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Abstract—Service mesh is a promising micro-services ar-
chitecture due to its excellent governance capabilities. Unlike
traditional service invocation, configurations for governance need
to be issued in the service mesh. However, we find that the control-
plane traffic of governance is distributed in full by default, i.e.,
each service in the data plane receives all configurations. The vast
majority of the configurations are redundant for a specific service.
Hence, it is important and challenging to make the control plane
aware of the calling relationships between services. In this paper,
we propose a traffic management mechanism named DATM.
Using this mechanism, the entire cluster can be dynamically
controlled and services can be configured on demand. It is im-
plemented through a dependency-aware controller and monitors.
The controller first processes the information listened to by the
monitors and then analyzes the connection between the metrics
and the service requests through intelligent algorithms. Finally,
the control traffic for regulating the control plane is generated.
Our proposed mechanism is experimentally compared with the
default strategy and existing work across a wide set of load
scenarios in a testbed based on Istio service mesh and Kubernetes.
Experimental results demonstrate that our mechanism can save
the storage resources of a single agent by 40% to 60%, and
the number of cluster updates can be greatly reduced. From the
perspective of the whole cluster, the optimization results are even
better.

Index Terms—Service Mesh, Traffic Management, Configure
On-demand, Cost Reduction

I. Introduction

Service mesh [1] has emerged to deal with the problem

of service-to-service communications in distributed systems

or micro-services [2]. Lightweight proxies, living alongside

the applications fetch configured rules from the control plane

and perform governance logic when intercepting inbound and

outbound traffic. In this way, the service mesh takes over the

traffic of the cluster, providing higher-order capabilities like

network resilience, security, traffic management [3], etc.

Cost reduction and efficiency improvement have undoubt-

edly become the trend in the industry. To improve the uti-

lization of existing resources [4], various technologies have

been proposed, such as (1) Resource scheduling and business

deployment, (2) Resource utilization estimation, (3) Applica-

tion expansion and configuration, and (4) Workload manage-

ment [5]. Consider resource utilization from the perspective of

traffic management, i.e., to improve system resource utilization

by controlling the direction and amount of traffic through

appropriate policies. Istio [6] is a powerful service mesh

Fig. 1. Two modes of configuring.

implementation that makes it easier to operate cloud-native

services architectures in a hybrid environment. Traffic in the

Istio is architecturally divided into data-plane traffic which

refers to the traffic invoked for services between services, and

control-plane traffic which refers to the configuration between

components of the control plane and the traffic to manage

the proxies. Existing research mostly focuses on the data-

plane traffic, with control-plane traffic receiving less attention.

The native mode of control-plane traffic is to configure fully,

which wastes memory and blocks threads. For example, in

Fig. 1, service A calls service B in the data plane cluster,

meaning that in ideal mode, A only requires the configuration

of B and some basic configuration. However, for the native

mechanism, when the request arrives to trigger the control

plane component, it delivers according to the service in the

cluster rather than the configuration that A needs. Hence,

A will receive DiscoveryResponse with xDS (x Discovery

Service) related to C and D at the same time. B, C, and D will

also receive the same configuration, even if they do not have

any calling services. In a mesh with 325 clusters and 175

listeners, one proxy occupies about 100M of memory; with

466 instances in the mesh, all proxies use 466*100M=46.6G.

This consumes a significant amount of storage space in data-

plane proxies and causes the thread block to process the

redundant configuration.

The performance issue caused by fully configuring is the

main issue at present. To direct traffic between meshes, the

control plane needs to know where the endpoints (Pods in

Kubernetes) are, and the dependencies between services [7].
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Therefore, a good control mechanism is needed to minimize

the amount of configuration receiving services to improve the

utilization of existing resources. We intend to investigate the

traffic management of the control plane under micro-services.

The contributions of this paper can be summarized as follows:

• We design the Dependency-Aware Traffic Management

mechanism (DATM), combining monitors and a con-

troller, a service mesh oriented mechanism for configur-

ing on demand. The mechanism is application-agnostic,

non-intrusive, and does not require any source or business

logic code changes.

