
1

Distributed and Secure Power Control for

Secondary Users in Dynamic Spectrum Access

Yousi Lin1, Peiwen Qiu1, Yaling Yang1, Xiaojiang (James) Du2, and Jie Wu2

1Virginia Tech
2Temple University

Email: 1{yousil94,peiwenq,yyang8}@vt.edu, 2{dux,jiewu}@temple.edu

Abstract

In dynamic spectrum access (DSA), secondary transmitters (SU-TX) should only be allowed to

transmit on a licensed channel belonging to incumbent users (IU) when the signal-to-interference-noise-

ratio (SINR) requirements of both IUs and SUs can be satisfied at the same time. However, in many

DSA systems, the location and interference level of an IU are often considered sensitive data that should

not be revealed, making it very challenging to ensure the QoS of both the IU and SUs while protecting

IU operation security. In this paper, we propose a novel distributed SU transmit power control algorithm

to solve this challenge. Our scheme can enable SINR-guaranteed coexistence between SUs and IUs and

protect IUs from harmful interference, while requiring no information directly from IUs. Environmental

sensing capability (ESC)’s local measurements of IU signals also undergo a security masking process

to ensure IU location cannot be derived from its outputs, providing strong privacy protection for IUs.

Our scheme’s convergence and stability properties, as well as its privacy-protection strength, are both

theoretically analyzed and experimentally demonstrated through simulations.

Index Terms

dynamic spectrum access, secondary user, power control.

I. INTRODUCTION

Due to the rapid growth in wireless communication demands, the frequency spectrum is

becoming increasingly crowded. Dynamic spectrum access (DSA) is then proposed to enable

the spectrum sharing between incumbent users (IUs) and secondary users (SUs) in underutilized
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spectrum to mitigate the spectrum scarcity problem. This paper focuses on the DSA architecture

used in the 3.5 GHz band since it is one of the most prominent DSA system architectures.

Besides IUs and SUs, this target architecture also includes a spectrum access coordination

system (SAS) and an Environmental Sensing Capability (ESC) system [1]. ESC is a distributed

network of sensing devices that monitor IU signal’s received signal strength (RSS) and then

provides such sensing information to SAS. Based on ESC inputs, SAS then grants spectrum

access permissions to SUs accordingly. IUs in 3.5GHz are often military radars and satellite

services, whose operation data is classified and demands strong privacy protection from the

SAS-based DSA system.

In such a SAS-based DSA system, SUs can only be permitted to access the licensed bands

when these SUs do not cause any harmful interference to the IUs based on ESC’s IU sensing

results and SUs’ transmission parameters (e.g. SUs’ transmission power and locations). Adaptive

SU power control based on ESC’s IU sensing results, hence, can be a viable way to ensure an

SU can obtain such transmission permission to coexist with IUs. Multiple such SU power control

schemes have been proposed recently. Unfortunately, none of these existing schemes can properly

solve the SU power control problem in DSA. These existing SU power control algorithms can be

classified into two categories: centralized and distributed power control [2]. Centralized power

control algorithms, such as those proposed in [3], [4], lack scalability when the number of SUs

in the system is large because the central controller has to coordinate all SUs and becomes the

bottleneck. In addition, the central controller needs to know sensitive IU operation data, violating

IU’s privacy-protection demand. Distributed power control strategies, such as [5], [6], [2], solves

the scalability issues, but is even worse in IU privacy protection since they have to distribute

sensitive IU location and interference level information to all SUs.

Due to the limitations of existing schemes, in this paper, we propose a novel distributed

and secure SU power control algorithm for SAS-based DSA systems. We theoretically prove

the algorithm’s convergence and also show that the maximum interference limit at IU and the

minimum SINR requirement of SUs are both satisfied at the stable point. In addition, in our

scheme, each SU self-adjusts its transmit power based on locally observable measurements and

a few broadcasted global parameters from SAS. Hence, the system has excellent scalability since

the central SAS does not need to perform per-SU computation. Furthermore, our proposed algo-

rithm ensure that sensitive operation information of IU cannot be derived from the information

exchanged in this system. The algorithm does not even require sharing of the raw IU signal
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strength sensed by ESC. Instead, ESC only gives SAS some masked values indirectly related

to IU signal strength. Since only the masked values are shared among participating entities in

our power control algorithm, even if the information is leaked, an adversary will not be able to

infer sensitive information of the IU.

In the rest of the paper, we will discuss our algorithm design using the following organization.

Section II discusses the related works on constrained SU power control and IU location protec-

tion. Section III introduces the system model and the QoS requirements for SU and IU. Section

IV describes our power control algorithm for SUs to distributively adjust their transmit power.

In Section V, we demonstrate the convergence and stability properties of our algorithm under

different conditions. Section VI further shows how IU’s interference requirement is statistically

guaranteed. Section VII analyzes that even when the ESC-supplied information is leaked, it

is still difficult for adversaries to infer the true IU location. In Section VIII, we present the

evaluation of the proposed algorithm using simulations. Finally, Section IX concludes the paper.

II. RELATED WORK

In recent years, plenty of research has been done on SU power control. Most of existing works

can be classified into two categories: centralized and distributed power control [2]. In centralized

power control strategies, there should be a central controller that manages the transmit power

of all SUs within its coverage [7], [8]. Commonly, the basic idea adopted in centralized power

control is that an SU is only allowed to transmit if it is authorized by the central controller. One

obvious drawback of this type of strategy is the heavy communication cost since the central

controller needs to know all the SU and IU information for decision making. Also, SU and IU

privacy is a concern in centralized power control since the central controller will know sensitive

location and operation state of IUs.

In distributed power control strategies, SUs adjust their transmit power based on locally

observable measurements and received information. Some of these strategies, such as those in

[9], [10],[2],[5], iteratively adapte SU transmit power based on some optimal formulation with

target objective functions and constraints. The others, such as [11], use learning algorithm for

SU power adaptation. Unfortunately, none of these distributed algorithms considers IU operation

privacy protection. Many of them assumed that IUs’ locations are known to all SUs and hence

each SU can locally measure the channel gain between an IU and itself. Some even need to put

a genie near an IU to obtain the interference level at the IU’s location. Thus, these algorithms
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will not be compatible with the strict IU operation privacy protection requirement in 3.5GHz

DSA systems.

