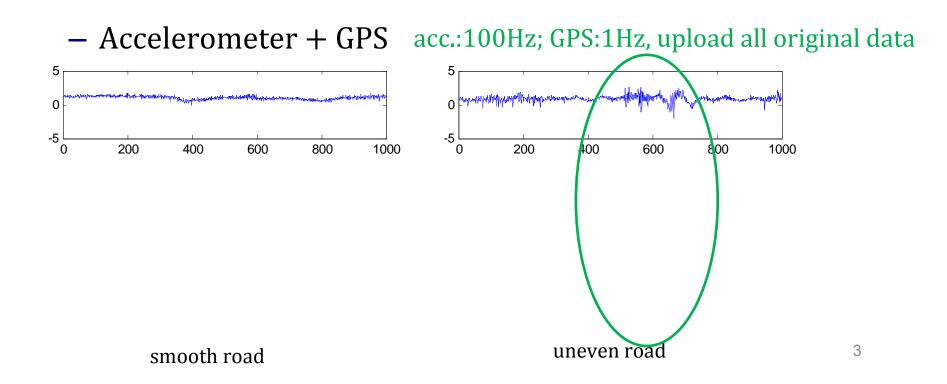
CRSM: Crowdsourcing based Road Surface Monitoring

Kongyang Chen¹, Mingming Lu², Guang Tan¹, and Jie Wu³ ¹SIAT, Chinese Academy of Sciences, ²Central South University ³Temple University

Nov. 15th, 2013

Motivation

- Road surface monitoring
 - Vehicles vibrate greatly on bad roads, which is harmful for vehicles healthy and passenger security
 - City municipalities periodically detect road condition, and cost millions of dollars each year


Any better solutions?

Motivation (Cont.)

Related work

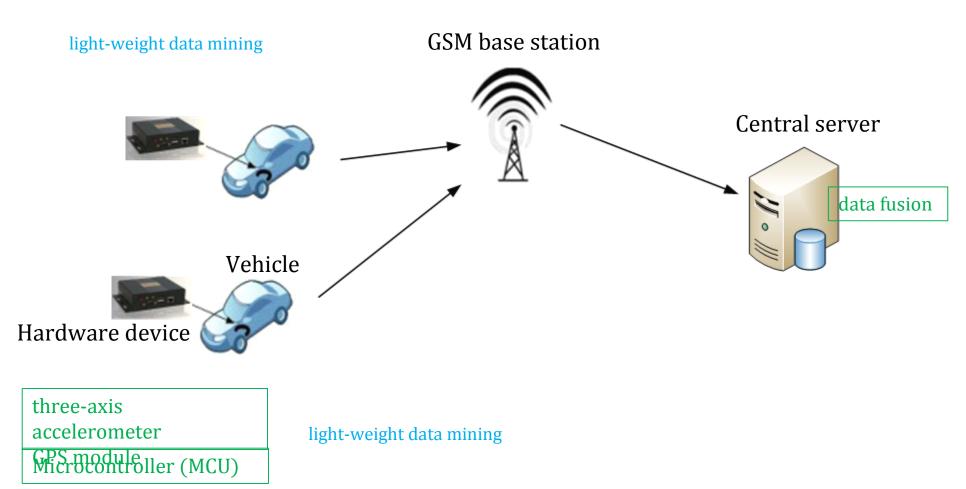
 3D laser scanning devices
 complex modeling expensive for popularization

large dataset
 Cameras to record images and videos huge analysis workload

Motivation (Cont.)

- How to reduce upload data size?
 - discard data on smooth roads
 - upload "abnormal" data only, e.g. potholes
- Our contributions
 - A light-weight data mining algorithm *i-GMM*
 - Road surface monitoring system CRSM
 - Pothole detection Find the locations of potholes
 - Road roughness classification Evaluate road quality

CRSM

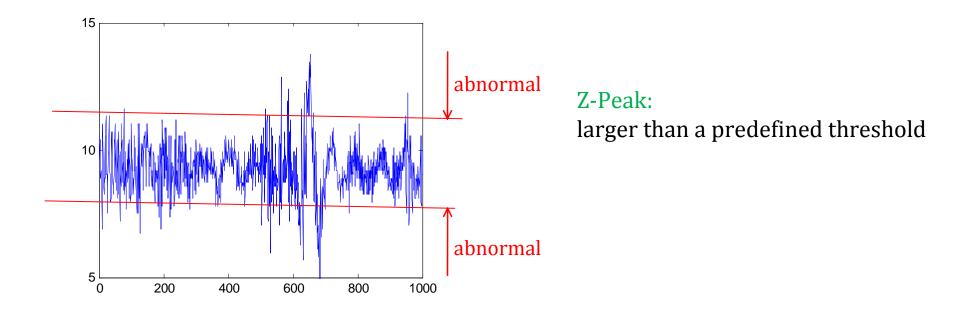


Vehicle Hardware device

three-axis accelerometer GPS module Microcontroller (MCU)

light-weight data mining

CRSM

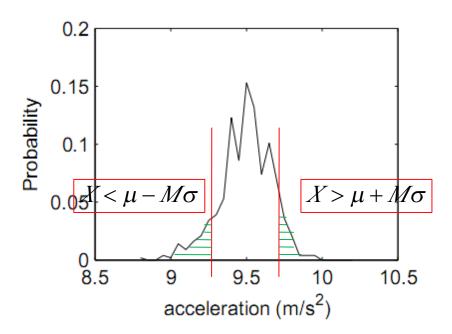


Road Pothole Detection

- Goal:
 - Find the locations of potholes
 - with abnormal signals only, not all original signals

