
A Greedy Approach for Vehicle Routing when
Rebalancing Bike Sharing Systems

Yubin Duan, Jie Wu and Huanyang Zheng
Department of Computer and Information Sciences, Temple University, USA

Email: {yubin.duan, jiewu, huanyang.zheng}@temple.edu

Abstract—With the bloom of the sharing economy, bike shar-
ing systems have earned increasing attention, and a great amount
of bike sharing systems have been established in major cities.
Users of these systems mainly conduct one-way trips, which
leads to an unbalanced distribution of the bikes over time and
space. The system operators could hire a fleet of vehicles to move
bikes among bike stations for rebalancing. We focus on a routing
schedule problem for each vehicle used in the rebalancing process
and aims to minimize its moving distance. For the problem, we
propose a greedy algorithm which can be easily extended to
a parallel version. The scheduled route for a vehicle is adapted
from the Hamiltonian path covering all unbalanced bike stations.
The algorithm greedily adjusts the route if the vehicle cannot
moving along the Hamiltonian path due to capacity limitation
violation. Different from previous approaches, our algorithm has
a more flexible tradeoff between running time consumption and
optimality of the output. Finally, we conduct experiments on both
real-world and synthetic datasets and compare the performance
of our algorithm with a classic approach.

Index Terms—vehicle routing, capacitated traveling salesman
problem, bike sharing systems, greedy algorithms.

I. INTRODUCTION

Recently, bike sharing systems (BSSs) have been widely
adopted in major cities [1]. Research shows that applying bike
sharing systems not only brings benefits to the environment,
but also to the economy. Accessibility and affordability of
BSSs greatly motivate users to ditch their cars for bikes.
According to [2], an average of 40% of bike share members
in 4 North American cities drive less after joining the scheme.
In addition, as a solution to the “first/last mile” connectivity
issues brings BSSs huge potential economic benefits. Besides
these advantages, the social benefits which are brought from
the development of BSSs also include benefits for health,
transport flexibility, and cost savings for individuals. Despite
that the profits brought by BSSs is great and attractive,
maintaining the sustainability of the system is challenging.

The development of BSSs is strongly relay on the sustain-
ability of the system. However, users of BSS mainly conduct
one-way trips, which may bring the bike unbalance problem
to the system. The unbalance distribution of bikes may further
generate out-of-service stations. Specifically, the BSSs are
mainly used for one-way trips and this mode may lead to
an unbalanced distribution of the bikes [3], especially in rush
hours. The amount of full and empty stations may increase
under the extreme distribution. Consequently, it leads to an
higher probability of failure to find an available dock when a
user returning a bike or to find an available bike when renting.

2 -2 -1

2 -1 2

Fig. 1. A rebalance senario.

To avoid such kind of failure, operators need to rebalance the
bike distribution among bike stations by deploying a fleet of
trucks to avoid the full or empty inventory. Researches have
shown that the cost of rebalancing contributes to a large part
in operation cost for bike sharing companies. Therefore, it is
important to optimize the rebalancing cost.

One way to optimize the rebalancing cost is to minimize the
total transport distance of the fleet when rebalancing the bikes.
The rebalancing problem mainly contains two challenges. The
first is to estimate the inventory demands for each station. A
significant number of researchers has provided several usage
prediction methods, such as [4–6]. The other challenge occurs
afte the desired inventory is determined. It is also important
to optimally schedule routes for vehicles in the fleet to reduce
their travel distance while meeting the demand of every
station. The limited capacities of vehicles bring difficulties
to the optimization. In this paper, we mainly focus on the
second challenge and propose a heuristic greedy approach to
construct a route that can minimize the transport distance for
each vehicle used in the rebalancing.

We assume that a BSS is divided into several regions and
each region contains one truck for rebalancing based on the
fact that number of researches have studied region division
methods, such as [4, 7]. Therefore, we focus on scheduling a
route for the single vehicle used in a region. Given the location
and the rebalance demands of each bike station, our vehicle
routing problem can be seen as an CTSPPD problem, which
has been proven to be a NP-hard problem [8]. Specifically,
our goal is to minimize the tour distance for each vehicle
used for rebalancing under several constraints. First of all,
the number of bikes on the vehicle cannot exceed the limited
capacity. Also, the demands of bike station shall be satisfied
after rebalancing operation. In addition, the vehicle needs
to depart from a station and end at the same station as for
the consistence of the rebalancing operation. Fig. 1 shows a
simple scenario of our problem. Each vertex in the figure
represents a bike station, and the numbers labeled on the

stations show the demands. The positive number means the
station has more than enough bicycles, and the extra bikes
need to be transferred to other stations. The negative number
means the station faces shortages. Arrows in Fig. 1 show a
feasible path for a vehicle whose capacity limitation is 4.