In terms of privacy protection in DSA, there is a wealth of literature done to protect IU’s

location privacy. Works in [12], [13], [14], [15], [16], [17] assume that IUs participate in the

spectrum allocation process, by adding noise or distortion on their location data or encrypting

the data using homomorphic cryptosystems. Such a design is impractical in many DSA systems

since it demands modification of IU designs. The work in [18] does not assume IUs’ participation

in spectrum allocation and leverages a proxy re-encryption scheme to encrypt the ESC’s input to

SAS. But this scheme requires a central trusted Key Issuer to distribute keys to SUs and ESCs. It

is not clear how an IU can trust such a Key Issuer. In addition, the heavy encryption schemes used

in [18] lead to high computation and communication overhead, where communication overhead

and handling time per SU operation permission are in the magnitude of hundreds of MB and

thousands of seconds, respectively. Such high overhead makes the scheme not scalable.

Different from these existing IU privacy protection schemes, our work does not demand IUs to

participate in information exchange. Also, in our design, ESC does not provide any information

directly related to an IU’s location to SAS, so that no high-overhead encryption is needed to

ensure IU privacy in the SU power allocation process. In Section VII, we formally demonstrate

that under our design, it is difficult for an adversary (e.g., malicious SAS or SUs) to accurately

infer the IU’s location using ESC-provided information.

III. PROBLEM FORMULATION

The system model in our algorithm is illustrated in Figure 1. Specifically, we assume that

an IU, a SAS server, m ESC sensors, and n pairs of SU transmitters (SU-TX) and receivers

(SU-RX) are distributed in an area. Both the IU and SU TXs/RXs can be mobile. All SU-TXs

transmit on the same frequency band. We assume a SU-TX i (i ∈ [1, n]) only transmits towards

a SU-RX i. If some transmitter transmits to multiple receivers, the transmitter can be modeled as

multiple co-located SU-TXs, each transmitting to one receiver. Similarly, a receiver that receive

messages from multiple transmitters can be simply modeled as multiple co-located SU-RXs,

each receiving from one transmitter.

To formulate the power control problem, denote the transmit power of SU-TX i as Pi. The

path attenuation from SU-TX i to SU-RX j is denoted by gij . ϕ denotes noise level at each

SU-RX, including both the additive receiver noise and other environmental noise. The SINR at
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Fig. 1. System model.

SU-RX i, thus, can be expressed by SINRi = Pigii∑
j 6=i Pjgji+ϕ

. The QoS requirements of IU and

SUs that our power adaption algorithm needs to satisfy, thus, can be formulated as:
giiPi∑

j 6=i gjiPj+ϕ
− τi = 0, i ∈ [1, n] (a)

Prob(
∑

i giIPi ≤ T ) ≥ χ (b)

0 ≤ Pi ≤ Pmax, i ∈ [1, n] (c),

(1)

where τi denotes the desired SINR level at SU-RX i, which is needed to maintain effective

communications as shown by constraint (a). giI represents the signal attenuation from SU-TX i

to the IU. T is the IU’s interference tolerance threshold. Constraint (b) essentially states that the

probability that the aggregated SU interference on the IU is no larger than T must be no smaller

than a threshold χ. Pi is upper bounded by Pmax, the maximum SU-TXs’ transmit power, as

shown by constraint (c).

While the constraints in (1) are straightforward, they are hard to guarantee directly. Due

to privacy protection of IU’s location information, giI in (1) should not be revealed to any

SU/SAS/ESC. Thus, direct estimate of interference suffered by IU is not feasible. In addition,

in 3.5GHz band, an IU usually does not have realtime communications with any SU/ESC/SAS.

Thus, it is also impossible for IU to inform SU/SAS about its local interference level.

To solve this problem, we translate the constraints on IU interference level to the constraints

on ESC’s interference level, which can be either directly measured by ESC or theoretically esti-

mated since ESC’s locations are public information according to FCC regulation in 3.5GHz[19].

Specifically, we propose that when an ESC e has sensed the existence of an IU, it uses its

sensing data to derive its requirement on local maximum SU interference level, denoted as Te.
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Te is computed in a way such that if the aggregated SU-TXs signals on each ESC does not

exceed Te, the interference received at the IU is likely constrained to be below T (See Section

VI for details). Hence, the constraint formulation in (1) is converted into:
giiPi∑

j 6=i gjiPj+ϕ
− τi = 0, i ∈ [1, n] (a)∑

i giePi ≤ Te, e ∈ [i,m] (b)

0 ≤ Pi ≤ Pmax, i ∈ [1, n] (c),

(2)

where gie is the signal attenuation from SU-TX i to ESC e.

Denote the set of SU power settings that satisfy (2) as the solution set R := {P|P satisfies (2)},

where P is a column vector and P = {Pi, i ∈ [1, n]}. In the following sections, we will prove

that when the solution set R is not empty, our algorithm successfully stabilizes at a unique

equilibrium point in R. When a solution to (2) does not exist (a.k.a. R = ∅), meaning that a

power setting that satisfies all three constraints in (2) does not exist, our power control algorithm

will converge to a stable point that guarantees IU’s QoS requirement (2b), while the constraint

(2a) may be violated. We believe this is a desirable feature of our algorithm because, in an

DSA system, the guarantee of IU’s QoS is generally a strict requirement, while degrading SU

communication quality is often acceptable when the system becomes too crowded with SUs.

IV. OUR DISTRIBUTED POWER CONTROL ALGORITHM

In this section, we present our distributed dynamic power control algorithm. The algorithm

includes three parts: the ESC update algorithm, the SAS update algorithm, and the SU-TX update

algorithm.

ESC update algorithm: Each ESC e measures its local aggregated SU interference, denoted

as Ce, and computes and periodically updates SAS with

ωe =
ξ1(Ce − ξ2Te)

Ce
, (3)

Here, ξ1 and ξ2 are two random numbers in the range of (0, 1]. ξ1 and ξ2 take different values for

each ωe computation to increase the randomness in ωe and to ensure privacy-protection on IU,

and the detailed analysis can be found in Section VII. Te is the maximum allowable interference

at ESC e. ESC e generates Te based on its local RSS of IU and the IU’s maximum acceptable

interference level T posted by the IU. In Section VI, we will discuss the details of Te generation.

The above ESC update algorithm assumes that ESC can differentiate IU signals from SU

signals based on the differences in their signal characteristics (e.g. modulation schemes). There
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are many existing approaches for realizing such signal classification [20], [21], [22]. Most existing

ESC design proposals already have this capability.

SAS update algorithm: SAS periodically broadcasts global parameters Ωe, e ∈ [1,m] and Γmin

to all SU-TXs, which are computed based on ESC-supplied ωe as follows:

Ωe = f ′(ωe) · λ2
e, (4)

Γmin = min(−ωe), (5)

where f(z) := max(0, z). (6)

Each λe for e ∈ [1,m] is a non-zero positive time dependent variable that is updated by the

following differential equation:

λ̇e =
dλe
dt

= −βef(ωe) · 2λe. (7)

where βe is a positive number. βe is designed to always guarantee λe > 0 when it is updated by

ensuring:

λe + λ̇e = λe − βef(ωe) · 2λe > 0⇒ 0 < βe <
1

2f(ωe)
(8)

Note that the initial λe(0) must be positive, and it is easy to achieve because λe(0) can be

determined by SAS itself.

