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Abstract—Edge caching is a promising approach to reduce
duplicate content transmission in Internet-of-Vehicles (IoVs). Sev-
eral Reinforcement Learning (RL) based edge caching methods
have been proposed to improve the resource utilization and
reduce the backhaul traffic load. However, they only obtain the
local sub-optimal solution, as they neglect the influence from
environments by other agents. This paper investigates the edge
caching strategies with consideration of the content delivery
and cache replacement by exploiting the distributed Multi-Agent
Reinforcement Learning (MARL). A hierarchical edge caching
architecture for IoVs is proposed and the corresponding problem
is formulated with the goal to minimize the long-term content
access cost in the system. Then, we extend the Markov Decision
Process (MDP) in the single agent RL to the context of a multi-
agent system, and tackle the corresponding combinatorial multi-
armed bandit problem based on the framework of a stochastic
game. Specifically, we firstly propose a Distributed MARL-based
Edge caching method (DMRE), where each agent can adaptively
learn its best behaviour in conjunction with other agents for
intelligent caching. Meanwhile, we attempt to reduce the compu-
tation complexity of DMRE by parameter approximation, which
legitimately simplifies the training targets. However, DMRE is
enabled to represent and update the parameter by creating a
lookup table, essentially a tabular-based method, which generally
performs inefficiently in large-scale scenarios. To circumvent
the issue and make more expressive parametric models, we
incorporate the technical advantage of the Deep-𝑄 Network
into DMRE, and further develop a computationally efficient
method (DeepDMRE) with neural network-based Nash equilibria
approximation. Extensive simulations are conducted to verify the
effectiveness of the proposed methods. Especially, DeepDMRE
outperforms DMRE, 𝑄-learning, LFU, and LRU, and the edge
hit rate is improved by roughly 5%, 19%, 40%, and 35%,
respectively, when the cache capacity reaches 1, 000 MB.

Index Terms—Edge caching; internet-of-vehicles; content
delivery; cache replacement; multi-agent reinforcement learning.
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I. INTRODUCTION

With the explosive growth of vehicles on the road and
the progress of wireless multi-access technology, we have
witnessed unprecedented changes in the traditional transporta-
tion system, which has evolved from a technology-driven
era to a more powerful data-driven intelligent era [1]. As a
fundamental paradigm of 5G networks, Internet-of-Vehicles
(IoVs) enables a wide variety of vehicles to provide reliable
vehicular multimedia services, cooperative cruise control, and
path navigation, etc., which have paved a path towards intelli-
gent transportation, and improved the driving safety and travel
comfort of passengers [2], [3].

Meanwhile, these flourishing vehicular applications re-
quire vehicles to access vast amounts of Internet data, es-
pecially for some delay-sensitive contents, leading to se-
vere network congestion and considerable delay in content
delivery [4]–[6]. Technically, tight Quality-of-Service (QoS)
requirements are generally placed for such applications, which
makes cloud-based processing architectures infeasible due to
the long transmission distance and limited backhaul link ca-
pacity inherent in content delivery from remote cloud servers.
Indeed, the rapid increase in delay and unreliability driven by
the transmission distance has become an inevitable issue for
supporting massive content delivery and gained widespread
attention lately [7], [8]. Despite the continuous efforts made
on improving the backhaul link capacity through advanced
technologies, the radio spectrum utilization has obviously
reached the theoretical bound [9]–[11]. Therefore, these ef-
forts are insufficient to cope with these grant challenges. A
fundamental innovation that breaks through the bottleneck of
massive content delivery in IoVs there is urgently required.

Fortunately, large-scale data analysis shows that different
contents often require different priorities. Only a few popular
contents account for the majority of downloads, while the ac-
cess demand for most of the rest is relatively small [12], [13].
This request pattern promotes the implementation of edge
caching technology in IoVs. Expressly, edge caching has
provided an alternative to alleviate the backhaul link strain and
content access delay inside the future IoVs, which pre-caches
frequently-used contents close to vehicles by pushing cloud
functions to intermediate Roadside Units (RSUs). Hence, edge
caching enables vehicles to access popular content from the
caching-enabled nearby RSUs directly, instead of repeatedly
downloading from remote cloud servers [14]. In this way, the

Authorized licensed use limited to: China Three Gorges University. Downloaded on May 18,2023 at 07:26:11 UTC from IEEE Xplore.  Restrictions apply. 



2

redundant traffic and transmission resource consumption at
both backhaul and core networks can be significantly reduced,
and the QoS is improved as well. In addition, enabling edge
caching in IoVs can benefit extra technical superiorities from
its distributed architectures and small-scale nature, including
privacy protection, scalability, context awareness, and so on.

Compared with the cloud server, the cache capacity of
a single edge node is insufficient to support all popular con-
tents. Without edge cooperation, the overall cache utilization
and effectiveness are prone to be under-utilized. Specifically,
adjacent RSUs can share data traffic and exchange popular
contents rather than operating individually, so the bilateral
synergy between their caches and the centralized cloud should
also be leveraged to facilitate good performance, which largely
depends on a well-designed cooperative edge caching strategy.
On the other hand, with the revival of artificial intelligence,
Reinforcement Learning (RL) has exhibited its particular po-
tential for the method design of efficient edge caching in IoVs.
In RL, the agent can well capture the hidden dynamics of the
environments and imitate the best features by trial-and-error
interaction, thus learning a series of intelligence behaviors
to enhance the edge cache utilization [15]–[17]. However,
massively diverse, highly vibrant and distributed edge caching
contexts make most previous RL work unable to adapt as
they neglected the environment’s influence by other agents
when an agent interacts and learns the settings independently.
Therefore, only the local sub-optimal solution can be obtained
in the system, not the optimal global one, especially in a long-
term optimization problem [18].

Indeed, it is more reasonable and helpful to investigate
from a distributed perspective under the multi-agent context,
which leads to inherent robustness and high scalability1.
Meanwhile, several studies [19], [20] and [21] have proved that
agents considering the impact of joint actions perform better
than corresponding agents learning only based on their own
actions. Therefore, this paper investigates the edge caching
strategy with consideration of the content delivery and cache
replacement by exploiting the distributed Multi-Agent Rein-
forcement Learning (MARL). A hierarchical edge caching
architecture for IoVs is first proposed, where the cooperative
caching among multi-RSUs and Macro Base Station (MBS)
is utilized to reduce the content access cost and the backhaul
traffic in the system. Then, the Markov Decision Process
(MDP) in the single-agent RL is extended to the context
of multi-agent system and the corresponding combinatorial
multi-armed bandit problem is tackled based on the framework
of stochastic games. Specifically, a Distributed MARL-based
Edge caching method (DMRE) is proposed firstly, where each
agent can adaptively learn its best behaviour in conjunction
with other agents for intelligent caching. Meanwhile, we
attempt to reduce the computation complexity of DMRE by
parameter approximation, which legitimately simplifies the
training targets. However, DMRE is enabled to represent and
update the parameter by creating a lookup table, essentially a

1Robustness: when one or more agents fail in the system, the remaining
agents can take over some of their tasks.

Scalability: by sure design, most multi-agent systems allow easy insertion
of new agents.

tabular-based method, which generally performs inefficiently
in large-scale scenarios. To circumvent the issue and make
more expressive parametric models, we incorporate the techni-
cal advantage of the Deep-𝑄 Network into DMRE, and further
develop a computationally efficient method (DeepDMRE)
with neural network-based Nash equilibria approximation. The
main contributions are summarized as follows:

1) An original hierarchical edge caching architecture for
IoVs is presented and the corresponding problem is for-
mulated with the goal to minimize the long-term content
access cost in the system.

2) To address the overhead minimization problem, an MDP
for the optimization of cache replacement process in an
available RSU is defined. Then, the MDP is extended to
the context of a multi-agent system, and the correspond-
ing combinatorial multi-armed bandit problem is tackled
with the proposed DMRE firstly.

3) Furthermore, to circumvent the issue by DMRE and make
more expressive parametric models, we incorporate the
technical advantage of the Deep-𝑄 Network into DMRE,
and further develop a computationally efficient method
(DeepDMRE) with neural network-based Nash equilibria
approximation.

4) Extensive simulation results demonstrate that Deep-
DMRE significantly outperforms other benchmark meth-
ods in different scenarios. Meanwhile, relevant theoretical
proofs of convergence and feasibility of the proposed
methods are presented at the end of the paper.
The remainder of this paper is organized as follows.

Section II and Section III describe the related work and the
system framework, respectively. Section IV formulates the
problem to minimize the long-term content access cost in the
system. Section V extends MDP to a multi-agent system under
the stochastic game framework, and proposes two MARL-
based methods. Moreover, simulation results are analyzed in
Section VI. Conclusion is summarized in Section VII.

II. RELATED WORK

Recently, extensive works have focused on content
caching strategies at the edge of networks [22]–[30]. Jedari
et al. [22] elaborated an exhaustive review on edge caching
and discussed its implementation and outlook. Wu et al. [23]
investigated the tradeoff between content delivery delay and
power consumption in small-cell network caching, and pro-
posed an iterative algorithm to approach the optimal tradeoff
between these two metrics. Yan et al. [24] exploited the energy
assessment models for mobile edge caching and proposed a
predictive caching strategy to potentially improve the cache
hit rates. Zhang et al. [25] focused on a learning-based
edge caching scheme to enable cooperation among different
edge nodes with limited resources, intending to reduce the
content delivery latency and maximize the overall content
caching value. Similarly, to maximize the utility of the caching
system, a vehicular edge caching mechanism based on user
preference similarity and service availability was proposed
in [26]. Furthermore, Zhao et al. [27] dynamically orchestrated
the cache resources in IoVs by leveraging the combined power
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of Lyapunov optimization, matching theory, and consensus
alternating direction method of multipliers. In [28], Ao et
al. leveraged the idea of coordinated multi-point and devised
an efficient cooperative caching strategy to maximize the
system throughput, where the available cache size and the
network topology are both taken into account. In [29], Gu
et al. proposed a dual-connectivity sub-6 GHz and mmWave
heterogeneous network architecture to conduct a collaborative
edge resource design, aiming to maximise virtual reality deliv-
ery reliability. In [30], Zhang et al. considered the stochastic
geometry based probabilistic caching to improve the offloading
rate for backhaul links, and presented an improved caching
probability conversion algorithm to obtain the closed-form
solutions. These works prove the advantage of edge caching.
However, most of them are quasi-static and myopic, and
thus perform unsatisfactorily in the diverse and dynamic IoVs
system.