The main contributions of the paper are summarized as
follows:

• We summarize one classic algorithm [9] which can be
used in our vehicle routing problem, and analyze the
weakness of this approach.

• We propose a new greedy approach, and show that our
greedy algorithm can be easily extend to parallel version.

• We provide the properties of our greedy algorithm in-
cluding the complexity and feasibility analysis.

• We simulate our algorithm on both real-world and syn-
thetic datasets, and compare the performance between
our algorithm with the previous approach.

The remainder of the paper is organized as follows. Section
II discusses related works and compares them with our
approach. Section III presents a formal mathematical model
of the problem. Section IV describes a classic algorithm to
our problem and analyzes its drawbacks. Section V presents
our greedy algorithm, the algorithm variations and its prop-
erties. Section VI shows the performance of our algorithm
in both real-world and synthetic dataset. Finally, section VII
concludes the paper.

II. RELATED WORK

Hiring fleets of trucks to rebalance the BSS can be classified
as a Capacitated Vehicle Routing with Pickup and Delivery
problem (CVRPD). The vehicle routing problem is a classic
problem that has been studied for more than thirty years [10–
13]. Parragh et al. [14] surveyed the variations of Vehicle
Routing with Pickup and Delivery problems. In our problem,
we consider that the service area of a BSS can be divided
into multiple regions and each region is assigned one vehicle
to conduct the bike rebalancing. Several possible division
methods were introduced in [4, 7], and we focus on reviewing
works related with the single vehicle routing.

The TSP with Pickup and Delivery (TSPPD) proposed in
[11] is similar to our problem. In the TSPPD, a vehicle with a
limited capacity is hired to pick up and deliver products. The
difference is that the products picked up by the vehicle must be
transport to the depot and cannot be sent to users who need
the delivery. Moshiev et al. [11] introduced applications of
TSPPD and developed a heuristic algorithm that considers to
conduct pick-ups and deliveries along the TSP tour. Anily and
Mosheiov [13] introduced an algorithm with 2 approximation
ratio by using the minimum spanning tree. Gendreau et al. in
[15] proposed two heuristics, where the one utilizes the exact
solution of a special case and the other one takes advantage
of the tabu search.

Hernandez et al. [10] introduced the One-commodity
Pickup-and-Delivery TSP (1-PDTSP), where a single vehicle
needs to pickup products from suppliers and deliver to re-
questers, and proposed a branch-and-bound algorithm to find

-3 -2 -1 0 1 2 3 4 5

-2

-1

0

1

2

3

4

5

6

7

8

1
2

3
4

5
6

78
9

10
11

12
13

14
15

MST
TSP

(a) Locations & TSP tour

1
2

2

1

1

1

1
-11

-1

-1

-1

-3

-1

-2
1 2

3

4

5

6

7
89

10

11

12

13

14
15

(b) Unbalance situation

Fig. 2. The locations of stations and unbalance situations. The black vertices
and edges in (a) represent the minimum spanning tree used to calculate the
approximate TSP tour (shown by the blue tour in (a)). The number on each
vertex in (b) illustrate the demands of each station.

an optimal solution. Although they considers the capability
limitation of the vehicle, they adds additional constraint that
each pickup or delivery locations can be visited only once.
However, we show that there may be no feasible solutions
under the additional constraint in section V.

In BSS rebalancing operations, deciding a reasonable target
level of each station is also important, since the vehicle routing
cannot be determined without a specific target inventory for
each station. Raviv et al. [16] proposed an appraoch to
minimize the expected system-wide user dissatisfaction under
a time limit. Schuijbroek et al. [7] proposed to determine a
range of desirable inventory instead of a fixed value. This
allows much more edibility in the routing step. To the best of
our knowledge, they are the first to introduce a dual-bounded
service level constraints. It increases the flexibility of the
rebalance operation. As for the cost of rebalancing, although
we consider to use transportation distance to quantify the
rebalancing cost, Lin et el. [17] proposed an approach that
takes road regulations, traffic as well as geographical factors
into consideration.