SU-TX update algorithm: SU-TX i adapts its transmit power by:

Ṗi =
dPi
dt

= ˜̇Pi +
∑
e

gieΩe
˜̇Pi, (9)

where ˜̇Pi = αi ·
(

τi
SINRi

− 1

)
Pi, (10)

αi = αi(Γmin, gie,Ωe, SINRi) (11)

In the above adaption algorithm, SU-TX i can obtain SINRi from its receiver SU-RX i’s

feedback. SU-TX can compute gie for each ESC sensor e using radio propagation model based

on the sensor’s location, which is public information. αi is a locally computed step size based

on a step size control function described in Section V-B2. αi depends on both locally observable

gie and SINRi, and global scalar parameters Ωe and Γmin from SAS broadcasts.

Our algorithm is very simple to implement. Only locally observable information and some

insensitive aggregated information broadcasted by SAS are required for each SU-TX to update

its transmit power distributively. The broadcasted information from SAS reveals no IU location
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or IU interference levels. The information transmitted from ESC to SAS also cannot be used to

derive IU location or interference level. The computation in SAS side is not difficult and require

no privacy sensitive IU information. Since our algorithm does not require one-to-one information

exchange between SU-TXs and SAS, it is highly scalable. In the next section, we prove that

our system will asymptotically converge into a unique equilibrium point in R whenever R is

nonempty. Then, we demonstrate how the system stabilizes when R is empty.

V. CONVERGENCE AND STABILITY

To prove our algorithm’s convergence, first note that theoretically, the aggregated SU inter-

ference at ESC e can be expressed as Ce =
∑

i Pigie. In addition, according to (3) and (6),

because Ce and ξ1 are positive, we can see that the value of f ′(ωe) is identical to f ′(ωeCe/ξ1).

Thus f ′(
∑

i Pigie−ξ2Te) = f ′(ωe) . Combining this with (3) (4) (7) (9) (10), the transmit power

update algorithm at SU-TX i can be expressed as:

Ṗi =
dPi
dt

= ˜̇Pi +

[∑
e

f ′(
∑
i

Pigie − ξ2Te)gieλ
2
e

] ˜̇Pi, (12)

where ˜̇Pi = αi

 τi
Pigii∑

j 6=i Pjgji+ϕ

− 1

Pi, (13)

λ̇e =
dλe
dt

= −βef(ξ1

∑
i Pigie − ξ2Te∑

i Pigie
) · 2λe. (14)

Essentially, in this section, we will examine the system’s convergence to a SU transmit power

allocation set R̃ that is defined as R̃ := {P|P satisfies all the constraints in (15)}:
giiPi∑

j 6=i gjiPj+ϕ
− τi = 0, i ∈ [1, n] (a)∑

i giePi ≤ ξ2Te, e ∈ [i,m] (b)

0 ≤ Pi ≤ Pmax, i ∈ [1, n] (c)

(15)

Since R̃ ⊂ R, once the system converges into R̃, it converges into R. We will prove that

whenever there exists an nonempty power allocation solution set R̃, our algorithm will stabilize

at a unique solution inside R̃ and hence is guaranteed to meet both IU and SUs’ requirements.

Even when an solution does not exist (i.e. R̃ = ∅), the system asymptotically converges to a

unique stable point which always satisfies the ESC’s interference constraint (15b).

Our proof includes two parts. In part 1, we prove the system’s convergence under the case

where R̃ is nonempty. In Part 2, the case where R̃ is empty is considered. In this case, SUs’



9

SINR requirements, SU’s upper transmit power limit and IU’s interference requirement cannot

be satisfied simultaneously. The system in (12) - (14) will never converge to a point that satisfies

all the constraints in Equation (2) since equilibrium points do not exist. Therefore, we propose

a supplementary approach for this case which treats IU’s interference constraint with higher

priority than SU’s SINR requirement. We prove the supplementary approach’s convergence.

A. Part 1: Solution set R̃ to (15) exists

In this subsection, we prove that whenever R̃ 6= ∅, meaning that there exists some feasible

setting of SU-TX transmit power that satisfies (15), our algorithm stabilizes at a unique point

inside R̃. The proof is divided into two phases.

1) Phase 1: We relax the maximum power constraint in (15) to get a new relaxed solution

set Z̃, such that all P ∈ Z̃ satisfies:
giiPi∑

j 6=i gjiPj+ϕ
− τi = 0, i ∈ [1, n] (a)∑

i giePi ≤ ξ2Te, e ∈ [i,m] (b)

Pi ≥ 0, i ∈ [1, n]. (c)

(16)

Then, we analyze the algorithm’s convergence and stability properties whenever Z̃ exists.

2) Phase 2: We demonstrate that our algorithm will iteratively converge to R̃ if R̃ is a

nonempty set.

1) Phase 1: convergence to a relaxed solution set Z̃: In this phase, we analyze the algorithm’s

convergence to a unique equilibrium in Z̃ under the condition that Z̃ is nonempty. The analysis

is summarized in two theorems. Theorem V.1 demonstrates that our algorithm asymptotically

converges to an invariant set Z̃. Theorem V.4 states that our algorithm will stabilize at a unique

equilibrium point in Z̃.

Theorem V.1. Starting from any initial state Pi(0) > 0, the system described in (12) to (14)

asymptotically converges to an invariant set Z̃.

Proof. The proof includes two steps. At Step 1, we prove that every point in Z̃ is a saddle point.

At step 2, by constructing a Lyapunov function, we prove that the system is asymptotically stable

inside Z̃ if it is an nonempty set.
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Step 1: Denote P ∗ = {P ∗i , i ∈ [1, n]} as a saddle point of the system. Setting ˜̇Pi = 0 and

λ̇e = 0, e ∈ [i,m], P ∗ is defined by:
˜̇Pi = αi

 τi
P ∗i gii∑

j 6=i P
∗
j gji+ϕ

− 1

P ∗i = 0 (17a)

λ̇e = −βef(ξ1

∑
i P
∗
i gie − ξ2Te∑
i P
∗
i gie

) · 2λe = 0 (17b)

Since λe > 0, from (17b), it is clear that f(
∑

i P
∗
i gie − ξ2Te) = 0, which, based on f(·)

definition in (6), means
∑

i P
∗
i gie − ξ2Te ≤ 0. Based on (13), the solution set for ˜̇Pi = 0 is

S = {Si := P ∗i − τi
gii

(
∑

j 6=i gjiP
∗
j + ϕ) = 0, i ∈ [1, n]}. Thus, (17a) and (17b) can be converted

to: 
τi

giiP
∗
i∑

j 6=i gjiP
∗
j
+ϕ

= 1,∀i ∈ [1, n]∑
i P
∗
i gie ≤ ξ2Te, ∀e ∈ [1,m]

(18)

Clearly, (18) is equivalent to the definition of Z̃. Hence, Z̃ is the saddle points P ∗ for the system.