As Reinforcement Learning (RL) can well capture the
hidden dynamics of the environments, it has been exploited
to enhance the intelligence of IoVs. Specifically, Wang et
al. [31] clustered vehicles to simplify the process of content
requesting via the K-means method, and proposed an RL-
based cooperative caching strategy with content request pre-
diction in IoVs. In [32], Dai et al. developed a novel edge
caching architecture for AI-empowered vehicular networks.
They formulated a joint optimization of edge computing and
caching to maximize the system utility, and exploited an RL
based method to dynamically allocate computing and caching
resources. Without any information or assumptions about the
environment, Tan et al. [33] achieved an RL based adaptive
framework to tackle the resource allocation of communication,
caching, and computing in vehicular networks. This frame-
work was also used by Qiao et al. [34] to study the problem
of content placement and content delivery in IoVs, which
aims to reduce the system cost under the constraint of content
delivery latency. Furthermore, Wang et al. [35] proposed a
federated deep RL-based cooperative edge caching framework
to eliminate duplicate traffic and improve the edge cache
utilization with specific QoS requirements. Tian et al. [36]
considered the mobility and changing requests of self-driving
vehicles, and proposed a deep RL-based collaborative caching
method to break the curse of high dimensionality in the state
space of MDP, as well as decrease the redundant transmission
delay.

The aforementioned studies are based on centralized
methods that may not always be feasible in practice due to
distributed and cooperative network topology. The fundamen-
tal problem is that these methods treat the other agents as a
part of the environment and thus neglect the influence on the
environment by other agents’ behavior. Different from them,
this paper investigates the edge caching strategy considering
the content delivery and cache replacement in a distributed
perspective. Specifically, the DMRE framwork is proposed to
reduce the backhaul traffic in the system, where each agent
can adaptively learn its best behavior in conjunction with
other agents for intelligent caching. In addition, to further
circumvent the issue by DMRE and make more expressive
parametric models, another computationally efficient method

TABLE I
NOTATIONS AND SYMBOLS

Notation Explanation

N The set of all RSUs
F The index set of available contents
𝑠 𝑓 The size of content 𝑓

𝐺𝑖 The limited available cache capacity of RSU 𝑖

U The set of all requested vehicles
𝜌 𝑓 The content popularity of content 𝑓

𝑇𝑢,𝑖 The content transmission delay between vehicle 𝑢 and RUS 𝑖

𝑇𝑖, 𝑗 The content transmission delay between RSU 𝑖 and RSU 𝑗

𝑇𝑖,𝑁+1 The content transmission delay between RSU 𝑖 and the MBS
𝑟𝑢,𝑖 The wireless downlink transmission rate between vehicle 𝑢

and RSU 𝑖

𝐶𝑢,𝑖 The incurred transmission cost between vehicle 𝑢 and RSU 𝑖

𝐶𝑖, 𝑗 The incurred transmission cost between RSU 𝑖 and RSU 𝑗

𝐶𝑖,𝑁+1 The incurred transmission cost between RSU 𝑖 and the MBS
L 𝑓 ,𝑖, 𝑗 The total overhead through different links
𝑎𝑡
𝑓 ,𝑖, 𝑗

The caching state of local RSU 𝑖 for the requested content 𝑓

𝑐𝑡
𝑓 ,𝑖

The content replacement decision of RSU 𝑖 in time slot 𝑡

𝑞𝑡
𝑖,F The content request arrived from the vehicles in time slot 𝑡

(DeepDMRE) is also proposed, which approximates the Nash
equilibria by constructing neural networks.

III. DISTRIBUTED VEHICULAR EDGE NETWORK
ARCHITECTURE

This section presents the cooperative edge caching-
supported IoVs architecture, including network infrastructure,
content popularity pattern, as well as the process of content
delivery and cache replacement. The main notations with their
descriptions are listed in Table I.

A. Network Architecture

In this paper, a cooperative edge caching-supported IoVs
architecture with an MBS and 𝑁 small cells is considered,
each of which is naturally equipped with an RSU, as shown in
Fig. 1. The set of these RSUs is denoted by N = {1, 2, . . . , 𝑁}.
Considering the abundant cache capacity, it is assumed that
MBS (denoted by 𝑁 + 1 in the system) is connected to the
Service Providers (SPs) and can cache all contents. Here, let
F = {1, 2, . . . , 𝐹} represent the content library with total 𝐹

available contents that are supported by the SPs, and 𝑠 𝑓 is
the size of content 𝑓 ( 𝑓 ∈ F ). Besides, each RSU 𝑖(𝑖 ∈ N)
is endowed with a limited available cache capacity of 𝐺𝑖 ,
such that a small portion of popular contents can be cached
in the RSUs to eliminate the redundant traffic. All RSUs
in a cluster form are connected to the remote MBS via
wired lines. 𝑈 vehicles (denoted as U = {1, 2, . . . ,𝑈}) are
randomly scattered in the wireless coverage scope and request
various contents frequently via cellular links. Overlapping
coverage between neighbouring cells is not considered, and
these vehicles are assumed to be located in at least one small
cell and will be served by the RSU therein; the set of vehicles
in a small cell may change dynamically due to the vehicle
mobility. Each RSU serves the local content requests within
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Fig. 1. Cooperative Edge Caching-supported IoVs Architecture.

its coverage range. Meanwhile, the system is assumed to
operate in a fixed length of time slots (i.e., time sequence)
𝑡 ∈ {1, . . . , Γ}, where Γ denotes the finite time horizon. In
each time slot, a vehicle can only request one content, while
the caching decision of each RSU is also updated periodically.

As vehicles may exhibit different preferences for popular
content, we introduce content popularity 𝜌 𝑓 ( 𝑓 ∈ F ) to reflect
the content access requirements in the content library, i.e., 𝜌 𝑓

denotes the conditional probability of requesting content 𝑓

among various vehicles’ content requests. Inspired by existing
works [27] [37], the content popularity is assumed to obey
the Mandelbrot-Zipf distribution here. Then, the expected
requesting probability for content 𝑓 is obtained as:

𝜌 𝑓 =

(
𝑅 𝑓 + 𝜏

)−𝜗∑
𝑖∈F (𝑅𝑖 + 𝜏)−𝜗

, ∀ 𝑓 ∈ F , (1)

where 𝑅 𝑓 is the rank of content 𝑓 in the descending order
of content popularity; 𝜗 > 0 and 𝜏 are the skewness factor
and plateau factor characterizing the distribution, respectively.
Notably, due to the vehicle mobility, the local content popu-
larity can be highly spatio-temporally varying over time slots
and the requested vehicles in a cell, making caching strategy
design more challenging.

Within the coverage of MBS, each RSU is able to cache
various contents to meet the content access requirements
from vehicles. Caching contents in RSUs enables the content
request to be accommodated in proximity, without duplicate
downloading from remote MBS. Particularly, each RSU can
determine where the content request is answered and which
local cache should be replaced. Once a vehicle sends an
access request within the range of the small cell, the local
RSU will traverse its cache space firstly to check whether the
desired content is cached in itself. If the content is not sought
in its cache, the local RSU can either retrieve the content

from the adjacent RSUs or download the content directly
from the MBS, and deliver it to the requested vehicle later.
Meanwhile, all RSUs may replace their cache with popular
contents according to the content requests of each time slot.
Underlying these is a sequential decision-making problem,
which corresponds to making efficient content delivery and
cache replacement decisions under constraints.

B. Content Delivery Model
𝑇𝑢,𝑖 , 𝑇𝑖, 𝑗 , and 𝑇𝑖,𝑁+1 are used to denote the content

transmission delay between vehicle 𝑢 and RSU 𝑖, RSU 𝑖 and
RSU 𝑗 , RSU 𝑖 and MBS, respectively. It is worth noticing
that the transmission delay of sending request identifier by
the vehicle is neglected due to its tiny data size and the high
link rate in most instances. Specifically, transmission delay
of content 𝑓 from any requested vehicle 𝑢 (𝑢 ∈ U) to its
connected local RSU 𝑖 can be calculated as 𝑇𝑢,𝑖 = 𝑠 𝑓 /𝑟𝑢,𝑖 ,
where 𝑟𝑢,𝑖 is the wireless downlink data rate between vehicle
𝑢 and RSU 𝑖. Here, we assume that each RSU consists of
multiple channels, and the allocated bandwidth to each channel
is the same [38]. Therefore, considering the large-scale fading,
the wireless downlink data rate 𝑟𝑢,𝑖 is derived by

𝑟𝑢,𝑖 = 𝐵𝑢,𝑖 log2

(
1 +

𝑃𝑖𝑔𝑢,𝑖

𝜎2 +∑
𝑣∈U\{𝑢} 𝑃𝑖𝑔𝑣,𝑖

)
, (2)

where 𝐵𝑢,𝑖 denotes the channel bandwidth, 𝑃𝑖 denotes the
transmission power of RSU 𝑖, 𝜎2 and 𝑔𝑢,𝑖 are the white
Gaussian noise power and the wireless propagation channel
gain, respectively. Interference management is also considered
for this wireless communication scenario. Furthermore, since
the communications of MBS-RSU and RSU-RSU are via
wired optical cables, the transmission delay 𝑇𝑖,𝑁+1 and 𝑇𝑖, 𝑗
are set to constant values [35].

Delivering desired contents to vehicles will introduce
extra transmission costs for caching nodes (cooperative RSUs
or the MBS, denoted as H = N ∪ {𝑁 + 1}). As illustrated
in Fig. 2, three components of transmission cost exist due
to different cache hit situations. Here, 𝐶𝑢,𝑖 , 𝐶𝑖, 𝑗 , and 𝐶𝑖,𝑁+1
are used to denote the incurred transmission cost through
RSU-Vehicle, RSU-RSU, and MBS-RSU links, respectively.
Specifically, the incurred transmission cost through the RSU-
Vehicle link is equal to the product of the link bandwidth, the
content delivery delay, and the price of the RSU-Vehicle link’s
unit leased communication resource, which is expressed as:

𝐶𝑢,𝑖 = 𝐵𝑢,𝑖𝑇𝑢,𝑖𝜉𝑢,𝑖 , (3)

where 𝜉𝑢,𝑖 represents the price of unit leased communication
resource of wireless link. Similarly, the incurred transmission
cost through RSU-RSU and MBS-RSU links can also be
obtained by this way.