III. PROBLEM FORMULATION

The rebalancing problem is modeled in a graph G = (V,E),
where V = {v1, v2, . . . , vn} is the vertex set denoting bicycle
stations and E = {(vi, vj)|vi, vj 2 V } is the edge set
denoting roads between bicycle stations. Each station vi is
associated with a demand di 2 Z. A positive di means the
station i has extra bikes, and a negative di means the station
is lack of bikes. The weight of the edge (vi, vj) is denoted
as wij , which represents the distance between bike stations
vi and vj . We consider that a vehicle with capacity C is
hired to move bikes among unbalanced stations to satisfy the
demand for each station. The objective is to minimize total
bike shipping distances for the vehicle under constraints: the
bike demand of each station should be satisfied, and the route
for the vehicle should be feasible. The definition of a feasible
path and a feasible route is given as follows.

Definition 1: Given a path T , a vehicle capacity C, the
path T is a feasible path if the number of bikes on the vehicle
(denoted as n) always satisfies such equation: 0 n C.
The path T is a feasible route if T contains all stations.

1
2

2

1

1

1

1
-11

-1

-1

-1

-3

-1

-2
p1

z0

p2

p3n1

n2

n3

(a) Partition

n1 p1

n2 p2

n3 p3

(b) The bipartite graph

1
2

2

1

1

1

1
-11

-1

-1

-1

-3

-1

-2
p1

z0

p2

p3n1

n2

n3

(c) Matching result between pieces
(pairs are linked by red lines)

1
2

2

1

1

1

1
-11

-1

-1

-1

-3

-1

-2

p1

z0

p2

p3n1

n2

n3

Positive Piece

Negative Piece

Zero Piece

(d) The final constructed route

Fig. 3. (a), (b), (c) and (d) illustrate the procedures to construct the route for rebalancing in the classic algorithm. The white, grey and light grey pieces in
the figure means the positive-pieces, negative-pieces and zero-pieces correspondingly. See section IV for details.

1
2

2

1

1

1

1
-11

-1

-1

-1

-3

-1

-2 +

-

(a) Jumping to a negative part

1
2

2

1

1

1

1
-11

-1

-1

-1

-3

-1

-2 +

- +

(b) Jumping to a positive part

1
2

2

1

1

1

1
-11

-1

-1

-1

-3

-1

-2

+

+

-

-

(c) An admissible route

1
2

2

1

1

1

1
-11

-1

-1

-1

-3

-1

-2

+

+

-

-

(d) Another admissible route

Fig. 4. (a), (b) and (c) illustrate the procedures to construct the route for rebalancing in our greedy algorithm. The red arrows indicates the direction of jumps.
(d) shows the route generated by choosing a different starting station. See section V for details.

Strictly, our problem can be abstracted by a binary opti-
mization problem. Let xij denote the binary decision variable.
The variable equals to 1 if the vehicle directly travels from
station vi to vj . Let ✓ij denote the number of bikes loaded on
the vehicle when it is moving from vi to vj .

The problem is formulated as follows:

min
X

i

X

j

wijxij

s.t.
X

i2U,j /2U

xij � 1, and
X

i/2U,j2U

xij � 1, 8U ✓ V (1)

X

j

✓ij �
X

k

✓ki = di, 8 i, j, k (2)

✓ij � 0, and ✓ij C · xij (3)
xij 2 {0, 1} (4)

Constraint (1) ensures that the route for a vehicle covers all
the stations and constructs a cycle, rather than a combination
of subtours. Constraint (2) ensures that the rebalance operation
can fulfill the bike demand required by each station. Constraint
(3) is the capacity constraint. It ensures that the amount
of bikes loaded on the vehicle won’t exceed its capacity.
Constraint (4) ensures the decision variable xij is binary.

IV. A CLASSIC ALGORITHM

In this section, we briefly introduce the classic algorithm
proposed in [9] and illustrate the drawbacks of the algorithm

by using a special example.

The general idea of the classic algorithm is to modify a TSP
tour to satisfy the capacity constraint in CVRPD problem. To
present how the algorithm works, we go through it on an
example shown in Fig. 2. In this example, the capacity of the
vehicle used for rebalance is 6, i.e. C = 6. Fig. 2(a) shows
the locations of each bike station and the TSP tour founded
by [18]. Fig. 2(b) presents the unbalance situation of each
station. The positive integer in the nodes means the number
of extra bikes in the station and the negative inverter shows the
shortness of bikes in the corresponding station. The number
next to the nodes indicates the label of the node corresponding
to Fig. 2(b).