Step 2: In this step, we prove that P ∗ ∈ Z̃ is an equilibrium point of the system. We first

show the convergence property of ˜̇Pi alone. From (13), ˜̇Pi can be rewritten as:

˜̇Pi = α

(
τi
gii

∑
j 6=i

gjiPj − Pi

)
+ α

τi
gii
ϕ = AP + b, (19)

where A = {aij}n×n is a n×n matrix with strictly negative entries along the diagonal and only

positive entries off the diagonal. aii = −α, and aij = α τi
gii
gji for i 6= j. b = {bi}n is a vector of

n entries, and bi = α τi
gii
ϕ.

To further our proof of ˜̇Pi’s convergence, we introduce Lemma V.2 and V.3 from existing

literature [9], [23], [24].

Lemma V.2. : If an n× n matrix has non-negative entries off the diagonal, and if it maps an

n × 1 vector, all of whose entries are positive, into an n × 1 vector, all of whose entries are

negative, each of the n eigenvalues of the matrix has negative real parts [23].

Lemma V.3. Given the dynamic system ẋ = Ax, for any Q = Q> > 0, there exists a positive

definite solution M of the Lyapunov A>M +MA = −Q. The solution M is unique if and

only if every eigenvalues of A has negative real parts [24].

Note that in phase 1 we assume Z̃ is not empty. There exists P ∗ ∈ Z̃ that makes ˜̇Pi = 0.

Thus, according to (19), AP ∗ = −b. According to Lemma V.2, all the eigenvalues of A have
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negative real parts. Thus, we can apply Lemma V.3 and find a positive definite matrix M that

solves A>M + MA = −Q given any Q = Q> > 0. Hence, we can construct a Lyapunov

function V (P ) for ˜̇Pi as

V (P ) := (P − P ∗)>M(P − P ∗) ≥ 0 (20)

The time derivative of V (P ) is calculated by

V̇ (P ) =
∑
i

∂V (P )

∂Pi

˜̇Pi = −(P − P ∗)>Q(P − P ∗) ≤ 0 (21)

Clearly, ˜̇Pi asymptotically converges to P ∗i whenever S = {Si := Pi − τi
gii

(
∑

j 6=i gjiPj + ϕ) =

0, i ∈ [1, n]} exists. Based on eigenvalue decomposition theorem, let us pick Q = H>DH ,

where D is an n× n eigenvalue matrix and each of its eigenvalue i is denoted by δi, i ∈ [1, n].

Define y := {y1, y2, ...yn} = H(P − P ∗). Hence, V̇ (P ) can be re-expressed as:

V̇ (P ) =
∑
i

∂V (P )

∂Pi

˜̇Pi =
∑
i

δiyi
2 (22)

Given the convergence properties of ˜̇Pi, now we will prove the convergence and stability of

the system with both Ṗi,∀i ∈ [1, n] and λ̇e,∀e ∈ [1,m] by constructing a Lyapunov function

K(λ,P ) for the system as

K(λ,P ) := F (λ,P )− F (λ∗,P ∗), (23)

where F (λ,P ) :=
∑
e

f
(
W (P )

∑
i

gie − ξ2Te

)
λe

2, (24)

W (P ) := V (P ) + ε. (25)

In the construction, λ∗,P ∗ are the equilibrium points of the system. ε is a sufficiently large

positive number such that ε > Te∑
i gie

and ε makes the following inequality always true:

W (P )
∑
i

gie − ξ2Te = (V (P ) + ε)
∑
i

gie − ξ2Te > 0. (26)

Note this is possible because V (P ) is a definite positive function. Theorem A.1 in the Appendix

shows that K(λ,P ) is the Lyapunov function for the system and K̇ = 0 if and only ifPi = P ∗i = τi
gii

(∑
j 6=i gjiPj

∗ + ϕ
)
,∀i ∈ [1, n]∑

i Pigie − ξ2Te ≤ 0,∀e ∈ [i,m].
(27)
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The above equation is equivalent to the definition of Z̃. Hence, we prove that the system

asymptotically converges into Z̃.

Theorem V.4. Z̃ only contains one equilibrium.

Proof. Considering a large number of SUs moving inside a large geographical area, the n× n

matrix A and n×1 matrix b defined in (19) can be assumed to be sufficiently random according

to [9]. Hence matrix A and b can be assumed to have n distinct eigenvalues with probability

one. Therefore, when Z̃ is nonempty, there is only one unique point in Z̃, which the system

converges to.

With Theorem V.1 and Theorem V.4, we now can conclude that the system asymptotically

converges to a unique equilibrium in Z̃ when Z̃ 6= ∅.

2) Phase 2: convergence to solution set R̃: Since Z̃ is the solution set for relaxing the SU-TX

transmit power upper limit and R̃ is the solution set where Pi ≤ Pmax is enforced, we have

R̃ ⊆ Z̃. Since a non-empty Z̃ only contains a single unique equilibrium point P ∗, if R̃ is also

not empty, we must have P ∗ ∈ R̃ = Z̃ and P ∗i ≤ Pmax, i ∈ [1, n]. Since we have proved that

the system converges to the unique equilibrium P ∗ ∈ Z̃, we can state that as long as R̃ 6= ∅,

starting from any initial state P (0) > 0, our algorithm iteratively converges to P ∗ ∈ R̃.

B. Part 2: Solution set R̃ to (15) is empty

So far we have proved that, whenever R̃ is nonempty, our algorithm asymptotically converges

to a unique stable point P ∗ ∈ R̃. However, solution set R̃ may not exist for some SUs and IU

distribution. This may happen in two cases:

1) Case 1: This is the case where P ∗ ∈ Z̃ exists but P ∗i > Pmax for some i. In such a case,

R̃ is an empty set due to constraint on SU maximum transmit power. We show a stopping

criterion of the algorithm in (12) - (14) to handle this case.

