM device and a camera to record
road surface videos for comparison.

The CRSM module is installed at the same location of
each vehicle. In our context, it is attached to the right side
of the dashboard to sense the vibration effectively, while the
GPS receiver is fixed on the right front of the vehicle for better
signal intensity. The three-axis accelerometer is installed inside
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TABLE I: EVALUATION STANDARDS FOR ROAD ROUGHNESS
LEVELS.

v(km/h) RQI Pavement roughness level

v>80

RQI>3.6 excellent
3.0<RQI<3.6 good
2.5<RQI<3.0 qualified
0<RQI<2.5 unqualified

40<v<80

RQI>3.2 excellent
2.8<RQI<3.2 good
2.4<RQI<2.8 qualified
0<RQI<2.4 unqualified

v<40

RQI>3.0 excellent
2.6<RQI<3.0 good
2.2<RQI<2.6 qualified
0<RQI<2.2 unqualified

the hardware device. However, we need to place the three-axis
accelerometer in a specified direction, where its x-axis is kept
with the same direction with the driving direction, y-axis in
the corresponding horizontal direction, and the z-axis in the
vertical direction.

B. Raw data cleaning

As mentioned above, CRSM onboard module monitors
road condition with a three-axis accelerometer and a GPS de-
vice. Here, the three-axis accelerometer periodically generates
100 data samples every seond. Meanwhile, the GPS deveice
provides one data sample, including current time, location and
driving velocity.

In practical environments, we face several technical chal-
lenges. First, the GPS receiver often falls to work in urban
canyons with tall buildings and tunnels, which lead to many
GPS data missing. Second, Our GPS receiver need very long
time to get a fix position after power on, and some GPS
receivers provide wrong position in the first few seconds.
Third, we might miss raw data or get wrong raw data owing
to transmission errors, especially when the network is busy.

To overcome these three problems, we propose an effective
data cleaning algorithm. We first sort the raw data in time
sequence, detect GPS bad zones with very long data missing
or discontinuity, and remove these bad zones directly. Then, we
check up on transmission errors and short GPS missings, and
record the time index. Next, we generates interpolated points
in curves to get continuous data. Finally, Our data cleaning
algorithm results are organized in four elements as follows:
<time, location, velocity, three-axis acceleration>.

C. Road pothole detection

The CRSM modules apply the i-GMM for event detection,
and transmit useful data to the central server.

1) Event detection: There are several thresholds to be
determined in the i-GMM. As we cannot reduce the false alarm
and the missing rate at the same time, there is always a tradeoff
between them. In CRSM, we would like to keep more potential
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Fig. 4: Comparison of the GMM event detection and the i-GMM
event detection, (a) z-axis acceleration, (b) velocity, (c) the GMM
event detection, (d) the i-GMM event detection.

potholes, even with some false alarms. Actually, most false
alarms can be removed by pothole filters and data fusion in
the central server. Generally, we keep the missed event rate
less than 5% with all thresholds as following:

Gaussian number K = 4, initial Gaussian mean μ0 = 0,
variance σ0 = 10, weight ω0 = 0.15, sum of most likely
distribution weight T = 0.7, maximum and minimum of
learning rate αmin = 0.02, αmax = 0.04, event detection
threshold Mth = 0.25, and velocity threshold Vth = 50.

Figure 4 shows the comparison of the GMM event detec-
tion and the i-GMM event detection. Figure 4(a) and 4(b) are
the z-axis acceleration and velocity, respectively, Figure 4(c)
and 4(d) are the event detection results of the GMM and
the i-GMM, where each vertical line indicates an effect event.
We can infer that the GMM has many false alarms at a large
velocity, with missing events at a small velocity, while i-GMM
can settle this problem.

2) Pothole detection: Central server applies four pothole
filters to remove disturbance events, and combine multiple
vehicles’ pothole detection results.

Table II lists pothole events and several disturbance events
as well as their occurrence numbers. Four potholes filters
are utilized to remove these spurious events later. Figure 5
shows the cumulative density function (CDF) that describes
the feature of each filter. Table III lists the pothole recognition
accuracy and false alarms of each filter.

Figure 5(a) presents the CDF of velocity filter, which
removes events with small velocities. With TV = 16, it rejects
all low velocity events with nearly 88% potholes detection
accuracy.
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TABLE II: REPORTED NUMBERS OF EVENT TYPES.