Here, the binary decision variable 𝑎𝑡
𝑓 ,𝑖, 𝑗
∈ {0, 1}, 𝑗 ∈ H

is used to denote the caching state of any local RSU 𝑖 for the
requested content 𝑓 in a given time slot 𝑡. When a content
request occurs, the aggregate overhead of different links can
be analyzed as follows:
• 𝑎𝑡

𝑓 ,𝑖,𝑖
= 1 indicates that content 𝑓 is cached in the local

RSU 𝑖 at time slot 𝑡 and can be delivered to the vehicle
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directly. In this case, the total overhead L 𝑓 ,𝑖,𝑖 is just the
transmission cost 𝐶𝑢,𝑖 from the local RSU to the vehicle;

• 𝑎𝑡
𝑓 ,𝑖, 𝑗

= 1 ( 𝑗 ∈ N\{𝑖}) indicates that content 𝑓 is not
cached in the local RSU 𝑖, but at least one of RSUs
in the system has cached the desired content, thus the
local RSU can inquire and obtain it from the cooperative
RSU 𝑗 . Then, the total overhead L 𝑓 ,𝑖, 𝑗 consists of the
transmission cost 𝐶𝑖, 𝑗 from the cooperative RSU 𝑗 to the
local RSU 𝑖 and the transmission cost 𝐶𝑢,𝑖;

• 𝑎𝑡
𝑓 ,𝑖,𝑁+1 = 1 indicates that there is no expected content in

all cooperative RSUs, and the local RSU 𝑖 has to forward
the request identifier to MBS for processing at time slot
𝑡, i.e, the local RSU 𝑖 downloads content 𝑓 from MBS
directly. In this way, the total overhead L 𝑓 ,𝑖,𝑁+1 consists
of the transmission cost 𝐶𝑖,𝑁+1 from MBS to the local
RSU 𝑖 and the transmission cost 𝐶𝑢,𝑖 .

C. Cache Replacement Model

In a diverse and dynamic edge caching scenario, it is
indispensable to elaborate a wise content replacement strategy
for efficiently managing the cache space. In order to meet the
content requests that arrive later, each cooperative RSU should
update the less popular contents in each operation phase to
further improve the utilization and effectiveness of the whole
cache.

Generally, the local RSU needs to determine whether
to keep or replace its cache contents. When the newly re-
quested contents arrive from other adjacent RSUs or MBS,
some contents in the local RSU’s existing cache may be
evicted because of the finite cache space. As a result, the
problem is whether and which contents should be replaced
with the new ones when the cache space is fully occupied.
To this end, we represent the replacement control of RSU
𝑖 by 𝒄𝒕

F,𝒊
=

{
𝑐𝑡1,𝑖 , . . . , 𝑐

𝑡
𝑓 ,𝑖
, . . . , 𝑐𝑡

𝐹,𝑖

}
in time slot 𝑡, where

𝑐𝑡
𝑓 ,𝑖
∈ {0, 1} ( 𝑓 ∈ F ) indicates whether and which content

in RSU 𝑖 should be replaced by the current content, e.g.,
𝑐𝑡
𝑓 ,𝑖

= 1 means that content 𝑓 in RSU 𝑖 needs to be replaced
by the current arrived one, while 𝑐𝑡

𝑓 ,𝑖
= 0 is the opposite. To

efficiently store contents in RSUs, a utility-based replacement
strategy will be introduced below.

IV. PROBLEM FORMULATION

This section formulates the optimization problem for IoV
systems, and models the cache replacement process in an RSU
as an MDP.

A. Objective Function

The RSUs in a cluster form can explore the potential of
cooperation to fully utilize the cache resources. Considering
the anticipated future utility, we intend to avoid myopic
caching decisions while minimizing the long-term content
access cost in the system. The corresponding problem is
formulated as follows:

min
𝑎 𝑓 ,𝑖, 𝑗

lim
Γ→∞

1
Γ

Γ∑︁
𝑡=1

𝐹∑︁
𝑓 =1

𝑁∑︁
𝑖=1

𝑁+1∑︁
𝑗=1

𝜌 𝑓 𝑎
𝑡
𝑓 ,𝑖, 𝑗L

𝑡
𝑓 ,𝑖, 𝑗

s. t. 𝐶1 : 𝑎𝑡𝑓 ,𝑖, 𝑗 ∈ {0, 1}, ∀ 𝑓 ,∀𝑖,∀ 𝑗
𝐶2 : 𝑎𝑡𝑓 ,𝑁+1,𝑁+1 = 1, ∀ 𝑓
𝐶3 : 𝑎𝑡𝑓 ,𝑖, 𝑗 ≤ 𝑎𝑡𝑓 , 𝑗 , 𝑗 , ∀ 𝑓 ,∀𝑖,∀ 𝑗

𝐶4 :
𝑁+1∑︁
𝑗=1

𝑎𝑡𝑓 ,𝑖, 𝑗 = 1, ∀ 𝑓 ,∀𝑖

𝐶5 :
𝐹∑︁
𝑓 =1

𝑎𝑡𝑓 ,𝑖,𝑖𝑠 𝑓 ≤ 𝐺𝑖 , ∀𝑖.

(4)

Here, lim
𝑇→∞

1
𝑇
(. . . ) is the time averaged overhead of

content delivery in the system. The meaning of the above
constraints is as follows: C1 guarantees the constraint of
the binary caching decision’s integer nature; C2 shows the
MBS’s sufficient cache capacity and guarantees that MBS
has cached all available contents; C3 denotes that only the
cooperative RSUs or MBS, which have cached the related
content, can answer the content request; C4 ensures that the
content requested by a particular vehicle can only be served
by an RSU or MBS ultimately; C5 is used to promise that
the cache usage of each RSU should be less than its cache
capacity.

B. Problem and Challenges

In fact, it is challenging to solve the above problem in Eq.
(4) directly since we have to obtain the optimal coordination
of the caching decision variables 𝑎𝑡

𝑓 ,𝑖, 𝑗
( 𝑓 ∈ F , 𝑗 ∈ H\{𝑖}) in

each time slot. However, the caching decision variable 𝑎𝑡
𝑓 ,𝑖, 𝑗

of any RSU is binary and time-varying, which aggravates the
difficulty by solving the problem at a time slot exhaustively.
The system has to collect multitudinous network state infor-
mation and make the global decision on cache replacement
and content delivery for each RSU. Moreover, we are devoted
to a more practical case in which the prior information of the
content request pattern is unknown. Thus, the optimization
of the system is a combinatorial multi-armed bandit problem,
and the objective function is undoubtedly NP-hard. Since the
feasible set of the problem is not convex and the complexity is
enormous, conventional methods using model-based heuristics
or predefined rules may be unadaptable to make intelligent
caching decisions under the dynamic system property.

C. Markov Decision Process

The MDP model is typically used to describe almost
all sequential decision-making problems. Here, we model the
optimization of cache replacement process in an RSU as an
MDP. Three critical elements are identified as follows:
• State Space: The state in MDP is a space to reflect the

IoV’s environment. Accordingly, the state of an available
RSU 𝑖 is determined by the realization of the current
caching situations and the request demand situations,
which can be given as 𝒛𝒊𝒕 =

{
𝒂𝒕
F,𝒊,𝒊

, 𝒒𝒕
𝒊,F

}
. As described
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earlier, the former 𝒂𝒕
F,𝒊,𝒊

=

{
𝑎𝑡1,𝑖,𝑖 , . . . , 𝑎

𝑡
𝑓 ,𝑖,𝑖

, . . . , 𝑎𝑡
𝐹,𝑖,𝑖

}
denotes the current caching state respecting to the con-
tents in RSU 𝑖. The latter 𝒒𝒕

𝒊,F
=

{
𝑞𝑡
𝑖,1, . . . , 𝑞

𝑡
𝑖, 𝑓

, . . . , 𝑞𝑡
𝑖,𝐹

}
is the arrived content request state from vehicles in time
slot 𝑡. Specifically, 𝑞𝑡

𝑖, 𝑓
= 1 means that at least one UE

within local RSU 𝑖 requests for content 𝑓 in time slot 𝑡,
𝑞𝑡
𝑖, 𝑓

= 1 is the opposite. The above information will be
aggregated as an input state in each time slot.

• Action Space: Once receiving a state in each time slot,
the agent is responsible for deciding the caching and
delivery strategy. Therefore, with the current state 𝒛𝒊𝒕 ,
the action 𝒅𝒊𝒕 involves two parts, 𝒂𝒕

F,𝒊, 𝒋
and 𝒄𝒕

F,𝒊
, where

matrix 𝒂𝒕
F,𝒊, 𝒋

encodes the decision of RSU 𝑖 for the
requested contents, and the vector 𝒄𝒕

F,𝒊
indicates the

content replacement control in RSU 𝑖 in slot 𝑡.
• Reward Function: Defining an appropriate reward func-

tion is vital since the reward value is the metric for each
agent to evaluate the action quality. Generally speaking,
the objective function is related to the immediate reward.
Our objective in the related problem is to minimize the
long-term content access cost in the system, which is the
inverse goal of an agent that tries to achieve the maximum
cumulative discounted reward. Thus, the reward function
should be negatively correlated with the optimization ob-
jective. For this purpose, the immediate reward is defined
as normalized 𝑟 (𝒛𝒊𝒕 , 𝒅

𝒊
𝒕) = 𝑒

−∑𝐹
𝑓

∑𝑁+1
𝑗 𝜌 𝑓 𝑎

𝑡
𝑓 ,𝑖, 𝑗
L𝑡

𝑓 ,𝑖, 𝑗 , where
we utilize a negative exponential function to transform
the problem legitimately. Furthermore, the reward value
of an agent should satisfy the constraint conditions to
ensure the validity of the results. Conversely, punition
negative will be incorporated into the reward if constraints
are violated in Eq. (4).