2) Case 2: This is the case Z̃ = ∅. This means SUs’ SINR requirement and IU’s interference

requirement cannot be guaranteed at the same time. To handle this situation, a step

size control method is proposed to always guarantee IU’s interference requirement while

sacrificing the SINR of SUs. Essentially, the algorithm treats IU’s interference constraint

with a higher priority than SU SINR.

Next, we introduce the details of our solution for these two cases.
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1) Case 1: Stopping Criterion: In this case, even when the transmit power Pi of SU-TX i

already reaches Pmax, a solution still cannot be reached. In other words, the solution P ∗ ∈ Z̃

exists in the range Pi > Pmax. In this case, SU-TX i will simply stop increasing its Pi and

keep Pi = Pmax unless the algorithm guides it to decrease the transmit power, while other

SU-TXs keep on updating their transmit power until the convergence of the system. By this

procedure, the system can stabilize at a sub-optimal point where
∑

i∈[1,n] P
∗
i gie < Te, e ∈ [1,m]

and 0 ≤ P ∗i ≤ Pmax, i ∈ [1, n] hold. However, this sub-optimal solution may fail to meet the

SINR requirement.

2) Case 2: Step Size Control: When Z̃ = ∅, meaning that it is impossible to guarantee SUs’

SINR requirement and IU’s interference requirement at the same time, we choose to ensure

IU’ interference requirement first and sacrifice the SINR of SUs. This is because in DSA, FCC

regulation demands that IU’s performance has to be guaranteed. We realize this preferential

treatment on IU by requiring our algorithm to stabilize at a point P ∗ meeting
∑

i P
∗
i gie <

Te, e ∈ [1,m].

This can be achieved by a step size control procedure that computes the feasible step size αi

in (9). The procedure need to ensure that the ESC’s interference at any iteration to be smaller

than its threshold Te by enforcing :∑
i∈[1,n]

(Pi + Ṗi)gie < Te, e ∈ [1,m] (28)

In this way the requirement
∑

i P
∗
i gie < Te can be guaranteed. Since Ce denotes the received

interference at ESC e from all SU-TXs, given (3) - (9), (28) can be rewritten as:

Ce +
∑
i

αi(
τi

SINRi

− 1)(1 +
∑
e

Ωegie)Pigie < Te (29)

To guarantee (29), we set αi to make the following inequality hold ∀i ∈ [1, n]:

αi(
τi

SINRi

− 1)(1 +
∑
e

Ωegie) < Γmin, (30)

which essentially means that SU-TX picks the stepsize αi following:

1) If τi
SINRi

− 1 > 0, αi < Γmin
1

(
τi

SINRi
−1)(1+

∑
e Ωegie)

.

2) If τi
SINRi

− 1 < 0, αi > Γmin
1

(
τi

SINRi
−1)(1+

∑
e Ωegie)

.

By choosing αi following the above rules, starting from any initial point P (0), the requirement∑
i Pigie < Te, e ∈ [1,m] is always guaranteed even when Z̃ = ∅.
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Based on the discussion above, we have proved that the system will converge to a stable point

which always meets ESC interference requirements, if the step size αi for SU-TX i is tuned in

each iteration by the proposed step size control method.

VI. ESC INTERFERENCE REQUIREMENTS

As discussed in Section III, due to the sensitivity in IU’s location privacy, the interference from

SU-TXs to an IU cannot be directly measured and thus the problem formulation in (1) cannot

be solved directly. Therefore, we estimate the interference from SU-TX to ESC instead and

create problem formulation (2). In Section V, we have proved that our algorithm asymptotically

stabilize at an equilibrium that solves the problem in (2). In this section, we describes how our

algorithm computes ESC’s interference constraint Te and verify that using this Te computation,

the solution to the problem in (2) is approximately also a solution to the problem in (1).

On a high level, denoting TE as the set of all Te, TE is computed by solving the following

formula:

U(TE) := Pr(I ≤ T |Ce ≤ Te, for all e ∈ [1,m]) ≥ Ψ (31)

where the constant threshold Ψ ∈ [0, 1] and Ψ ≈ 1. The left side of (31), denoted as U(TE),

represents the conditional probability that the IU’s received SU interference I does not exceed

its requirement T given that the SU interference level at each ESC e is bounded by TE. The

formula essentially means that TE should be set at a right value so that the probability on the

left side will be close to 1.

Next, we explicitly derive the expression of U(TE). To achieve this, we first derive the

statistical distribution of Ce in Section VI-A. In Section VI-B, we model the conditional statistical

distribution of I , given ESC’s local RSS of IU. Next, Section VI-C solves (31) as a cumulative

density function of a conditional normal distribution, and use this function to identify TE that

guarantees U(TE) ≥ Ψ.

A. Distribution of Ce

To derive the statistical distribution of Ce =
∑

i∈[1,n] Pigie for ESC sensor e, the path loss gie

between SU-TX i and ESC e needs to be estimated. Since an SU-TX’s location is usually not

known to an ESC due to SU location privacy protection, we can not measure or compute gie

directly. Thus, we establish a statistical model of gie between SU-TX and ESC.
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Without loss of generality, we assume that each ESC is in charge of detecting the IU’s presence

in a large circular area centered at itself with a radius l, and SUs are uniformly distributed inside

this area. Based on the simplified propagation model, gie = ηdie
−υ, where die is the distance

between ith SU-TX and eth ESC, υ is the path loss exponent and η is a small constant coefficient.

Note that the probability density function (PDF) of die, denoted as ρDe(die), can be expressed

as ρDe(die) = 2die
l2
. Using ρDe(die), the distribution of channel gain gie is derived by:

Prob(gie ≤ g) = 1− Pr(die ≤ (
g

η
)
− 1
υ
) (32)

ρGe(g) =
∂Prob(gie ≤ g)

∂g
=
η

1
υ

υ
g−

1+υ
υ ρDe((

g

η
)−

1
υ ) (33)

The expectation and variance of gie, denoted as µe and σ2
e respectively, can be calculated

based on:

µe =

∫ ηε−υ1

ηl−υ

2η
2
υ g−

2
υ

υl2
dg, σ2

e =

∫ ηε−υ1

ηl−υ
(g − µe)2 2η

2
υ g−

2+υ
υ

υl2
dg (34)

where ε1 is the minimum distance between an SU and ESC.

Since all SU-TXs are independent, gie,∀i ∈ [1, n] is i.i.d. Using the Central Limit Theorem

and the Law of Large Numbers, when n increases, Ce =
∑n

i=1 Pigie can be approximated by a

normal distribution, Ce ∼ N(µ̂e, σ̂
2
e), where

µ̂e =
n∑
i=1

Piµe, σ̂2
e =

n∑
i=1

(Pi)
2σ2

e . (35)

B. Distribution of I

In this section, we model the statistical distribution of an IU’s received SU interference I .