The procedure of the classic algorithm is shown as Fig. 3.
The algorithm first divides the TSP route into 3 different kinds
of pieces, which are positive-pieces, negative-pieces, and zero-
pieces (denoted by +, �, 0 in Fig. 3 respectively). To divide
the TSP path, the classic algorithm randomly choose a starting
point (which is not the actual starting point of the rebalancing
route) and suppose there is a vehicle with amount of C/2 bikes
loaded at the chosen point. Then, let the imaginary vehicle
transport the bikes between each station along the clockwise
(or counterclockwise) TSP route. When the amount of bikes
loaded on the vehicle equals to 0 or C/2 or C, the edge
from the current station to the next station will be deleted,
and pieces are generated. If the number of bikes increased
(decreased or unchanged) along the piece, then the piece is

denoted as positive-piece (negative-piece or zero-piece).
After deciding the pieces, the classic algorithm then con-

structs a bipartite graph (shown as Fig. 3(c)) and computes
the minimum-weight perfect matching. Specifically, vertices
in the bipartite graph are divided into two sets, representing
positive-pieces and negative-pieces respectively. The edge
between each pair of vertices in different sets (i.e. a pair
of a positive-piece and a negative-piece) is weighted by the
shortest distance between two pieces. The shortest distance is
found out by comparing distance between each pair of stations
between positive and negative-piece, since each piece can
contain more than one actual bike stations. After constructing
the bipartite graph, the minimum bipartite matching algorithm
is used to pair the vertices in the two sets. Correspondingly,
the positive-pieces and negative-pieces are matched as shown
in Fig. 3(c).

After the minimum matching is found, the route for the
vehicle can be construct by the following procedure. Traverse
in clockwise/counterclockwise direction from the randomly
chosen starting point. When encountering a zero-piece, the
vehicle should move along the piece and perform pickups
and deliveries. When encountering the first piece of a matched
positive-negative pair, the vehicle should service the pair as
following sequence: suppose the vehicle encounter a positive-
piece first, and it is matched with a negative-piece by edge
e. The vehicle should service the positive-piece (traverse and
perform pickups and deliveries), until e is encountered. Then,
move to the negative-piece along e and service the negative-
piece. Then move back to the point in the positive-piece
where the vehicle left off and continue. When encountering
the second piece of a positive-negative pair, the vehicle should
not conduct pickups and deliveries when traversing the piece.
It is because that they have already been served. Although the
starting point used here is chosen randomly, and the imagery
vehicle contains C/2 bikes initially, [9] has proved that a
feasible starting point always can be founded on the tour
constructed for a vehicle with no bikes loaded.

We summarize the drawbacks of the classic algorithm as
follows. In the partition phase of the classic algorithm, the
TSP tour is cut into small pieces. When a vehicle passing
each piece, the maximum fluctuate of goods loaded in the
vehicle will not expired C/2 instead of C. In their algorithm,
C/2 is used as the threshold to ensure the feasibility of
the constructed route. However, compare with using C as
threshold, this strategy is more likely to generate shorter
pieces in terms of distance. That is to say, it may generate
more pieces, and a larger number of pieces may lead to a
larger number of jumps in the constructed route. Then it may
lead to a longer route. In addition, the classic algorithm is
based on the bipartite matching algorithm, which is not easy
to parallelize.

V. ALGORITHMIC DESIGN

A. A Greedy Approach

Inspired by the classic algorithm, we proposed a new greedy
algorithm and several variations. The core idea of the classic

Algorithm 1 LGA
Input: Set of stations V = {v1, v2, ..., vn} along with geo-

graphic locations and demands, vehicle’s capacity C.
Output: A feasible route p.

1: T the approximate TSP path of V without considering
rebalance demand.

2: p ;, randomly choose s 2 V as starting station.
3: s

0 the last bike station such that constraints (2)-(3) are
not violated following the path from s to it in T .

4: for each station vi in the path from s to s
0 in T do

5: Insert vi into p, and remove vi from T

6: while T 6= ; do
7: Update s and s

0 stations s and s
0 such that the path

from station s to s
0 in T is the longest feasible path.