V. MARL-EMPOWERED COOPERATIVE EDGE CACHING

Compared with dynamic programming methods, it is
more suitable to adopt RL-based methods when the transition
probability is ambiguous in MDP. This section extends MDP

to a multi-agent system under the framework of a stochastic
game, and proposes two MARL-based edge caching methods.

A. Markov Game Model

According to the MDP above, we have proposed a 𝑄-
learning based edge caching method in our previous work [7].
𝑄-learning is a model-free independent RL method based on
value iteration. Each agent in 𝑄-learning learns the settings
separately through repeated interaction, and regards other
agents as a part of the environment. Although single-agent
properties are transferred directly to multi-agent contexts in
𝑄-learning based method, the IoVs system is formulated as a
multitude of subsystems where the cache replacement process
in each available RSU is optimized individually. Nevertheless,
as an independent caching node, each RSU should have its
own caching strategy according to the corresponding content
request and caching state, which may be very different be-
tween different RSUs. In addition, the caching strategies of
agents are mutually influential in the distributed edge caching
scenarios. 𝑄-learning based method and their variants can
only obtain the local sub-optimal solution, as they do not
consider the influence on the environment by other agents
when an agent interacts separately, i.e., each agent greedily
makes decisions on its own benefit.

As far as these issues are concerned, we consider ex-
tending the MDP to a multi-agent system and formulating
the cache replacement process as a Markov (a.k.a. Stochastic)
Game (MG) model innovatively. In the MG model, due to the
interaction between agents, the optimal decision of a single
agent cannot ensure the optimal global solution of the system.
Agents should not only observe their own immediate rewards
and actions taken previously, but also those of others as well.
Our objective is to obtain the best strategy for every agent.
Therefore, it is necessary to make joint decisions among all
agents to avoid the deviation in a single decision, so as to
learn the coordination and optimization of the whole system.

In MG model, agents execute actions at the same time,
and the rewards of agents are generally arbitrarily related.
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Tuple {𝑁,Z, 𝐷1, · · · , 𝐷𝑁 , 𝑝, 𝑟1, · · · , 𝑟𝑁 , 𝛾} can characterize
a standard formal definition of MG model, where 𝑁 is the
number of agents; Z is the finite state space of the envi-
ronment, each state 𝑧𝑡+1 ∈ Z in the game consists of the
individual states of all agents in the system; 𝐷𝑖 stands for a
discrete action space of agent𝑖 (𝑖 = 1, · · · , 𝑁); the joint action
space of all agents is represented as D = 𝐷1 × · · · × 𝐷𝑁 , and
for notational convenience, we use ®𝑑𝑡 �

(
𝑑1
𝑡 , 𝑑

2
𝑡 , . . . , 𝑑

𝑁
𝑡

)
∈ D

to denote the current joint action of all agents in time slot 𝑡;
𝑝 : Z × D × Z → [0, 1] is the state transition probability
function, the joint action ®𝑑𝑡 causes the transition from the
game state 𝑧𝑡 to the next new state 𝑧𝑡+1 with a probability
𝑝

(
𝑧𝑡+1 |𝑧𝑡 , ®𝑑𝑡

)
, which should satisfy

∑
𝑧𝑡+1∈Z

𝑝

(
𝑧𝑡+1 |𝑧𝑡 , ®𝑑𝑡

)
=

1,∀𝑧𝑡 ∈ Z,∀ ®𝑑𝑡 ∈ D; 𝑟𝑖 : Z × D → R is the direct
reward function of agent 𝑖, which evaluates the quality of
state transition. Given the common state 𝑧𝑡 , each agent 𝑖 can
perform an acceptable joint action

(
𝑑1
𝑡 , · · · , 𝑑𝑖𝑡 , · · · , 𝑑𝑁

𝑡

)
and

accumulate a reward 𝑟 𝑖𝑡

(
𝑧𝑡 , ®𝑑𝑡

)
immediately in new state 𝑧𝑡+1.

Notably, the reward varies not only according to the current
state and the action of agent 𝑖, but also the action choice of
all other agents. Besides, state transitions obey the Markov
property, where the sequence of events that precede the current
state cannot determine the probability distribution of future
states. An agent’s reward and next state depend only upon
the current state and the common joint decisions among all
agents [39].

B. DMRE: Distributed MARL-based Edge Caching Method

Since the distributed method is more effective in matching
the edge caching system characteristics, in this part, 𝑄-
learning is expanded to the MG model, and DMRE is proposed
to optimize the configuration of various caching strategies.

Indeed, the MG model can be seen as a set of matrix
games associated with each state. In these games, each agent
takes actions while conditioning on the behavior of others to
satisfy the reward function, and (𝜋1, 𝜋2, · · · , 𝜋𝑁 ) is used to
represent the joint strategy of 𝑁 agents. Similar to 𝑄-learning,
the expected cumulative discounted reward of agent 𝑖 is
expressed by the state value function 𝑉𝑖 (𝑧𝑡 , 𝜋1, 𝜋2, · · · , 𝜋𝑁 ) =
E𝜋 [

∑∞
𝑡=0 𝛾

𝑡𝑟 𝑖𝑡

(
𝑧𝑡 , ®𝑑𝑡

)
], where 𝛾 ∈ (0, 1) is the discounting

factor indicating the importance of the predicted future re-
wards. Each agent dedicates to learning a local 𝜋𝑖 to maximize
𝑉𝑖 (𝑧𝑡 , 𝜋1, 𝜋2, · · · , 𝜋𝑁 ), meanwhile remaining robust to the
actions of others over the remaining course of the game.

As the maximal state value 𝑉𝑖
(
𝑧𝑡 , 𝜋

∗
1, · · · , 𝜋

∗
𝑁

)
of an

agent cannot be achieved by merely private strategy, and the
return explicitly depends on the joint strategy of all agents,
the concept of Nash equilibrium becomes crucial. Joint Nash
equilibrium strategy

(
𝜋∗1, · · · , 𝜋

∗
𝑖
, · · · , 𝜋∗

𝑁

)
can be considered

as an optimal solution of the multi-agent system, of which
the game reaches the Nash equilibrium point and each agent’s
strategy 𝜋∗

𝑖
is the best response to the others. In other words,

no agent can achieve a higher state value function by unilateral
deviation, i.e., changing to any other strategy. Therefore, for

∀𝑧𝑡 ∈ Z,∀𝑖 ∈ N , we formally have:

𝑉𝑖
(
𝑧𝑡 , 𝜋

∗
1, · · · , 𝜋

∗
𝑖 , · · · , 𝜋∗𝑁

)
≥ 𝑉𝑖

(
𝑧𝑡 , 𝜋

∗
1, · · · , 𝜋𝑖 , · · · , 𝜋

∗
𝑁

)
,

(5)
where ∀𝜋𝑖 belongs to the set of strategies available to agent 𝑖.

Then, we desire a method to attain this equilibrium of the
game without any prior knowledge about dynamics. Before-
hand, we identify conditions that are more easily verifiable
and extend the 𝐵𝑒𝑙𝑙𝑚𝑎𝑛 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 to Nash equilibrium. Like
𝑄-learning, we apply the dynamic programming principle to
agent 𝑖’s reward 𝑉𝑖

(
𝑧𝑡 , 𝜋

∗
1, · · · , 𝜋

∗
𝑖
, · · · , 𝜋∗

𝑁

)
while the remain-

ing policies 𝝅∗

N\{𝒊}
are fixed, which will result in the temporal

difference form as:

𝑉𝑖
(
𝑧𝑡 , 𝜋

∗
1, · · · , 𝜋

∗
𝑁

)
= max

𝜋𝑖

[
𝑟 𝑖𝑡

(
𝑧𝑡 , ®𝑑𝑡

)
+ 𝛾

∑︁
𝑧𝑡+1∈Z

𝑝

(
𝑧𝑡+1 |𝑧𝑡 , ®𝑑𝑡

)
𝑉𝑖

(
𝑧𝑡+1, 𝜋𝑖 ∪ 𝝅∗

N\{𝒊}

) ]
.

(6)

Next, different from the single-agent 𝑄-function2

𝑄𝑖 (𝑧𝑡 , 𝑑𝑡 ), the 𝑄-function in the multi-agent system varies
to 𝑄𝑖

(
𝑧𝑡 , ®𝑑𝑡

)
, which is interpreted to estimate the optimal

expected sum of discounted rewards (state value function)
for any individual agent 𝑖 during the learning process, i.e,
𝑉𝑖

(
𝑧𝑡 , 𝜋

∗
1, · · · , 𝜋

∗
𝑁

)
= max

𝜋𝑖
𝑄𝑖

(
𝑧𝑡 , ®𝑑𝑡

)
. Specially, given the

Nash equilibrium as a learning objective, 𝑄∗
𝑖

(
𝑧𝑡 , ®𝑑𝑡

)
is referred

to as a Nash 𝑄-value for agent 𝑖 when all agents follow a
specified joint Nash equilibrium strategy from the next slot
on. That is,

𝑉𝑖
(
𝑧𝑡 , 𝜋

∗
1, · · · , 𝜋

∗
𝑁

)
= Nash𝑄𝑖

(
𝑧𝑡 , ®𝑑𝑡

)
= 𝜋∗1

(
𝑧𝑡 , 𝑑

𝑖
𝑡

)
· · · 𝜋∗𝑁

(
𝑧𝑡 , 𝑑

𝑁
𝑡

)
· 𝑄∗𝑖

(
𝑧𝑡 , ®𝑑𝑡

)
,

(7)
where 𝜋∗1

(
𝑧𝑡 , 𝑑

𝑖
𝑡

)
· · · 𝜋∗

𝑁

(
𝑧𝑡 , 𝑑

𝑁
𝑡

)
· 𝑄∗

𝑖

(
𝑧𝑡 , ®𝑑𝑡

)
is a scalar, and

𝑄∗𝑖

(
𝑧𝑡 , ®𝑑𝑡

)
= 𝑟 𝑖𝑡

(
𝑧𝑡 , ®𝑑𝑡

)
+ 𝛾

∑︁
𝑧𝑡+1∈Z

𝑝

(
𝑧𝑡+1 |𝑧𝑡 , ®𝑑𝑡

)
𝑉𝑖

(
𝑧𝑡+1, 𝜋

∗
1, · · · , 𝜋

∗
𝑁

)
.