Denoting giI as the path loss from the ith SU to the IU, we have I =
∑

i∈[1,n] PigiI . Same as

how we compute Ce’s distribution by modeling gie in the previous section, to model I , we again

need to derive giI’s statistical distribution. Since the IU’s location is not explicitly known due

to IU location privacy protection, giI has to be estimated using ESC’s local measurement of

IU signals. Note that due to FCC’s security regulation, ESCs must not share any IU’s location-

related information. Thus, each ESC must independently calculate giI . No exchange of these

IU-related information with other ESC is allowed.
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The first step is to roughly estimate the IU’s location distribution using ESC’s local measure-

ment. Note that the distance between an ESC and the IU, denoted as d0, is given by d0 = (g0
η

)−
1
υ ,

where g0 denotes the channel gain from the ESC to the IU. In addition, we have g0 = Pr/Pt,

where Pt is the IU’s transmit power and Pr is the ESC’s received IU signal strength. Since it is

easy to find the common transmit power of radar systems, which are the main types of IUs in the

3.5GHz band, we assume Pt is known. Assuming IU’s signal is transmitted through a Rayleigh

fading channel, the cumulative distribution function (CDF) of Pr, thus, can also be modeled as

ΞPR(Pr) = 1 − exp (−Pr
re

), where re is the expectation of Pr, which can be measured by ESC

sensor e. Therefore, the CDF of g0 can be derived by:

ΞG0(g0) = 1− exp (−g0Pt
re

). (36)

The CDF of d0 is then computed by:

ΞD0(d0) = exp (−ηd
−υ
0 Pt
re

), (37)

and the probability distribution function (PDF) of d0 is:

ρD0(d0) = exp(−Ptηd
−υ
0

re
)
υPtη

re
d−υ−1

0 . (38)

The above CDF and PDF of d0 are essentially a location distribution of the IU expressed in

the form of a uniform distribution over a circle of a radius d0 and a center at an ESC. Using

this IU location distribution, we can derive the distance between ith SU and the IU, denote as

diI , as follows. Note that the PDF of diI conditioned on d0, denoted as ρDI |D0(diI |d0), is:

ρDI |D0(diI |d0) =

 2diI
l2
, 0 ≤ diI ≤ l − d0

2diI
πl2

arccos(
d20+d2iI−l

2

2d0diI
), l − d0 < diI ≤ l + d0.

(39)

Thus, combining (39) with (38), ρDI (diI) can be computed by:

ρDI (diI) =



∫ l−diI
0

2diI
l2

exp(−Ptηd
−υ
0

re
)· υPtη

re
d−υ−1

0 dd0,

0 ≤ diI ≤ l∫ l
diI−l

2diI
πl2

arccos(
d20+d2iI−l

2

2d0diI
)· exp(−Ptηd

−υ
0

re
)

υPtη
re
d−υ−1

0 dd0, l < diI ≤ 2l

(40)

The relation between diI and giI is the same as the relation between die and gie in (33), the

expectation µI and variance σ2
I of giI can be computed by:

µI =

∫
g

∫
d0

η
1
υ

υ
g−

1
υ ρDI ((

g

η
)−

1
υ )dd0dg (41)

σ2
I =

∫
g

∫
d0

(g − µI)2η
1
υ

υ
g−

1+υ
υ ρDI ((

g

η
)−

1
υ )dd0dg, (42)
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Because all SU-TXs are independent, the distribution for giI is also i.i.d ∀i ∈ [1, n]. Using

the Central Limit Theorem and Law of Large Numbers, as n increases, I =
∑n

i=1 PigiI can be

approximated by a normal distribution, I ∼ N(µ̂I , σ̂
2
I ), where

µ̂I =
n∑
i=1

PiµI , σ̂2
I =

n∑
i=1

(Pi)
2σ2

I . (43)

C. Determine ESCs’ interference constraints

As discussed in Section VI-A and VI-B,Ce and I are both approximated by normal distri-

butions. The remaining problem is how each ESC e computes a proper value of Te to satisfy

U(TE) ≥ Ψ in (31), which can be rewritten to:

U(TE) = Pr
( ∑
i∈[1,n]

PigiI ≤ T
∣∣ ∑
i∈[1,n]

Pigie ≤ Te, for all e ∈ [1,m]
)
≥ Ψ. (44)

Note that since giI and gie are all positive, we have:

Pr
(∑

i∈[1,n] PigiI ≤ T
∣∣∣∑i∈[1,n] Pigie ≤ Te, for all e

)
≥ Pr

(∑
i∈[1,n] PigiI ≤ T

∣∣∣∑i∈[1,n] Pigie ≤ Te, for some e
)

≥ Pr
(∑

i∈[1,n] PigiI ≤ T
∣∣∣∑i∈[1,n] Pigie = Te, for some e

)
Thus, as long as each ESC sensor e locally chooses a Te that guarantees the following

inequality:

Pr (I ≤ T |Ce = Te ) ≥ Ψ, (45)

we know (44) must hold, which means IU’s interference requirement is statistically satisfied.

According to the theory of conditional normal distribution[25], the conditional random variable

I|Ce = Te is normally distributed, whose µ̂Ie and variance σ̂Ie are:

µ̂Ie = µ̂I +
Σ12

Σ22

(Te − µ̂e), (46)

σ̂Ie = Σ11 −
Σ2

12

Σ22

, (47)

where Σ11 = cov(I, I),Σ12 = cov(I, Ce), (48)

Σ22 = cov(Ce, Ce), (49)

Here, function cov(·) is the covariance of the two input distributions. With the distribution of

I|Ce = Te known, given a Ψ, the µ̂Ie value that makes Pr (I ≤ T |Ce = Te, ) ≥ Ψ, denoted as

µ0, can be computed as

µ0 = T − σ̂IeΦ−1(Ψ), (50)
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where Φ−1(·) is the quantile function of standard normal distribution. Then, based on (46), Te

can be computed by

Te = (µ0 − µ̂I)
Σ22

Σ12

+ µ̂e. (51)

(51) is the formula that each ESC e uses to generate Te independently as its interference

requirement. Bring this Te into (3), the IU’s interference requirement is statistically guaranteed.

VII. ANALYSIS ON IU LOCATION PROTECTION

In this section, we demonstrate how the IU’s location privacy is protected in our algorithm.

As seen from our algorithm, since ESC is responsible for detecting an IU’s existence in the

spectrum and measuring the average received IU signal strength, ESC is the only entity that

obtains information directly related to the IU’s location. In our attack model, we assume ESCs

are trustworthy so an adversary cannot know its raw measurement of IU RSS. But the adversary

may see all the information exchanged in the DSA system by compromising SAS, SUs or the

communication channel. The attacker will attempt to derive sensitive IU location data from

information that they observed.