Event types Occurrences

Potholes 178
Low speed events 226

Small bumps 51
Expansions 27

High speed events 38

TABLE III: POTHOLES RECOGNITION NUMBER AND POT-
HOLE FALSE ALARM NUMBER OF EACH FILTER.

Filters Accuracy False alarms

Velocity filter 156 0
Z-acceleration filter 151 13

X-z ratio filter 136 6
Velocity vs. z ratio filter 163 1

Figure 5(b) shows the CDF of z-axis acceleration filter,
which discards events with small z-axis accelerations like small
bumps. With TZ = 1.82, it achieves 85% pothole detection
accuracy with 7.9% of false alarms.

Figure 5(c) describes the CDF of x-z acceleration ratio
filter, which refuses events with a small ratio of x-axis ac-
celeration to z-axis acceleration like expansion joints. With
TXZ = 0.06, it acquires 76% pothole detection accuracy with
4.2% of false alarms.

Figure 5(d) presents the CDF of velocity vs. z-axis accel-
eration ratio filter, which removes events with high velocity
vibration. With TV Z = 16, it obtains 92% pothole detection
accuracy with 0.6% false alarms only.

With distributed vehicle data fusion, we can further reduce
the false alarms which appear rarely in other distributed
vehicles. In general, the CRSM system can achieve as much
as 90% pothole detection, with nearly zero false alarms.

However, there are still two types of events, manholes
and decelerating belts, which cause similar vibrations with
potholes. Potholes filters and data fusion cannot effectively
distinguish these events. Hence, we discover the geographic
locations of manholes and decelerating belts from the urban
traffic database, and remove these two types of events with
their GPS information.

D. Road roughness level classification

We collect accelerations from actual roads with different
characters: (I) smooth roads with rare small particles, (II)
general roads with some small particles like sands or small
stones, (III) roads with small bumps, (IV) roads with potholes.

Figure 6 shows the continuous z-axis accelerations against
sampling points on various road types, where (a) to (d) stand
for smooth roads, general roads, roads with bumps, and roads
with potholes, respectively.

As illustrated in Figure 6(a), the z-axis accelerations on
smooth roads are very regular with only small fluctuations
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Fig. 5: Four pothole filters, (a) velocity filter, (b) z acceleration filter,
(c) x-z acceleration ratio filter, (d) velocity vs. z-axis acceleration
ratio filter.

in the middle. From Figure 6(b), we can see that there
are relatively larger amplitude in the z-axis accelerations on
general roads than on smooth roads. It might be caused by
continuous small obstacles or other particles on the road
surface, and the overall road condition is very good. Figure 6(c)
indicates the z-accelerations on roads with bumps. We find
some larger fluctuations due to several small bumps. This road
is also considered to be qualified in spite of these disturbances.
Figure 6(d) shows the z-axis accelerations data on roads with
potholes. The acceleration data are with great fluctuations, and
we deduce that the vehicles vibrated strongly when passing by
these potholes. The road condition is unqualified in general.

Distributed onboard modules transmit road roughness lev-
els to the central sever periodically. Then road roughness is
evaluated into levels with maximum report times in our central
server. Road roughness levels of various road types are listed
in Table IV. These four road types with different velocities
are classified into excellent, good, qualified, unqualified level,
which are in conformity with above discussions.

Experimental results show that the CRSM can evaluate
road roughness levels correctly, even with some interferences
like small bumps or potholes. Furthermore, CRSM onboard
module consumes no more than 50 dollars in total, which is
only 1/4400 to 1/160 of these existing systems [12] with a cost
of about 8,000 to 222,000 dollars. Therefore, CRSM is more
likely to be widely adopted in municipal engineering.

VII. CONCLUSION

In this paper, we describe the design and implementation
of CRSM, a crowdsourcing-based road surface monitoring
system. It can monitor road potholes and road roughness levels
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Fig. 6: Continuous z-axis accelerations, (a) smooth roads, (b) general
roads, (c) roads with bumps, (d) roads with potholes.

TABLE IV: ROAD ROUGHNESS LEVELS OF VARIOUS ROAD
TYPES.

Road type Velocity RQI Road roughness level

Smooth 37.15 3.52 excellent
General 63.86 3.12 good
Bumps 62.36 2.66 qualified

Potholes 37.50 1.14 unqualified

simultaneously with distributed modules mounted on vehicles.
Experimental results show that CRSM can detect road potholes
with up to 90% accuracy, and nearly zero false alarms. CRSM
can also evaluate road roughness levels correctly, even with
some interferences from small bumps or potholes.
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