(8)
As a result, payoffs for each agent 𝑖 are equal to 𝑄-value

at this point, and the Nash equilibrium is rewritten in the
following form:

𝑄∗𝑖 (𝑧𝑡 ) 𝜋∗1, · · · , 𝜋
∗
𝑖 , · · · , 𝜋∗𝑁 ≥ 𝑄∗𝑖 (𝑧𝑡 ) 𝜋∗1, · · · , 𝜋𝑖 , · · · , 𝜋

∗
𝑁 .

(9)
At time slot 𝑡, each agent 𝑖 executes its joint action under

the current state. After that, it observes its immediate reward,
all other agents’ actions and rewards, as well as the new state
𝑧𝑡+1. As for agents’ actions choice and 𝑄-values update, the
Nash equilibrium reward is adopt here to replace the maximum
reward iteration in the single-agent method. Therefore, we rely
on the stagewise approach to learn strategies separately for

2For ease of presentation, we have not distinguished the concept of “state-
action function” and “𝑄-function” in this paper.
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every stage game (i.e., a time slot game, defined by interim
𝑄-values). While inequality (9) is satisfied, the stage game
(𝑄1

𝑡 (𝑧𝑡+1) , · · · , 𝑄𝑖
𝑡 (𝑧𝑡+1) , · · · , 𝑄𝑁

𝑡 (𝑧𝑡+1)) will be formed
with the Nash equilibrium strategies 𝜋∗1 (𝑧𝑡+1) , · · · , 𝜋

∗
𝑁
(𝑧𝑡+1)

under certain restrictions to 𝑄-values’ domain. To achieve
this, each learning agent has to keep track and maintain a
model of other agents’ 𝑄-values, and then update its own 𝑄-
values during the interaction. The strategies that constitute a
Nash equilibrium can be interpreted as the optimal behavior
under the current system state, while different methods for
selecting among multiple Nash equilibriums will, in general,
yield different updates. Existing studies [40] [41] show that
there always exists at least one equilibrium point in stationary
strategies, and the learning protocol provably converges if ev-
ery stage game has saddle points or an optimum global; agents
are mandated to update in terms of these. Ultimately, each
agent 𝑖 chooses its actions by calculating a Nash equilibrium,
and updates the 𝑄-value with the following iterative formula:

𝑄𝑖
𝑡+1

(
𝑧𝑡 , ®𝑑𝑡

)
= (1 − 𝛽𝑡 )𝑄𝑖

𝑡

(
𝑧𝑡 , ®𝑑𝑡

)
+ 𝛽𝑡

[
𝑟 𝑖𝑡

(
𝑧𝑡 , ®𝑑𝑡

)
+ 𝛾 Nash𝑄𝑖

𝑡 (𝑧𝑡+1)
]
,

(10)
where Nash𝑄𝑖

𝑡 (𝑧𝑡+1) is the Nash equilibrium of agent 𝑖 under
new state, 𝛽𝑡 ∈ (0, 1) is the learning rate parameter, indicating
how far the current estimate 𝑄𝑖

𝑡

(
𝑧𝑡 , ®𝑑𝑡

)
is adjusted toward the

update target 𝑟 𝑖𝑡

(
𝑧𝑡 , ®𝑑𝑡

)
+ 𝛾 Nash𝑄𝑖

𝑡 (𝑧𝑡+1). Each 𝑄-function
can definitely converge to the Nash 𝑄-value through repeated
interaction when an appropriate 𝛽 is designed. The agent can
derive the Nash equilibrium and choose its actions accordingly.

C. Complexity Analysis and Parameter Approximation for
DMRE

According to the description above, each agent 𝑖 can
gradually learn the equilibrium at each stage, which is de-
termined by the joint actions of all agents in the system. That
means the agent needs to learn 𝑁 𝑄-values of all agents
and derive strategies from them. Specifically, agent 𝑖 will
update (𝑄1, · · · , 𝑄𝑖 , · · · , 𝑄𝑁 ) for all system states and joint
actions, while these 𝑄-values are updated and maintained
internally by it. Hence, DMRE is often computationally ex-
pensive for equilibrium computation, and there may not be
enough memory to maintain the corresponding values in large
scale scenario. Consequently, it is necessary to analyze the
computation complexity and further give simplification of the
proposed method.

Let |Z| denote the number of system states, and |𝐷𝑖 |
be the size of agent 𝑖’s action space 𝐷𝑖 . Assuming |𝐷1 | =
· · · = |𝐷𝑁 | = |𝐷 |, the total number of entries in 𝑄𝑖 is
|Z| · |𝐷 |𝑁 . As the agent has to maintain 𝑁 𝑄-tables, the total
space requirement is 𝑁 |Z| · |𝐷 |𝑁 . Then, the proposed method
is linear in the number of states, polynomial in the number
of actions, but exponential in the number of agents in terms
of space complexity. On the other hand, the training time of
DMRE is dominated by the calculation of the Nash equilib-
rium. That is, each agent will search for an optimal solution

according to the current solutions of other agents while the
computation process is nonlinear if the number of agents is
more than two [39]. Thus, due to the remarkable efficiency
and generalization, parameter approximation is introduced to
reduce the computation complexity for DMRE in this paper,
which legitimately simplifies the training targets.

Specifically, elements can be controlled by sequences
approximately in the space that is composed of 𝑄-functions.
Correspondingly, we introduce a set of parameters 𝜃 and
approximate any agent 𝑖’s 𝑄-function by using the updated
parameter. The 𝑄-function is re-expressed as:

�̂�𝑖 (𝑧, ®𝑑, 𝜃) ≈ 𝜽𝑇𝝓𝒊 =

𝑁∑︁
𝑗=1

𝜃 𝑗𝜙𝑖 𝑗 (𝑧), (11)

where 𝜽 = (𝜃1, 𝜃2, · · · , 𝜃𝑛)𝑇 and the given eigenfunction 𝝓 =

(𝜙1 (𝑠), 𝜙2 (𝑠), · · · , 𝜙𝑛 (𝑠))𝑇 .
Since 𝑄𝑖 (𝑧, ®𝑑) � �̂�𝑖 (𝑧, ®𝑑, 𝜃) is possible when the error is

smaller, we attempt to find a set of parameters 𝜃 for which
the corresponding approximate values (𝑄1

𝜃
, · · · , 𝑄𝑁

𝜃
) approx-

imately satisfy Eq. (8). Thus, the loss function is interpreted
as the distance between the approximate value and true value
of 𝑄-functions, which can be converted to:

𝐿𝑜𝑠𝑠(𝜃) = E
𝑧∼𝑝

(
𝑧𝑡+1 |𝑧𝑡 , ®𝑑𝑡

)
[(
𝑄𝑖 (𝑧, ®𝑑) − �̂�𝑖 (𝑧, ®𝑑, 𝜃)

)2
]

=
1
𝑇

𝑇∑︁
𝑡=1

(
𝑟 𝑖𝑡 + 𝛾Nash�̂�𝑖

𝑡 (𝑧𝑡+1, 𝜃) − �̂�𝑖
𝑡

(
𝑧𝑡 , ®𝑑𝑡 , 𝜃𝑡

))2
.

(12)
According to the 𝐵𝑒𝑙𝑙𝑚𝑎𝑛 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 of the state-action

functions, Stochastic Gradient Descent (SGD) is performed
to train 𝜃 towards the target value by minimizing the loss
function, i.e. argmin (𝐿𝑜𝑠𝑠(𝜃)). Therefore, the optimal value
is generated by an error as:

𝜃𝑡+1 ≈ 𝜃𝑡 −
1
2
𝛽𝑡∇

(
𝑟 𝑖𝑡 + 𝛾Nash�̂�𝑖

𝑡 (𝑧𝑡+1, 𝜃) − �̂�𝑖
𝑡

(
𝑧𝑡 , ®𝑑𝑡 , 𝜃𝑡

))2
.

(13)
We then take a semi-gradient method and ignore the

derivative of parameter 𝜃 with respect to the unknown Nash 𝑄

value. Thus, the update formula of parameter 𝜃 in state-action
function �̂�𝑖 (𝑠, ®𝑑, 𝜃) of agent 𝑖 is written as follows:

𝜃𝑡+1 = 𝜃𝑡 + 𝛽𝑡
[
𝑟 𝑖𝑡 + 𝛾 Nash �̂�𝑖

𝑡 (𝑧𝑡+1)

− �̂�𝑖
𝑡

(
𝑧𝑡 , ®𝑑𝑡 , 𝜃𝑡

) ]
∇�̂�𝑖

𝑡

(
𝑧𝑡 , ®𝑑𝑡 , 𝜃𝑡

)
.

(14)

Instead of updating the 𝑄-function, parameter approx-
imation can make it more efficient by using the updated
parameter 𝜃. Throughout the training process of seeking the
Nash equilibrium point, the agent first updates the target 𝜃

by minimizing the corresponding loss function (12) via SGD.
Then, 𝜃 can continually train the 𝑄-function towards the
Nash equilibrium point. All of these processes make the agent
approach the Nash equilibrium point effectively. More details
of the simplified DMRE3 are summarized in Algorithm 1,

3As the simplified DMRE has lower computation complexity and is easier
to implement than the original version, we only use the "DMRE" to denote
the simplified version in the following.

Authorized licensed use limited to: China Three Gorges University. Downloaded on May 18,2023 at 07:26:11 UTC from IEEE Xplore.  Restrictions apply. 
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Algorithm 1: Parameter Approximation for DMRE

Input: agent set N , state space Z, joint action space
D, learning rate 𝛽, discount factor 𝛾,
exploration factor 𝜖 .

1 Each agent 𝑖 ∈ N do
2 Initialize ∀ 𝑧 ∈ Z,∀ 𝑑𝑖 ∈ 𝐷1, �̂�

𝑖 (𝑧, ®𝑑, 𝜃) ← 0,
parameter 𝜃.