According to (3) - (11) and Section VI, each ESC e uses the average detected IU signal strength

re to generate its interference requirement Te, and computes ωe which is then sent to SAS and

SUs. From the adversary’s perspective, since ωe’s computation is based on Te, which is again

related to the distance between IU and ESC e, ωe may carry some IU location information and

can be used to infer the changes in IU’s true location. To ensure that IU-ESC distance changes

cannot be discovered in a sequence of ωe, our method increases the randomness in the value of

ωe by using random numbers ξ1 and ξ2 in the generation of ωe as shown in Equation (3). To

analyze if the variations in ωe are related with the changes in IU’s location, one can calculate the

correlation and p-value between the sequence of ωes and the IU-ESC distances [26]. A lower

p-value can be interpreted as a stronger correlation between two sets of data, and a p-value

higher than 0.05 means that the correlation is not statistically significant [26]. If the sequences

of ωes and IU-ESC distances have a low correlation coefficient with a large p-value, we can

say that the correlation between ωes and IU-ESC distances is not statistically significant, and

the attacker can hardly use ωes to infer the IU’s true location. Using this method, in evaluation

section VIII-C, we compute the correlation coefficient and p-value using simulation. The results

show that the correlation is not statistically significant. Thus, it is difficult for an attacker to

infer IU’s true location changes.
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VIII. EVALUATION

In this section, we evaluate the proposed transmit power control algorithm by simulations. To

create a realistic distributions of SU nodes in our simulation, we assume the SU communication

system follow a infrastructure-based architecture that is similar to WiFi, where multiple SU user-

end devices (UE) communicate with SU base stations (BS). Specifically, the simulation area is

set to a 6km × 6km square coastal area. We randomly distribute multiple SU BS inside the

area. Around each BS, 10 UE associated with the BS are normally distributed with a scattering

standard deviation of 40m. Both the BS and its pairing UE can be regarded as SU-TX or SU-RX.

We consider two scenarios in the simulation. In Scenario 1, the BS serves as the receiver and

its UEs are transmitters. The BS can be modeled as 10 co-located SU-RXs each receiving from

one associated UE (i.e. a SU-TX). In Scenario 2, the BS acts as the transmitter and transmit to

its UEs. The BS is then modeled as 10 co-located SU-TXs, each transmitting to one associated

UE (i.e. SU-RX). We assume that all SU-TXs/RXs are located inland and the IU is in the sea.

Five ESCs are randomly situated near the coast line for detecting the IU’s activity. Both IU and

SUs are mobile in the simulation. The speed of each SU-TX is set to 1m/s and the speed of

IU is 10m/s. Figure 2 shows an example of our simulation topology setting.

For every millisecond, each ESC senses the interference from both SUs and IU, and SAS

broadcasts the global parameters. Each SU-TX reads its location information at a rate of 10Hz

from a GPS sensor. A standard path loss model is applied for each SU-TX. The path loss

exponent is set to 4. The environment interference ϕ is set to -80dbm. The system is assumed

to be stable when the fluctuations in every SU transmit power are smaller than 0.0001W .

A. Stability analysis

The evaluation first examines the stability of our algorithm under different cases discussed in

Section V. We denote the case where solution set R̃ to (15) exists as Case 1, the case where

R̃ is empty but solution set Z̃ exists as Case 2, and the case where Z̃ is empty as Case 3. The

different parameter settings for Case 1, 2 and 3 are given in Table I. For each simulation setting,

we run the simulation 100 times. Each simulation simulates 10 minutes operation time of the

DSA network (600000 iterations). Simulation results for the three cases in both Scenario 1 and

2 are shown in Table II and III. In Table II, it can be observed that, on average, an SU-TX only

spends less than 3% of its total operation time in the convergence process in all cases, even

though mobility of IUs and SUs are constantly changing the system states.
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Fig. 2. Example of our simulation settings.

TABLE I

PARAMETER SETTINGS FOR CASE 1, 2 AND 3

Parameter Case 1 2 3

number of SUs 90 160 250

SU SINR target τ 50 100 100

SU’s maximum transmit power (W) 2 1 1

IU’s allowable interference (W) 10−6 10−6 10−9

1) Case 1: Solution set R̃ to (15) exists: The first simulation examines our algorithm’s

performance when the optimal power settings in R̃ exist to satisfy both the IU’s interference re-

quirement and the SU-TXs’ SINR requirements within the SU-TXs’ maximum power constraint.

As shown in Table III, the fraction of time an SU’s SINR does not satisfy its target τ is very

small due to quick convergence of our algorithm and the algorithm’s stable point’s guarantee of

SU’s SINR under case 1. IU’s interference requirement is satisfied 100% of time because our

algorithm guarantees IU’s interference constraint at any time.

2) Case 2: R̃ is empty but solution set Z̃ exists: The second simulation looks at those cases

where not all SU-TXs can achieve the required SINR all the time because of the maximum

transmit power limit on SU-TXs. To simulate this case, as shown in Table I, we increase the

number of SU-RX to 16 and the target SINR of SU BSs to 100, and decrease an SU’s maximum

transmit power to 1W . This will make it harder for all SU-TXs to satisfy their RXs’ SINR

requirements within the allowable range of transmit power. In this case, we expect some SU-RX
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TABLE II

AVERAGE CONVERGENCE SPEED OF SU-TXS’ TRANSMIT POWER IN CASE 1, 2 AND 3 OF SCENARIO 1 AND 2

Fraction of time

used for convergence
Case 1 Case 2 Case 3

Scenario 1 0.0241 0.0245 0.0251

Scenario 2 0.0239 0.0241 0.0244

TABLE III

SIMULATION RESULTS FOR CASE 1, 2 AND 3 IN SCENARIO 1 AND 2

Fraction of time transmit

power < the maximum

Fraction of time when

SU’s SINR ≥ τ

Fraction of time when

SU interference to IU ≤ T

Scenario 1

Case 1 1 0.9784 1

Case 2 0.5260 0.5840 1

Case 3 1 0.0422 1

Scenario 2

Case 1 1 0.9771 1

Case 2 0.5423 0.6267 1

Case 3 1 0.0531 1

will not get its SINR satisfied despite its SU-TX using maximum transmit power, while other

SU-RXs can maintain their SINR. Table III’s simulation results exactly match this expectation.

In addition, Table III shows that our scheme still ensure the IU’s interference level is below the

threshold in this case.