8: for each station vi in the path from s to s
0 in T do

9: Insert vi into p, and remove vi from T

10: return p as the feasible route

algorithm remains. We also try to modify the TSP tour to
fit capacity limitation and force the vehicle to visit stations
facing shortage (surplus) after the vehicle’s load increased
(decreased). We first introduce Length Greedy Algorithm (or
LGA for short) to present our greedy approach. In line 1, LGA
constructs the approximate TSP tour T by using Christofides’
algorithm [18]. Then, the involved parameters are initialized
in line 2. From line 3 to 5, LGA initializes a feasible path.
Specifically, based on the starting point chosen in line 2, the
vehicle goes along the TSP tour as far as possible until the
capacity constraint is not satisfied. In line 7, LGA greedily
chooses the path which is the longest feasible path of all
potentially feasible paths as the forwarding path. From line
8 to 9, the algorithm adds the forwarding path founded in
line 7 into the vehicle’s path set p. The path is extended at
each iteration. A feasible path for balancing all bike stations
in V is generated if all stations are included in the path p (or
T turns to empty). Finally, the solution is returned in line 10.

Using the same example shown in Fig. 2, we illustrate the
procedures of our algorithm in Fig. 4. Specifically, We choose
the station 1 as the starting station and the clockwise direction
as default detection. Beginning from station 1, it can proceed
to station 4 at most, since there is no room left to load the bike
in station 5. Therefore, it has to jump to another station, which
is chosen greedily. That is to say, the station for next jump
should guarantee that the vehicle can proceed along the TSP
tour as long as possible. That certain station in our example is
station 8 and the first jump from station 5 to 8 is shown by the
red line in Fig. 4(a). From that station, the vehicle can proceed
to station 13 until there is no bike to unload. Using the same
greedy strategy, the next jump chosen for our vehicle to jump
to is station 5 (shown in Fig. 4(b)). Proceeding form station
5, the vehicle can gain 3 bikes, therefore the path from station
5 to station 7 can be denoted as a positive part of TSP. At
station 7, the vehicle can continue moving to station 8 without
violate the capacity constraint. However, since station 8 is

Algorithm 2 LGA with Multi-starts (LGA-k)
Input: Set of stations V = {v1, v2, ..., vn} along with

geographic locations and demands, number of starting
stations k, and vehicle’s capacity C

Output: A feasible route p
⇤

1: The same as step 1 of LGA.
2: Set p ;, S randomly choose k stations in V

3: for each station s 2 S as the starting station do
4: The same as step 3-9 of LGA.
5: Update p

⇤ p if the path length of p is smaller than p
⇤.

6: return p
⇤ as a feasible route.

already visited and the demand is also satisfied, the vehicle
will bypass this station. It is the same situation for stations 9
to 13. As the result, the vehicle will directly jump to station
14 (bypass stations 8-13), and supply stations 14 and 15, as
shown in Fig. 4(c). After leaving station 15, the demands of all
stations are satisfied. Therefore, the vehicle will back to our
starting station, and the rebalance task is finished. The total
distance of the route is 29. Apparently, it is shorter than the
route constructed by the classic algorithm since the number
of jumps is smaller.

The starting bike station is critical for the algorithm’s per-
formance. Different starting bike stations can lead to different
final route lengths. This can be shown by comparing the
routes in Fig. 4(c) and Fig. 4(d). That is to say, using a
set of independent starting points may improve the overall
performance. This leads to the multi-start version of our
greedy algorithm, and it is shown in Algorithm 2.

B. Algorithm Variations

In aforementioned greedy approach, the longest feasible
path is used as the greedy criterion. That is to say, we want to
keep the TSP route as long as possible. However, it may not
be able to give the optimal result, since the length of jumping
from a station to the next station is not counted. Therefore,
to take the jumping cost into account, we proposed another
different greedy metrics as variations:

Variation1: Let lf denote the length of path starting form
the jump-out station to the last station in the forwarding path.
Let lp denote the length of the forwarding path. Rather than
choosing the longest path, we can choose the feasible path
which minimizes the lf/lp as the forwarding path.

Variation2: We can also choose the forwarding path which
minimizes ln/lp, where ln denotes the length of the path
starting from the jump-out station to the first station in the
forwarding path and lp still means the length of this path.

C. Properties

The time complexity of LGA is O(n3). The calculation of
the TSP tour costs O(n3) time. In the following iteration, at
least one node will be chosen and removed from T . Therefore,
LGA can conduct O(n) iterations at most. During each
iteration, at most O(n) stations can be checked as potential
forwarding stations, and each check costs O(n) time at most.

Thus, the time complexity of LGA is O(n3) which is also
the time complexity of the classic approach. Although LGA
share the same time complexity with the classic algorithm,
our algorithm can be easily parallelized.