3 for each episode do
4 Set 𝑡=0, obtain the initial state 𝑧0 by randomly

caching.
5 for each slots of episode do
6 Derive an action 𝑑𝑖𝑡 based on the 𝜖-greedy

strategy in the current 𝑧𝑡 .

7 for 𝑄𝑖

(
𝑧𝑡 , ®𝑑𝑡

)
≠ 𝑄∗

𝑖

(
𝑧𝑡 , ®𝑑𝑡

)
do

8 Observe the rewards 𝑟1
𝑡 , · · · , 𝑟𝑁𝑡 , the joint

actions ®𝑑𝑡 , and the next state 𝑧𝑡+1;
9 Update parameter 𝜃 according to Eq. (14);

10 Compute 𝑄𝑖
(
𝑧𝑡 , ®𝑑𝑡

)
: 𝑄𝑖

(
𝑧𝑡 , ®𝑑𝑡 , 𝜃

)
← 𝜃𝑇𝜙𝑖;

11 Solve Nash equilibrium strategies under
state 𝑧𝑡+1;

12 Let 𝑡 ← 𝑡 + 1.

13 Execute cache strategy according to 𝜋∗
𝑖
.

and relevant theoretical proofs of convergence and feasibility
are presented at the end of this paper.

D. DeepDMRE: Distributed Deep MARL-based Edge Caching
Method

DMRE is enabled to represent and update the parameter
by creating a look-up table, which is essentially a tabular-
based method, even though parameter approximation is used
to simplify the training target. Parameter update rule Eq. (14)
in an agent relies on the repeated calculation of Nash �̂�𝑖

𝑡 (𝑧𝑡+1)
over all states, which generally performs inefficiently in large-
scale scenarios. To circumvent the issue and make more
expressive parametric models, we incorporate the technical
advantage of Deep-𝑄 Network4 into DMRE, and further
develop a computationally efficient method (DeepDMRE) with
neural network-based Nash equilibria approximation.

As mentioned above, we can introduce a set of parameters
and approximate any agent’s 𝑄-function using Eq. (11). In
contrast, DeepDMRE defines a specific model for the func-
tion approximation. For each parameter 𝜃, we decompose
�̂�𝑖 (𝑧, ®𝑑, 𝜃) into two components:

�̂�(𝑧, ®𝑑, 𝜃) = �̂� (𝑧, 𝜃) + �̂�(𝑧, ®𝑑, 𝜃), (15)

where �̂� (𝑧, 𝜃) and �̂�(𝑧, ®𝑑, 𝜃) are produced by various neural
network components. �̂� (𝑧, 𝜃) is the state value function under
state 𝑧, and �̂�(𝑧, ®𝑑, 𝜃) is the advantage function of executing
action under state 𝑧. The advantage function represents the
optimality gap between �̂� and �̂� . In particular, each agent

4Deep-𝑄 Network is a classical deep RL method based on value iteration,
in which neural networks are adopted to estimate the 𝑄-function.

𝑖’s behaviour must be the best response to the others when
the action execution constitutes a Nash equilibrium. At this
point, the advantage function �̂�(𝑧, ®𝑑, 𝜃) = Nash𝑄𝑖

(
𝑧𝑡 , ®𝑑𝑡

)
−

𝑉𝑖
(
𝑧𝑡 , 𝜋

∗
1, · · · , 𝜋

∗
𝑁

)
= 0.

In contrast to DMRE, DeepDMRE maintains neural net-
work models with experience replay buffers on each agent.
The basic concept underlying DeepDMRE is centralized train-
ing and distributed inference. During training sample col-
lection, the agent will store its observed experience tuple
𝑦𝑡 = (𝑧𝑡 , ®𝑑𝑡 , 𝑧𝑡+1, 𝑟𝑡 ) into the replay buffer, which involves its
current state and available action set. The arrived experience
samples are used to train the parameters of the function
approximation in neural networks via SGD. Practically, this
replaying enables the agent to randomly extract a minibatch
of previous experience samples from the replay buffer for
learning at each iteration. Empirical studies [15] [20] [33]
have proved that the experience replay mechanism can en-
hance sample efficiency and break the correlation among data
training.

Moreover, we generalize and adopt the model hypothesis
proposed in [40], which considers a second order Taylor
expansion �̂�𝑖 (𝑧, ®𝑑, 𝜃) in action around the Nash equilibrium.
Together with the hypothesis, the advantage function for each
agent 𝑖 can be approximately written in a linear-quadratic form
as:

�̂�𝑖 (𝑧, ®𝑑, 𝜃)

=

(
®𝑑N\{𝑖} − ®𝜇𝜃

N\{𝑖}

)⊤
𝚿𝜃

𝑖 (𝑧)

−
(

𝑑𝑖 − 𝜇𝜃
𝑖

®𝑑N\{𝑖} − ®𝜇𝜃
N\{𝑖}

)⊤
𝑷𝜃
𝑖 (𝑧)

(
𝑑𝑖 − 𝜇𝜃

𝑖

®𝑑N\{𝑖} − ®𝜇𝜃
N\{𝑖}

) (16)

where the block matrix 𝚿𝜃
𝑖 (𝑥) and 𝑷𝜃

𝑖 (𝑥) are all deterministic
probability distributions. Interested readers can find detailed
information in [40].

This model hypothesis implicitly suggests that each
agent’s 𝑄-function can be approximately expressed as a linear-
quadratic function of the actions. Each �̂�𝑖 (𝑧, ®𝑑, 𝜃) is a concave
function of 𝑑𝑖 , guaranteeing that Nash �̂�𝑖

𝑡 (𝑧𝑡+1) is bijective.
Then, we can model �̂� (𝑧, 𝜃), ®𝜇𝜃 , and relevant probability
distributions via constructed neural networks, rather than mod-
elling �̂�𝑖 (𝑧, ®𝑑, 𝜃). The Nash equilibrium is achieved when
®𝑑∗ = ®𝜇𝜃 , and the advantage function will become 0 simulta-

neously. Similar to the derivations in Eq. (7), we can simplify
expressions of the value function and equilibrium strategy as:

�̂� (𝑧, 𝜃) = Nash �̂�𝑖 (𝑧, ®𝑑, 𝜃) (17)

and

®𝜇(𝑧) = argmax Nash �̂�𝑖 (𝑧, ®𝑑, 𝜃) (18)

Consequently, the loss function in Eq. (12) becomes more
tractable through this simplification. For a minibatch of 𝐽

sample, it can be converted as:
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Algorithm 2: DeepDMRE: Distributed Deep MARL
based Edge Caching

Input: agent set N , state space Z, joint action space
D, learning rate 𝛽, discount factor 𝛾,
exploration factor 𝜖 , experience replay buffer
M𝑖 , minibatch size 𝐽.

1 Each agent 𝑖 ∈ N do
2 Initialize ∀ 𝑧 ∈ Z,∀ 𝑑𝑖 ∈ 𝐷𝑖 , �̂�𝑖 (𝑧, ®𝑑, 𝜃) ← 0, replay

buffer M𝑖 , neural network parameter (𝜃𝑉 , 𝜃𝐴).
3 for each episode do
4 Set 𝑡=0, obtain the initial state 𝑧0 by randomly

caching.
5 for each slots of episode do
6 Derive an action ®𝑑 ← ®𝜇𝜃 based on the

𝜖-greedy strategy in the current 𝑧𝑡 .

7 for 𝑄𝑖

(
𝑧𝑡 , ®𝑑𝑡

)
≠ 𝑄∗

𝑖

(
𝑧𝑡 , ®𝑑𝑡

)
do

8 Observe the rewards 𝑟1
𝑡 , · · · , 𝑟𝑁𝑡 , the actions

®𝑑𝑡 , and the next state 𝑧𝑡+1;
9 Store observed experience tuple

𝑦𝑡 = (𝑧𝑡 , ®𝑑𝑡 , 𝑧𝑡+1, 𝑟𝑡 ) into the replay buffer.
10 if t % updateFrequency == 0 then
11 Randomly extract a minibatch of 𝐽

experiences
{
𝑦 𝑗

}𝐽
𝑗=1 from replay

buffer M𝑖 .

12 Update sub-parameters 𝜃𝑉 and 𝜃𝐴 by
minimizing L(𝜃) as Eq. (20);

13 Perform a an actor-critic-based variant on
the loss function with respect to the
sub-parameters 𝜃 by 𝜕𝐿𝑜𝑠𝑠 (𝜃 )

𝜕𝜃
;

14 Let 𝑡 ← 𝑡 + 1.

15 Update (𝜃𝑉 , 𝜃𝐴).

L(𝜃) = 1
𝐽

𝐽∑︁
𝑗=1
L 𝑗 (𝜃)

=
1
𝐽

𝐽∑︁
𝑗=1

(
𝑟 𝑖𝑡 + 𝛾�̂� 𝑖

𝑡 (𝑧𝑡+1, 𝜃) − �̂� (𝑧, 𝜃) − �̂�(𝑧, ®𝑑, 𝜃)
)2

.

(19)
where each sample observation 𝑦 𝑗 = (𝑧 𝑗 , ®𝑑 𝑗 , 𝑧 𝑗+1, 𝑟 𝑗 ) is used
to train the parameter 𝜃 by miniminzing the L 𝑗 (𝜃).