3) Case 3: Z̃ is empty: In the third simulation, as shown in Table I, we reduce the IU’s

interference requirement to an extremely low 10−9W , and further increase the number of SU

BS to 25. As discussed in Section V-B2, such a setting makes it impossible to guarantee SU-

RXs’ SINR requirements due to the strict IU interference constraint. In this case, our algorithm

should ensure IU’s interference requirement first and sacrifice the SU’s SINR. This expectation

matches results in Table III. SU’s SINR requirement is hardly satisfied in the simulation due

to the extremely low IU interference requirement, while this extremely-low IU’s interference

requirement is still always satisfied.

In addition, as shown in Table II, only a tiny increase in the convergence time is observed as

the total number of SUs increases from 90 to 250 among the three cases, which indicates good

scalability of our algorithm.
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Fig. 3. Left figure shows 500 iterations of one sequence of IU-ESC distances and right figure shows the corresponding ωe

sequence.

B. Efficiency evaluation

We compare our algorithm with the existing IU protection schemes [27], [28] in terms of

network capacity under the same IU interference protection level. A geographic exclusion zone

(GEZ) scheme in [27] calculates the minimum radius of the primary exclusion zone based on the

primary outage constraint, and [28] proposes a shapeless PU protection scheme called the discrete

exclusion zone (DEZ), which is achieved by switching off the first k−1 nearest neighboring SUs

surrounding the PU. With the number of SUs equal to 500, in order to ensure IU’s interference

requirement equal to 10−8W , the minimum radius of exclusion zone in GEZ is set to 3000 m

and the number of SUs being switched off in DEZ is set to 150. The results show that under

these settings, our scheme can improve the total SU capacity by 50% over GEZ and by 47%

over DEZ.

C. Evaluation on IU location protection

In the evaluation, we randomly generate 500 settings of the locations of a moving IU, 3

ESCs and 250 static SUs. Each simulation with one setting lasts for 60000 iterations. Figure 3

zooms in for the 500 iterations of example sequences of IU-ESC distances and ωes. The average

correlation coefficient between the sequences of IU-ESC distances and ωes is around 0.08 which

can be considered negligible [29], and the p-value is around 0.28 which is larger than 0.05 [26].

Hence we can conclude that the correlation is not statistically significant. Such low correlation

indicates that it is difficult for an attacker to infer IU’s true location from ωes.
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D. Evaluation of communication overhead

We also compare the communication overhead of our algorithm with other privacy preser-

vation schemes for DSA systems. Because in our algorithm the messages transmitted between

entities only contain several 64-bit numbers, the average communication overhead per SU per

convergence period is around 0.00112MB in our simulation. However, in the existing IU privacy

protection schemes[16], [18], the communication overhead for each SU to obtain a temporary

permission is in the magnitude of dozens or hundreds of MB. Our algorithm requires much

lower communication overhead compared with these existing IU privacy-preserving works.

IX. CONCLUSION

In this paper, we proposed a distributed SU transmit power control algorithm aiming at

effective channel reuse in DSA, subject to IU’s interference requirement and SU-TXs’ SINR

requirements and upper power constraints. Due to security considerations, our algorithm does

not depend on any sensitive information from IU. Each SU-TX only requires locally observable

measurements and aggregated insensitive information provided by ESC to adjust its transmit

power distributively. Through the analysis on the algorithm’s convergence and stability properties,

we demonstrate that our algorithm will converge to a unique stable point which always satisfies

the IU’s interference constraint. Whenever there exists a power setting meeting both IU and SUs’

requirements, our algorithm will stabilize at that setting. Finally, the simulation results validate

the effectiveness of the proposed algorithm.

APPENDIX

Theorem A.1. K(λ,P ) defined in (23) is a Lyapunov function for the system defined in (12) -

(14). In addition, K̇ = 0 if and only if P = P ∗ and
∑

i Pigie ≤ ξ2Te.

Proof: The partial derivative of F (λ,P ) in (23) over Pi and λe are derived as:

∂F

∂Pi
=

∂F

∂W
· ∂W
∂Pi

=
∂F

∂W
· ∂V
∂Pi

(52)

∂F

∂W
=
∑
e

[f ′(W
∑
i

gie − ξ2Te)λe
2
∑
i

gie] > 0 (53)

∂F

∂λe
= f(W

∑
i

gie − ξ2Te) · 2λe > 0 (54)
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To prove K is a Lyapunov function of the system, we prove that (1) K is positive definite

and (2) the time derivative of K satisfies K̇ ≤ 0. K̇ = 0 if and only if P = P ∗ and P ∗ ∈ Z̃.

Step (1): Clearly, when P = P ∗ and λ = λ∗, K(λ,P ) = 0. Then we need to prove that

K(λ,P ) > 0 for all values of P 6= P ∗ or λ 6= λ∗. It is equivalent to prove that F (λ,P ) −

F (λ∗,P ∗) > 0 when P 6= P ∗ or λ 6= λ∗.

From (8) and (14) we can see that λ̇e ≤ 0 is always true. Thus, starting from any initial point

λe, the equilibrium λ∗e will always be no larger than the initial λe and will be the smallest value

within the initial λe’s feasible region. Also, it is already proved that V (P ) is a positive definite

function based on the (20). Moreover, given (24) and (25), it is seen that F (λ,P ) is increasing

with respect to λ(λ > 0) and V (P ). Now it can be proved that F (λ,P ) > F (λ∗,P ∗) when

λ 6= λ∗ or P 6= P ∗. Therefore, K is a positive definite function.

Step (2): The time derivative of K is computed by

K̇ =
∑
i

∂K

∂Pi
Ṗi +

∑
e

∂K

∂λe
λ̇e (55)

We first calculate the value of
∑

e
∂K
∂λe
λ̇e as following:

∑
e

∂K

∂λe
λ̇e =

∑
e

∂F

∂λe
2λeβe

(
−f(ξ1

∑
i Pigie − ξ2Te∑

i Pigie
)

)
≤ 0, (56)

and
∑

e
∂K
∂λe
λ̇e = 0 if and only if

∑
i Pigie ≤ ξ2Te.

Next step is to compute
∑

i
∂K
∂Pi
Ṗi. Given (21), (22), (52),

∑
i

∂K

∂Pi
Ṗi =

∑
i

∂F

∂Pi

( ˜̇Pi +
∑
e

Ωegie
˜̇Pi)

=
∑
i

∂F

∂W

(
1 +

∑
e

Ωegie

)
δiyi

2 ≤ 0

(57)

Hence,
∑

i
∂K
∂Pi
Ṗi = 0 if and only if yi = 0, that is P = P ∗. K is proved to be a Lyapunov

function of our system.
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