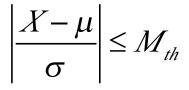
- Questions
 - Q1: How to find abnormal signals?
 - Q2: How to extract potholes from abnormal signals?

• Q1: How to find abnormal signals?



Problem:

Vibration vary greatly on different roads or different driving velocities


hard to determine a universal threshold

• Q1: How to find abnormal signals?

$$\left|\frac{X-\mu}{\sigma}\right| > M_{th}$$

not matched \rightarrow abnormal signal \rightarrow upload to server

matched \rightarrow smooth signal \rightarrow learn

$$\mu' = (\underline{1-\delta})\mu + \underline{\delta}X$$

$$\sigma'^2 = (\underline{1-\delta})\sigma^2 + \underline{\delta}(X-\mu)^2$$

Fig. 2: Distribution of the z-axis acceleration from a smooth road.

single Gaussian model

• Q1: How to find abnormal signals?

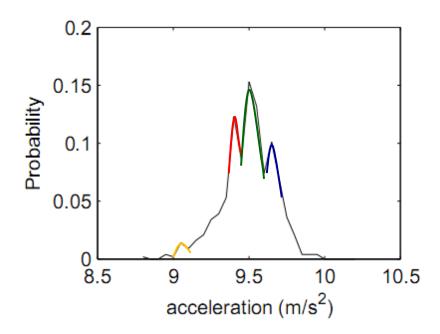


Fig. 2: Distribution of the z-axis acceleration from a smooth road.

Gaussian mixture model (GMM)

K Gaussian distributions to capture the background signals

signal X

not matched \rightarrow abnormal signal \rightarrow upload to server

matched \rightarrow smooth signal \rightarrow learn

high velocity.

Improved GMM (*i-GMM*)

Event detection threshold changes with velocity

$$M_{th} = f'(v)$$

How to capture sudden changes quickly? e.g. start, stop

Vehicles vibrate with

X = f(v)

Learn rate changes with velocity increment

$$\delta = g'(\Delta \upsilon)$$

- Q1: How to find abnormal signals?
- Q2: How to extract potholes from abnormal signals?
 - Abnormal signals has Many interrupt events
 - opening or closing the vehicle door
 - high velocity vibration
 - small bumps
 - expansion joints and contraction joints
 - etc

• How to extract potholes from abnormal signals?

Four filters

Filter	description	events
Velocity filter	$\upsilon < T_{V}$	opening or closing the door
Z-axis acc. Filter	$Z < T_Z$	small bumps
X-z acc. Ratio filter	$X/Z < T_{XZ}$	expansion joints and contraction joints
Velocity vs. z-axis acc. Ratio filter	$V/Z < T_{VZ}$	high velocity vibration

Road Surface Roughness Classification

- How to evaluate road quality according to accelerometer only?
 - Metric: Riding Quality Index (*RQI*)

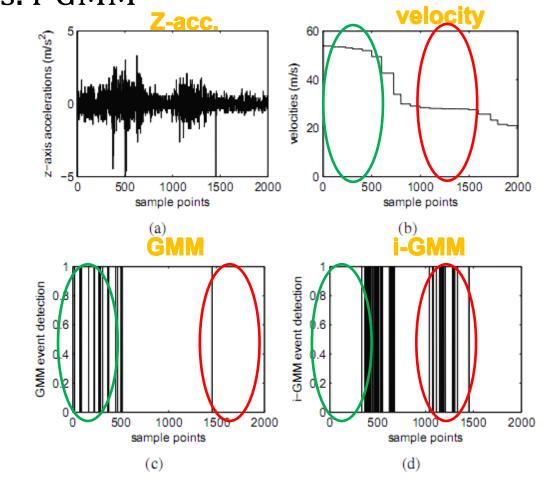
v(km/h)	RQI	Pavement roughness level
v>80	HQI>3.6	excellent
	3.0 <rqi<3.6 2.5<rqi<3.0< td=""><td>good gualified</td></rqi<3.0<></rqi<3.6 	good gualified
	0 <rqi<2.5< td=""><td>unqualified</td></rqi<2.5<>	unqualified
\bigcirc	RQ1>3.2	excellent
40 <v<80< td=""><td>2.8<rqi<3.2< td=""><td>good</td></rqi<3.2<></td></v<80<>	2.8 <rqi<3.2< td=""><td>good</td></rqi<3.2<>	good
	2.4 <rqi<2.8< td=""><td>qualified</td></rqi<2.8<>	qualified
	0 <rqi<2.4< td=""><td>unqualified</td></rqi<2.4<>	unqualified
v<40	RQI>3.0	excellent
	2.6 <rqi<3.0< td=""><td>good</td></rqi<3.0<>	good
	2.2 <rqi<2.6< td=""><td>qualified</td></rqi<2.6<>	qualified
	0 <rqi<2.2< td=""><td>unqualified</td></rqi<2.2<>	unqualified

TABLE I: EVALUATION STANDARDS FOR ROAD ROUGHNESS LEVELS.