• We implement the controller of the control-plane traffic in

the form of plugins to obtain the service’s dependencies.

The configuration can be distributed on demand.

• We conduct extensive experiments to evaluate these so-

lutions.

The rest of this paper is organized as follows. We review

the related work in Section II and give the problem statement

of traffic management in Section III. Section IV presents

our proposed solution framework. Then, we conduct some

experiments and evaluate the efficiency of the controller in

Section V. Finally, we conclude the paper in Section VI.

II. RelatedWorks

Extensive research on micro-services, dynamic performance

modeling, and traffic management exists currently. Most of

them focus on the intersection of these areas. Some particu-

larly notable individual studies are highlighted below.

The most typical micro-services architecture, Spring

Cloud [8], builds the Software Development Kit (SDK) in the

application. The service governance capability is not suitable

for the integration of heterogeneous systems. The service

mesh [9] makes business processes more focused on business

logic. Various functions of Istio service mesh have been

used to extend the high-order capabilities in the cloud-native

system as originally envisioned. Cilium [10] adds network

security filtering to Linux container systems such as Docker

and Kubernetes, which use eBPF to enforce network and

application-layer security policies on containers and pods.

Dynamic performance management for clouds has attracted

considerable attention. One core issue that is gaining notable

reviews is extensive resource estimation [11]. Maximum traffic

is frequently used to predict the resources required by the

service during deployment, resulting in severe resource waste.

Since micro-services have expensive performance overhead,

[12] devised a method for performance modeling and task

scheduling. Suresh et al. proposed a service-oriented archi-

tecture based on rate restrictions and per-service scheduling

to optimize the overall ability to meet deadlines [13]. Within

the industry, many companies have started providing control

solutions based on Sidecar [14]. Slime [15] has a modular

architecture internally, based on the k8s-operator implementa-

tion of Lazyload, which acts as a CRD manager for Istio. It

loads configuration and service discovery information, adjusts

current restriction policies with monitoring information, and

TABLE I
PrometheusMetric

Filter Properties Other Properties

s1 status1 mode1 destination1 value1 resultType1

s2 status2 mode2 destination2 value2 resultType2

... ... ... ... ... ...

si statusi modei destinationi valuei resultTypei

maintains new plugins. The TCM team designed the lazyXds

scheme [16].

Some aspects of traffic management in need of further

research have been highlighted in [17]. Work [18] proposes

a cache-based circuit-breaker strategy, argue for the possible

request failure problem in a distributed system, and quickly

make the request fail and then give the user a result by return-

ing a cache. Maggio [19] and Xu [20] targeted the problem

of how algorithms and controllers can be used to optimize

service delivery and cloud infrastructure power consumption.

Their approach hinges on using a quality reduction to increase

efficiency. Traffic management under multi-cloud is studied

frequently. [21] improved the performance of load balance by

a decentralized algorithm in a centralized system.

In contrast to the works mentioned above, this paper pro-

poses a controller solution for dependency-aware adaptive

management of control-plane traffic, which is a new attempt

of traffic management. At the same time, We measure the

performance of the controller by the memory before and after

algorithm improvement.

III. Problem Analysis

This section presents the configuration optimization based

on the service mesh, which includes service description,

problem scenario, memory usage, and expected improvement.

A. Service Description

Our research is based on a number of micro-services in

distributed clusters. Services in a cluster may contain many

types. However, not all services are needed because services of

the control component are not related to control-plane traffic.

In order to distinguish between different types of services, we

have selected the state and characteristics shown in Table I.

This is reasonable enough, because the state of service may

change over time. To clearly describe the micro-service, we

use a tuple to characterize it as γ = 〈χ, ψ, ξ, σ〉, where

– χ indicates whether the service is up;

– ψ is used to identify whether the service is a business

service or not;

– ξ indicates which namespace the service belongs to;

– σ is the all related destinations of this service.

For the service, we have

ψ
(
γ j

)
=

⎧⎪⎪⎨⎪⎪⎩
1, γ j is a business service;

0, otherwise.
(1)
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(a) Default mode. (b) An edge service. (c) Service with a calling
relationship.

Fig. 2. Examples of triggering updates.