Besides discussing the time complexity, we also pay atten-
tion to the feasibility of our algorithm. If feasible routes exist,
our approach can always find out as least one feasible route by
adding all station into the starting station set. Our algorithm
can always proceed to a forwarding station and add/drop one
bike after each iteration, unless the feasible path is not exist.
Because the total number of bikes that need to be moved
is certain and finite, our algorithm can always construct a
feasible route if all stations are tested as the starting station.
That is to say, the feasibility of our algorithm is determined
by the existence of feasible route.

In our problem, each station can be visited more than
once. Under this condition, at least one feasible route exists
if the sum of demands among all stations is 0. To construct
the path, a naive approach is to use the vehicle pickup one
bike in a supplement station and head to a station with
negative demands right after the pickup. A feasible route can
always be constructed since the sum of extra bikes in each
supplement station is equals to the sum of bikes needed in
each demand station. Admittedly, the path constructed by the
naive approach may contain unnecessary detours, however, it
shows the existence of feasible route.

As an extension to our problem, we can constrain that
each station can be visited only once, which means the entire
demand of each station has to be satisfied when the station is
visited. We denote this scenario as non-split scenario. After
adding this constraint to our problem, there may exist no
feasible route even if the sum of demands equals to 0. It
can be easily proven by constructing an example in which the
feasible route doesn’t exist. Assume there are 5 bike stations
that need to be rebalanced. The demand of each station is 6,
6, 6, -10, and -8 respectively. If there is only one vehicle with
a capacity of 10 that can be used in rebalancing operation, no
feasible route can be found. More specifically, the vehicle has
to visit a station which has 6 extra bikes to load some bikes
as supplement; but after 6 bikes are loaded, the vehicle has no
where to go. It cannot go to another station to unload bikes,
since 6 bikes in the vehicle cannot satisfy the needing either
-10 or -8. It also cannot go to another station to load more
bikes, since the vehicle does not have enough capacity to load
all the bikes in other supply stations. Therefore, additional
constraint has to be added to guarantee the existence of
feasible route, and it will be shown in Theorem 1.

Theorem 1: When only one vehicle with capacity C can
be used in rebalancing operation under the non-split scenario,
at least one feasible path exists if the absolute value of each
station’s demand dose not exceed C/2.

Proof: To prove that the feasible route always exists,
we prove that the infeasible scenario will not appear. The
infeasible scenario means that after visiting some stations, the
vehicle cannot go any further. More specifically, let C denote
the capacity of the vehicle, n denote the number of bikes on

���	��

���	��

���	�

����	�

������

������

������

�����

����	�

������

���
����
�

������	��

Fig. 5. Locations of NYC Citi Bike stations.

the vehicle, and di denote the demand of station i, and di can
be positive or negative.Because of the additional constraint,
8 i 2 S , |di| < C/2, where S is the set of all stations that
has not been visited.

We use proof by contradiction to show that the infeasible
scenario will not appear. By assuming that the infeasible
scenario exists, we can conclude that 8i 2 S:

n+ di > C if di > 0,

n+ di < 0 if di < 0.

From the first and the second equation, we can conclude that
n > C � di > C � C/2 = C/2 and n < �di < C/2,
respectively. Since there is the contradiction, our hypothesis is
not true. That is to say, the infeasible scenario will not appear.
If the infeasible scenario will not appear, we can alway find
at least one feasible route for the vehicle to visit all stations
and finish rebalance operation. ⌅

VI. EXPERIMENT

A. NYC Citi Bike Dataset

The Citi Bike is a public bicycle sharing system serving
New York City. The company publishes the Citi Bike trip
histories and real-time system data online. We use their
published data to construct the NYC Citi Bike dataset (or
NYC dataset for short) and to test our algorithm. The NYC
dataset contains 813 stations along with the longitude and
latitude of each station. The distribution of bike stations in
Manhattan is shown in Fig. 5. As for the demands of each
station, we assume that all stations should share the same
number of bikes after rebalancing. Therefore, the demands
of each station is determined by the difference between the
number of occupied bike docks in a randomly selected time
with the average.