Furthermore, instead of applying SGD with back-
propagation, we employ an actor-critic-based variant on the
loss function, enabling more stable and efficient convergence
processes. Specifically, there are 𝑁 actor networks and one
centralized critic network, where each RSU adopts one of the
actor networks to execute its inference, and the MBS acts as a
centralized critic network to train the model and evaluate the
overall caching state. Since the value function can be modeled
independently through the decomposition in Eq. (15), an actor-
network is performed for parameters update by minimizing
the loss function in Eq. (19) over parameters 𝜃. Notably, the

parameter 𝜃 gets separated as 𝜃 = (𝜃𝑉 , 𝜃𝐴) in this update rule,
where sub-parameter 𝜃𝑉 is used to model �̂� (𝑧, 𝜃𝑉 ), and sub-
parameter 𝜃𝐴 is used to model �̂�(𝑧, ®𝑑, 𝜃𝐴). Accordingly, the
training objective is to update these parameters by minimizing
the redefined loss function:

L(𝜃) = 1
𝐽

𝐽∑︁
𝑗=1
L 𝑗 (𝜃) =

1
𝐽

𝐽∑︁
𝑗=1
L̂(𝑦 𝑗 , 𝜃𝑉 , 𝜃𝐴), (20)

where each agent minimizes L(𝜃) by alternating between
minimization in sub-parameters 𝜃𝑉 and 𝜃𝐴. Here, the loss
founction of an individual sample 𝑦 𝑗 = (𝑧 𝑗 , ®𝑑 𝑗 , 𝑧 𝑗+1, 𝑟 𝑗 )
corresponds to the error in Eq. (8), which is expressed as:

L̂(𝑦 𝑗 , 𝜃𝑉 , 𝜃𝐴)

=

(
𝑟 (𝑧 𝑗 , ®𝑑 𝑗 ) + 𝛾�̂�

(
𝑧 𝑗+1, 𝜃𝑉

)
− �̂� (𝑧 𝑗 , 𝜃𝑉 ) − �̂�(𝑧 𝑗 , ®𝑑 𝑗 , 𝜃𝐴)

)2
.

(21)
More details of DeepDMRE are summarized in Algo-

rithm 2. With the locally linear-quadratic form of the ad-
vantage function, we minimize the loss function in Eq. (21)
over sub-parameters 𝜃𝑉 and 𝜃𝐴 by actor-critic-based iterative
optimization and batch sampling. On the other hand, we also
apply and modify the 𝜖-greedy based action selection strategy
for ensuring adequate exploration, where 𝜖 is a decreasing
parameter to achieve a tradeoff between exploitation and
exploration.

VI. PERFORMANCE EVALUATION

This section conducts extensive simulations to assess
the performance of the proposed methods. Specifically, the
superiority of the proposed methods is demonstrated over both
rule-based and learning-based benchmarks.

A. Simulation Setup

This paper considers an IoVs architecture composed of
one MBS and 5 RSUs, in which the coverage area of each
RSU is 200 m. RSUs are located at the center of each region
to serve the corresponding content requests, and the initial
cache capability of each RSU is limited to 100 MB. Notably,
the model can be easily extended to the case of inconsistent
RSU cache capacity. Besides, 10, 000 contents are generated,
and the size of each content is within the range of [0.5, 1.5]
MB. The content popularity follows an MZipf distribution
with 𝜃 = 0.73. According to ref. [4] [35], we set the channel
gain as 30.6 + 36.7 log10 (𝑑), and the noise power 𝜎2 as -
95 𝑑Bm. The transmission delays between MBS and RSU,
and cooperative RSUs are 80 ms and 10 ms, respectively.
Here, the price of the unit leased communication resources
($ / MB) is set as 0.005 for wireless links and 0.009 for
optical links, while their bandwidths are 10 MHz and 20 MHz,
respectively. Meanwhile, we set the capacity of experience
replay buffer M = 500, minibatch size 𝐽=32, and initial
exploration factor 𝜖 = 0.05. The learning rate parameters for
the actor-network and the critic-network are set as 10−3 and
3 × 10−4, respectively. All experiments are run on 24 core -
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TABLE II
PARAMETERS SETUP

Parameter Definition Value
𝑁 Default RSU number 5
𝑇2 Delay between any cooperative RSUs 10ms
𝑇3 Delay between the MBS and an RSU 80ms
𝑃𝑖 Transmission power of RSUs 38𝑑Bm
𝐵 Bandwidth of wireless links 10MHz
𝑊 Bandwidth of optical fibre links 20MHz
𝜎2 Power of background noise -95 𝑑Bm
𝑠 𝑓 Size of requested contents [0.5, 1.5] MB

2.4GHz Intel Xeon E5-2650 processor and 256GB RAM. The
main parameters are listed in Table II.

For performance comparison, the following four bench-
mark caching methods are introduced:

1) Least Frequently Used (LFU): The content with the least
requested times will be replaced firstly when an RSU’s
cache capacity is full.

2) Least Recently Used (LRU): The content with the longest
unused time will be replaced firstly when an RSU’s cache
capacity is full.

3) 𝑄-learning [7]: An independent reinforcement learning
method, the process of cache replacement in each avail-
able RSU is optimized individually.

4) Informed Upper Bound (IUB) [13]: An omniscient
method which assumes all of the requesting information
is perfectly known in advance. It provides an upper
bound of other methods and is usually hard to achieve
in practice.
Besides, the following metrics are used to evaluate the

performance of different methods quantitatively. 1) Content
access cost: the average total access cost of all requests in
each time slot. 2) Edge hit rate: the sum of requests served
by RSUs divided by the total number of requests. 3) Average
delay: the average access time for all requests in each time
slot.

B. Performance Comparison

1) The convergence performance: We plot the conver-
gence curve for three RL-based methods in Fig. 3, where
the number of contents and the cache capability of RSU are
fixed at 10, 000 and 100MB, respectively. We can observe
that for these methods, each episode’s total content access
cost decreases rapidly with the increase of the number of
episodes. The DeepDMRE converges to a relatively stable
value after running about 1800 episodes. Overall, it performs
best as it achieves a faster running time and obtains the same
convergence value as the original DMRE. On the other hand,
although the convergence speed of distributed MARL-based
methods (DMRE and DeepDMRE) are slightly slower than
that of the independent Q-learning based method, they can
reduce the content access cost up to 50% during the training
episodes.

2) The impact of cache capability of RSUs: Then, we
explore the impact of different cache capabilities of RSUs

1 2 3 4 5
Number of episodes 1e3

2

3

4

5

6

7

Co
st

1e 3
Q-learning
DMRE
DeepDMRE

Fig. 3. Content access cost versus the number of episodes.

on the performance of different methods, as shown in Fig. 4.
The cache capacity of each RSU is changed from 100 MB to
1000 MB and the number of contents is 10, 000 in this case.
As expected, IUB performs best. However, it is impractical
since future information cannot be perfectly known. Among
the other caching methods, we observe that as the cache
capacity of RSUs increases, DeepDMRE consistently achieves
better performance with respect to the content access cost and
average delay. Specifically, DeepDMRE achieves the lowest
average delay of 33ms in the initial stage, and the content
access cost is reduced by about 47% and 26% compared with
independent 𝑄-learning and DMRE, without mentioning the
simple rule-based methods LFU and LRU. In addition, for
all caching methods, the content access cost and the average
delay decrease with the increase of the cache capacity, which
is reasonable. The larger cache capacity enables the RSU to
cache more contents at the same time so that RSUs can meet
most content requests.

Similarly, the increase of cache capacity also has a posi-
tive impact on edge hit rate. From Fig. 4 (b), we can find that
the edge hit rate exhibits an increasing trend for all caching
methods when we increase the cache capacity of each RSU,
especially for DMRE and DeepDMRE, which are very close to
the value of IUB. This is because they considers the influence
of environments by other agents, and takes joint decisions to
learn the coordination and optimization of the whole system.
Notably, DMRE and DeepDMRE will generally sacrifice some
local hit rate and share cache capacity to serve requests from
neighboring RSUs. This tradeoff benefits much by reducing
the duplicate content transmission since MBS fetching is
largely avoided. Especially, DeepDMRE outperforms DMRE,
𝑄-learning, LFU, and LRU. For example, the edge hit rate is
improved by roughly 5%, 19%, 40%, and 35%, respectively,
when the cache capacity reaches 1, 000 MB. At this moment,
content replacement processes may rarely occur in the RSUs.

3) The impact of the number of contents in the system:
This part changes the number of contents to evaluate the
performance of different methods. The number of contents
is varied from 10, 000 to 100, 000 and the initial cache

Authorized licensed use limited to: China Three Gorges University. Downloaded on May 18,2023 at 07:26:11 UTC from IEEE Xplore.  Restrictions apply. 



12

200 400 600 800 1000
Cache Capacity

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Co
st

1e 3
Q-learning
DMRE
IUB

LFU
LRU
DeepDMRE

(a)

200 400 600 800 1000
Cache Capacity

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ed
ge

 H
it 

Ra
te

Q-learning
DMRE
IUB

LFU
LRU
DeepDMRE

(b)

200 400 600 800 1000
Cache Capacity

15

20

25

30

35

40

45

50

55

Av
er

ag
e 

De
la

y

Q-learning
DMRE
IUB

LFU
LRU
DeepDMRE

(c)

Fig. 4. (a) Content access cost versus the cache capacity of RSUs. (b) Edge hit rate versus the cache capacity of RSUs. (c) Average Delay versus the cache
capacity of RSUs.
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Fig. 5. (a) Content access cost versus the number of contents. (b) Edge hit rate versus the number of contents. (c) Average Delay versus the number of
contents.

capacity of RSUs is set as 100 MB. As illustrated in Fig. 5,
the content access cost and the average delay of all methods
increase slightly as the number of contents increases. The
increasing trend does indicate that when the cache capacity
is finite, more contents will naturally cause frequent cache
replacement, as more contents need to be cached in RSUs
now. As expected, DeepDMRE performs better with a different
numbers of contents, except IUB. From Fig. 5 (a) and (c), we
can find that even when there is a massive number of contents
(i.e., 100, 000), DeepDMRE can still reduce the content
access cost by 11%, 16%, 28%, 34%, and the average delay
by 15%, 21%, 33%, 37% compared to DMRE, 𝑄-learning,
LRU, and LFU, respectively, which infers the effectiveness of
DeepDMRE under different numbers of contents.

Besides, the edge hit ratio of all methods decreases with
the increase of the number of contents. Among them, edge
hit rate of DeepDMRE is 64% when the number of contents
reaches 100, 000. In contrast, LFU and LRU still perform
worst for this moment, and the edge hit rate is only 21%
and 23%, respectively. This situation may occur because LFU
and LRU learn only from one-step past and operate based
on simple rules, while RL-based edge caching methods can
be derived from the observed historical content demands and
concentrate more on the reward that agents can earn rather
than users’ requests. Furthermore, the variation of edge hit
rate also confirms the analysis above. That is, DeepDMRE
improves the cache resources utilization significantly.

To summarize, quantitative results validate the effective-
ness of DMRE and DeepDMRE under different scenarios. As

observed, they not only reduce the content access cost, but
also achieve a desirable edge hit rate and average delay.