Road Surface Roughness Classification (Cont.)

- How to evaluate road quality according to accelerometer only?
 - Metric: Riding Quality Index (RQI)

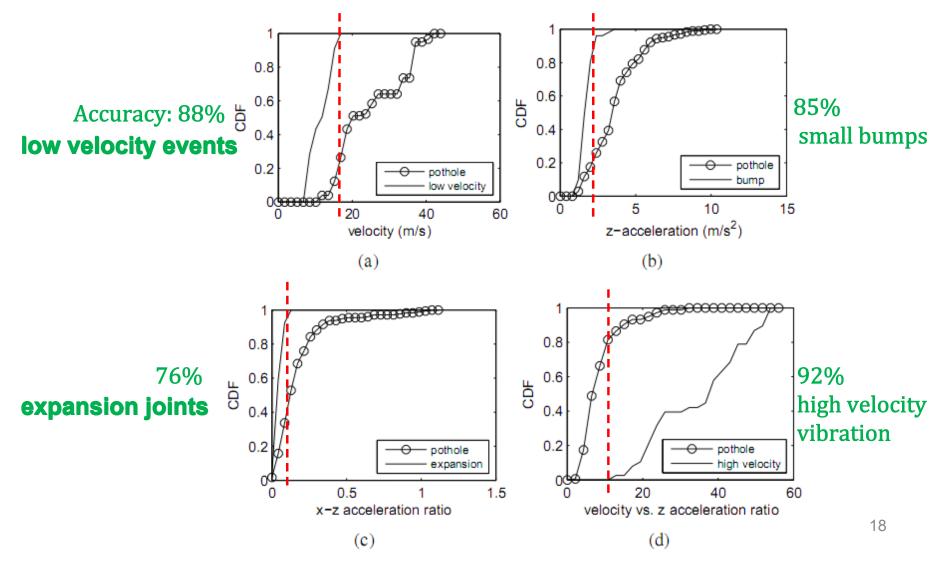
Relationship between RQI and signal variance


$$RQI = f(\sigma)$$

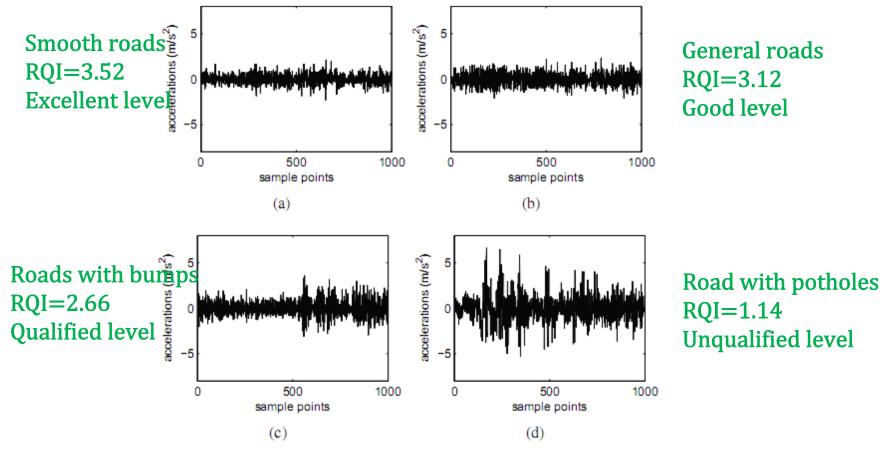
- Signal variance \rightarrow RQI \rightarrow Road roughness classification

Evaluation

- Experimental settings:
 - 100 vehicles with CRSM devices in Shenzhen
 - 1Hz GPS and 100Hz acceleration samples
- Ground truth
 - another vehicle with a CRSM device and a camera


• GMM vs. i-GMM

False alarms at high velocity


Missing events at low velocity

• Pothole filters

- Pothole filters (Cont.)
 - Central server
 - refuse pothole events with small report ratio
 - >90% accuracy
 - small false alarms

• Road roughness levels

Conclusions

- CRSM: a crowdsourcing-based road surface monitoring system for pothole detection and road surface roughness evaluation.
- A light-weight data mining algorithm for event detection i-GMM, followed by fours filters for pothole detection.
- An online algorithm for road surface roughness evaluation in compliance with industry standards.
- Experimental results show that CRSM can detect road potholes with up to 90% accuracy, along with correct road roughness levels.