B. Synthetic Dataset

Synthetic datasets are used as a supplement of real-world
dataset to test the performance of our proposed method and
to compare with the classic algorithm. The synthetic datasets
simulate different location distribution of bike stations and the
unbalance scenario of each station. The station location distri-
bution in all synthetic dataset obeys uniform distribution, but
with different parameters. The absolute value of demands for
each bike station is generated following a Poisson distribution

with parameter � = 7. The sign (+ or �) of each demand is
randomly assigned with the same possibility, and our dataset
guarantee that the sum of demands is 0. Totally, we create
three different kinds of synthetic datasets. In the first dataset,
the density of stations in each group is fixed and the number of
stations is varied. The efficient area is therefore changed with
the number of stations. This aims to simulate the scenario that
the BSSs are extended to new areas (e.g. from urban to suburb
area) and new stations are established with the same density.In
the second dataset, the area of the stations in each group is
fixed. The number of stations is changed, which changes the
density of the stations. This aims to test the scenario that more
stations are added into a certain district. In the third group of
dataset, the number of stations is fixed. The density of stations
is varied, and the efficient area of stations is therefore changed
with density.

C. Experiment Settings

In the following experiment, one vehicle with capacity
limit 40 is hired to rebalance the BSS. We first compare the
performances in terms of route distance and the running times
of our algorithm with the classic algorithm based on the real-
world dataset.

Besides the running time and route distance, we also interest
in the algorithm’s performance in different dataset. Actually,
by using different dataset, we are trying to find out which
factor influence the algorithm’s performance most. Therefore,
we test our algorithm and the classic algorithm on all three
type of datasets. The final results are obtained by taking the
average of results from 50 independent experiments.

D. Evaluation Result

First we illustrate the comparison result of running time in
Fig. 6(a). We found that as the number of stations increases,
the running time of both our algorithm and the classic algo-
rithm (labels as REF in the figure) increases. By choosing
smaller starting station set (choosing 1 or 2 stations), our
algorithm is always faster than the classic algorithm. With
choosing more than 3 starting stations, our algorithm is slower,
but can always generate shorter route as shown in Fig. 6(b).

The performance testing on the three kinds of synthetic
dataset is shown in Fig. 7, Fig. 8 and Fig. 9. From Fig. 7,
we find out that it is easier for our algorithm to get a shorter
route distance in lower density. We found that the average
length of the solution is smaller when density increases.
This can be explained by the observation that the feasibility
constraint becomes more difficult to satisfy as the density
increases. Therefore, it is relatively hard to add a feasible
next start. Moreover, we found that in Fig. 8 , our algorithm
outperform the baseline. The performance of our algorithm
improves along with the increase of number of stations.
Results are shown in Figs. 7 and 9 shows that the performance
gap between our algorithm and the baseline is greater when
the number of stations increases. This behavior is expected
because selecting certain number of starting station is not

Number of stations
0 50 100 150

R
un

ni
ng

 T
im

e/
s

0

0.5

1

1.5

2

2.5

3

3.5
REF
LGA
LGA-2
LGA-4
LGA-8

(a) Running time comparison
Number of stations

0 50 100 150

To
ur

 d
is

ta
nc

e

0

100

200

300

400

500

600

700
REF
LGA
LGA-4
LGA-16
LGA-32

(b) Route distance comparison

Fig. 6. Performance comparison in terms of time consuming and distances.

Number of stations
0 50 100 150

To
ur

 d
is

ta
nc

e

0

100

200

300

400

500

600

700

800

900

1000
REF
LGA-4
LGA-16
LGA-32

(a) Density = 50
Number of stations

0 50 100 150

To
ur

 d
is

ta
nc

e

0

100

200

300

400

500

600

700

800
REF
LGA-4
LGA-16
LGA-32

(b) Density = 150

Fig. 7. Performance comparison in different densities.

enough, and based on only the distance of the station from
the current starting stations leads to a sub-optimal solution.

VII. CONCLUSION

This paper presents a greedy algorithm for vehicle routing
schedule when rebalancing bike distribution in bike sharing
systems. We focus on scheduling a route for each vehicle
used in the rebalance precess. Our algorithm first generates a
Hamiltonian path that contains all unbalanced bike stations,
and then greedily updates the route if the vehicle capacity
constraint is violated. The choices of the starting station in
the Hamiltonian path is critical for the algorithm’s perfor-
mance, and we extend our algorithm to consider multiple
start stations. Besides, two variations on greedy strategies
are proposed. Experiments on both real-world and synthetic
datasets show that our approach provides the system operator
a flexible tradeoff between running time consumption and the
optimality. In the future work, we plan to apply the parallel
version of our algorithm into real-world scenario and compare
the time consuming with existing approaches.

ACKNOWLEDGMENT
This research was supported in part by NSF grants CNS

1757533, CNS 1629746, CNS 1564128, CNS 1449860, CNS
1461932, CNS 1460971, and IIP 1439672.