VII. CONCLUSION

This paper first considered a cooperative edge caching
supported IoVs architecture, which uses the cooperative
caching between multiple RSUs and MBS to reduce the
duplicate content transmission in the system. Then, the MDP
was extended to the context of a multi-agent system, and the
corresponding combinatorial multi-armed bandit problem was
further tackled based on the framework of stochastic games.
Specifically, a Distributed MARL-based Edge caching method
(DMRE) was proposed firstly, where each agent can adaptively
learn its best behavior in conjunction with other agents for
intelligent caching. Meanwhile, we attempted to reduce the
computation complexity of DMRE by parameter approxima-
tion, which legitimately simplifies the training targets. How-
ever, DMRE is enabled to represent and update the parameter
by creating a lookup table, essentially a tabular-based method,
which generally performs inefficiency in large-scale scenarios.
To circumvent the issue and make more expressive parametric
models, we combined the technical advantage of the Deep-𝑄
Network into DMRE, and further developed a computationally
efficient method, named DeepDMRE, by constructing neural
networks for approximating the Nash equilibria. Simulation re-
sults demonstrated that DeepDMRE significantly outperforms
other benchmark methods in different scenarios.
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APPENDIX

This part gives the relevant theoretical proofs of conver-
gence and the feasibility of the simplified DMRE as follows.

A. Convergence Analysis

Since the original DMRE has a provably convergence
performance with restrictive conditions [39], [41], the con-
vergence of the simplified DMRE can accordingly be proved
by demonstrating the effectiveness of SGD. Therefore, as 𝜃

(which minimizes the corresponding loss function) is gradually
obtained via SGD, the state-action function (in the form of
�̂�𝑖 (𝑧, ®𝑑, 𝜃)) will be updated towards the Nash equilibrium
point.

For any state-action function 𝑄𝑘 (𝑘 ∈ N) maintained
internally by a learning agent, we can define 𝑓𝑘 (𝜃) =(
𝑄𝑘 (𝑧, ®𝑑) − �̂�𝑘 (𝑧, ®𝑑, 𝜃)

)2
. Then, the corresponding loss func-

tion is written as:

𝐿 (𝜃) ≜ 𝐿𝑜𝑠𝑠(𝜃) = 1
𝑁

𝑁∑︁
𝑘=1

𝑓𝑘 (𝜃). (22)

As described in Section V-C, we train the parameter 𝜃 to-
wards the target value by minimizing the loss function at each
iteration. Then, owing to the numerical convexity of the loss
function, its gradient ∇𝐿 (𝜃) satisfies the 𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦

with respect to the constant 𝐺, so that for all 𝜃𝑡 and 𝜃𝑡+1. We
have:

∥∇𝐿 (𝜃𝑡 ) − ∇𝐿 (𝜃𝑡+1)∥ ⩽ 𝐺 ∥𝜃𝑡 − 𝜃𝑡+1∥ . (23)

For a series of progressively decreasing learning rates 𝛽𝑡 ,
the iterative formula of parameter 𝜃 can be expressed as:

𝜃𝑡+1 = 𝜃𝑡 − 𝛽𝑡∇𝐿 (𝜃𝑡 ) . (24)

Meanwhile, each 𝜃 in the training process should satisfy
max𝑘 ∥∇ 𝑓𝑘 (𝜃𝑡 )∥ ≤ 𝐵 ∥∇𝐿 (𝜃𝑡 )∥, where 𝐵 is a constant. That
is to say, the optimal 𝜃 for loss function is supposed to be a
stagnation point at the same time. We denote the error during
the iteration process as 𝑒𝑡 , then the above Eq. (24) can be
rewritten with the following form:

𝜃𝑡+1 = 𝜃𝑡 − 𝛽𝑡 (∇𝐿 (𝜃𝑡 ) + 𝑒𝑡 ) , (25)

where the error 𝑒𝑡 = ∇ 𝑓𝑘 (𝜃𝑡 ) − ∇𝐿 (𝜃𝑡 ).
Additionally, since the mean of the error is equal to 0,

we therefore get:

𝐸 [𝑒𝑡 ] = 𝐸 [∇ 𝑓𝑘 (𝜃𝑡 ) − ∇𝐿 (𝜃𝑡 )] = 𝐸 [∇ 𝑓𝑘 (𝜃𝑡 )]−∇𝐿 (𝜃𝑡 ) = 0.
(26)

Furthermore, based on the derivations above, we can
easily get:

𝐸
[
∥𝑒𝑡 ∥2

]
= 𝐸

[
∥∇ 𝑓𝑘 (𝜃𝑡 ) − ∇𝐿 (𝜃𝑡 )∥2

]
= 𝐸

[
∥∇ 𝑓𝑘 (𝜃𝑡 )∥2 − 2 ⟨∇ 𝑓𝑘 (𝜃𝑡 ) ,∇𝐿 (𝜃𝑡 )⟩ + ∥∇𝐿 (𝜃𝑡 )∥2

]
= 𝐸

[
∥∇ 𝑓𝑘 (𝜃𝑡 )∥2 − 2 ⟨𝐸 [∇ 𝑓𝑘 (𝜃𝑡 )] ,∇𝐿 (𝜃𝑡 )⟩ + ∥∇𝐿 (𝜃𝑡 )∥2

]
=

1
𝑁

𝑁∑︁
𝑘=1

[
∥∇ 𝑓𝑘 (𝜃𝑡 )∥2 − ∥∇𝐿 (𝜃𝑡 )∥2

]
≤

(
𝐵2 − 1

)
∥∇𝐿 (𝜃𝑡 )∥2 .

(27)
Then, for inexact gradients, inequality (23) can be rewrit-

ten by incorporating Eq. (24) with it:

𝐿 (𝜃𝑡+1) ⩽ 𝐿 (𝜃𝑡 ) + ⟨∇𝐿 (𝜃𝑡 ) , 𝜃𝑡+1 − 𝜃𝑡 ⟩ +
𝐺

2
∥𝜃𝑡+1 − 𝜃𝑡 ∥2 .

(28)
Also, we substitute error 𝑒𝑡 = ∇ 𝑓𝑘 (𝜃𝑡 ) −∇𝐿 (𝜃𝑡 ) and Eq.

(24) into inequality (28), and further obtain:

𝐿 (𝜃𝑡+1) ≤𝐿 (𝜃𝑡 ) − 𝛽𝑡 ⟨∇𝐿 (𝜃𝑡 ) ,∇𝐿 (𝜃𝑡 ) + 𝑒𝑡 ⟩

+
𝛽2
𝑡𝐺

2
∥∇𝐿 (𝜃𝑡 ) + 𝑒𝑡 ∥2

=𝐿 (𝜃𝑡 ) − 𝛽𝑡

(
1 − 𝛽𝑡𝐺

2

)
∥∇𝐿 (𝜃𝑡 )∥2

− 𝛽𝑡 (1 − 𝛽𝑡𝐺) ⟨∇𝐿 (𝜃𝑡 ) , 𝑒𝑡 ⟩ +
𝛽2
𝑡𝐺

2
∥𝑒𝑡 ∥2 .

(29)

As the learning rate 𝛽𝑡 tends to be infinitesimal, we take
the expectation of 𝑒𝑡 on both sides of inequality (29). Then,
a new inequality (30) is derived based on (26) and (27), as
is shown at the bottom of this paper. It shows that SGD can
obtain the expected parameter 𝜃𝑡 as the learning rate is small
enough (satisfy 0 < 𝛽𝑡 <

2
𝐺𝐵2 ). At this point, we can get the

corresponding state-action function by the obtained parameter
𝜃𝑡 , the effectiveness of SGD is therefore demonstrated. Ac-
cording to the previous description, the convergence of the
simplified DMRE is proved theoretically.

B. Feasibility Analysis

To reduce the computation complexity, parameter approx-
imation is introduced for DMRE in this paper, which legit-
imately simplifies the training targets. However, a potential
error 𝑚 may exist in the simplified DMRE, which is written
as:

𝑚 = 𝑄𝑖 (𝑧, ®𝑑) − �̂�𝑖 (𝑧, ®𝑑, 𝜃) = 𝑄𝑖 (𝑧, ®𝑑) −
𝑛∑︁
𝑗=1

𝜃 𝑗𝜙𝑖 𝑗 (𝑧). (31)

𝐸 [𝐿 (𝜃𝑡+1)] ≤𝐿 (𝜃𝑡 ) − 𝛽𝑡

(
1 − 𝛽𝑡𝐺

2

)
∥∇𝐿 (𝜃𝑡 )∥2 − 𝛽𝑡 (1 − 𝛽𝑡𝐺) ⟨∇𝐿 (𝜃𝑡 ) , 𝐸 [𝑒𝑡 ]⟩ +

𝛽2
𝑡𝐺

(
𝐵2 − 1

)
2

∥∇𝐿 (𝜃𝑡 )∥2

≤𝐿 (𝜃𝑡 ) − 𝛽𝑡

(
1 − 𝛽𝑡𝐺

2

)
∥∇𝐿 (𝜃𝑡 )∥2 +

𝛽2
𝑡𝐺

(
𝐵2 − 1

)
2

∥∇𝐿 (𝜃𝑡 )∥2

≤𝐿 (𝜃𝑡 ) − 𝛽𝑡

(
1 − 𝛽𝑡𝐺𝐵2

2

)
∥∇𝐿 (𝜃𝑡 )∥2 .

(30)
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According to inequality (30), the target parameter which
minimizes the loss function will be obtained via SGD through-
out the training process. Thus, the error possibly existing in
the simplified DMRE is contingent on the performance of
SGD actually. That is to say, the optimal parameter value can
minimize the corresponding error. On the other hand, an agent
needs to learn 𝑁 𝑄-values of all agents and derive strategies
from them in the original DMRE, while these 𝑄-values are
updated and maintained internally by it. This pattern makes
it obvious to get trouble in the curse of dimensionality with
the increase of agents. Moreover, the computation complexity
increases considerably, as well as the running time. To avoid
these bottlenecks, we further give an simplification of DMRE,
which legitimately transforms the training targets through
parameter approximation in Eq. (14).
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