REFERENCES

[1] E. Fishman, “Bikeshare: A review of recent literature,” Trans-

port Reviews, vol. 36, no. 1, pp. 92–113, 2016.
[2] S. A. Shaheen, E. W. Martin, A. P. Cohen, N. D. Chan, and

M. Pogodzinski, “Public bikesharing in north america during
a period of rapid expansion: Understanding business models,
industry trends & user impacts,” MTI Report, pp. 12–29, 2014.

[3] P. DeMaio, “Bike-sharing: History, impacts, models of pro-
vision, and future,” Journal of public transportation, vol. 12,
no. 4, p. 3, 2009.

[4] J. Liu, L. Sun, W. Chen, and H. Xiong, “Rebalancing bike
sharing systems: A multi-source data smart optimization,” in
Proc. of ACM SIGKDD, 2016, pp. 1005–1014.

Density
0 50 100 150

To
ur

 d
is

ta
nc

e

100

150

200

250

300

350

400

450

500

550

600
REF
LGA

(a) Number of station = 50

Density
0 50 100 150

To
ur

 d
is

ta
nc

e

400

600

800

1000

1200

1400

1600

1800
REF
LGA

(b) Number of station = 150
Fig. 8. Performance comparison in different number of stations.

Number of stations
0 50 100 150

To
ur

 d
is

ta
nc

e

0

100

200

300

400

500

600

700
REF
LGA
LGA-4
LGA-8

(a) Area size = 15
Number of stations

0 50 100 150

To
ur

 d
is

ta
nc

e

0

100

200

300

400

500

600

700

800

900

1000
REF
LGA
LGA-4
LGA-8

(b) Area size = 30

Fig. 9. Performance comparison in different area sizes.

[5] L. Chen et al., “Dynamic cluster-based over-demand prediction
in bike sharing systems,” in Proc. of ACM Ubicomp, 2016, pp.
841–852.

[6] Y. Li et al., “Traffic prediction in a bike-sharing system,” in
Proc. of ACM SIGSPATIAL, 2015, p. 33.

[7] J. Schuijbroek, R. Hampshire, and W.-J. van Hoeve, “Inventory
rebalancing and vehicle routing in bike sharing systems,” 2013.

[8] S. Anily and J. Bramel, “Approximation algorithms for the
capacitated traveling salesman problem with pickups and de-
liveries,” Nav. Res. Logist., vol. 46, no. 6, pp. 654–670, 1999.

[9] M. Charikar, S. Khuller, and B. Raghavachari, “Algorithms
for capacitated vehicle routing,” SIAM Journal on Computing,
vol. 31, no. 3, pp. 665–682, 2001.

[10] H. Hernández-Pérez and J.-J. Salazar-González, “A branch-and-
cut algorithm for a traveling salesman problem with pickup and
delivery,” Discrete Appl. Math., vol. 145, no. 1, pp. 126–139,
2004.

[11] G. Mosheiov, “The travelling salesman problem with pick-up
and delivery,” Eur. J. Oper. Res., vol. 79, no. 2, pp. 299–310,
1994.

[12] N. Wang and J. Wu, “Trajectory scheduling for timely data
report in underwater wireless sensor networks,” in Proc. of

IEEE GLOBECOM. IEEE, 2015, pp. 1–6.
[13] S. Anily and G. Mosheiov, “The traveling salesman problem

with delivery and backhauls,” Operations Research Letters,
vol. 16, no. 1, pp. 11–18, 1994.

[14] S. N. Parragh, K. F. Doerner, and R. F. Hartl, “A survey on
pickup and delivery problems,” Journal für Betriebswirtschaft,
vol. 58, no. 1, pp. 21–51, 2008.

[15] M. Gendreau, G. Laporte, and D. Vigo, “Heuristics for the trav-
eling salesman problem with pickup and delivery,” Computers

& Operations Research, vol. 26, no. 7, pp. 699–714, 1999.
[16] T. Raviv, M. Tzur, and I. A. Forma, “Static repositioning in a

bike-sharing system: models and solution approaches,” EURO

J. Transp. Logist., vol. 2, no. 3, pp. 187–229, 2013.
[17] J.-H. Lin and T.-C. Chou, “A geo-aware and vrp-based public

bicycle redistribution system,” International Journal of Vehic-

ular Technology, vol. 2012, 2012.
[18] H.-C. An, R. Kleinberg, and D. B. Shmoys, “Improving

Christofides’ algorithm for the S-T path TSP,” Journal of the

ACM, vol. 62, no. 5, p. 34, 2015.