χ
(
γ j

)
=

⎧⎪⎪⎨⎪⎪⎩
1, γ j is a running service;

0, otherwise.
(2)

B. Problem Scenario

Service meshes of agents for each service can intercept

all inter-service calls in an application-independent manner,

and provide more advanced communication capabilities, such

as traffic management. For the native mechanism, the control

plane must distribute and maintain all information in the mesh.

Each service can access any service in the mesh and its

agent hold the full amount of data, including service discovery

information, network routing rules, and network security rules.

However, the vast majority of the data are not available.

Since it is impossible to predict the dependencies of service

in the mesh, Pilot, the core component of the control plane,

will be unable to deliver accurate data according to the

requirements but provides what data are available based on

the existing cluster. When a change is detected, Pilot sends

a DiscoveryResponse (complete configuration) to Envoy [22],

the data plane’s fundamental component, to update the config-

uration, which will cause adverse effects on both the data plane

and control plane traffic. In a large cluster, the configuration

update frequency is higher and the number of instances is

larger. If one of them is updated, the full configuration will

be pushed to all Envoys. Fig. 2(a) shows that when an edge

service E is updated, it triggers the control plane to distribute

the configuration to all service proxies in the cluster in default

mode. In fact, in the default mode, any service update in the

cluster will trigger the update of all services and all updates

are full configuration delivery.

Full configuration delivery of the control plane will result

in an increase in memory during a Pilot push, which might

easily lead to OOM. For the data plane, Envoy will receive a

lot of redundant configuration, so that the memory overhead

increases. The memory occupied by Envoy and the number

of its configured endpoints is linear. The more endpoints, the

more memory that Envoy occupies. Increased memory use is a

significant drain. Our ideal control effect is shown in Fig. 2(b)

and Fig. 2(c). When an edge service is updated, if there is no

service it depends on, it only updates itself without triggering

other service updates. For the updated information, additional

service can be added to record all the updated information on

the entire cluster for thorough processing. When a service with

dependencies is updated, we need to trigger the update of the

services that the service is connected to at the same time, and

the rest of the services are not processed.

C. Memory Usage

There are n services S = {s1, s2, ..., sn} in working cluster.

Let si =
{
s1

i , s2
i , ..., s

m
i

}
, i ∈ [1, n] represents the instance of

this service. Ii is the number of instances of micro-service si.

We optimized memory to minimize storage by considering the

amount of configuration.

As the size of the service within the cluster increases,

the amount of storage needed by the agent and the quantity

of updates both considerably rise. The relationship between

memory usage U and load L:

U ∝ k1L (k1 > 1) (3)

The main configuration size of the service P is determined

by bootstrap, listeners, clusters, routes and a basic file in json

format. The relationship between load L and configuration size

of service P :

L ∝ k2P (k2 > 1) (4)

Most of the composition of memory usage U is the ac-

cumulation of the configuration of all instances. Since the

configuration is delivered in full, the configuration is the same

size regardless of the instance, so they are all represented by P.

The relationship between memory usage U and configuration

size of service P:

U ∝ (

n∑

i=1

Ii)P (5)

D. Expected Improvement

Storage upgrade for a single service Minimize can be

regarded as omitting the namespace’s necessary configuration

and default settings, such as node and software version infor-

mation, admin address configuration, and trace Zipkin cluster

address reference, from the entire configuration.

Minimize = n ∗ P − σ
(
γ j

)
− ω
[
ξ
(
γ j

)]
(6)

Expected improvement EI represents the storage space

saved for the whole mesh. It can be defined as:

EI = U − σ
(
γ j

)
∗

n∑

j=1

I j − W, (7)

Here, W ∈
{
ξ
(
γ j

)}
, j ∈ [1, n]. The EI contains configuration

that is not needed for this service, including configuration

information that is not relevant to this service call.

IV. DTMA Mechanism

The whole DATM mechanism consists of a cloud envi-

ronment, monitor, and controller as illustrated in Fig. 3(a).
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(a) Traffic management infrastructure architecture overview showing the con-
trol traffic as a dotted gray line and the data traffic through Cache and Estimator
components in black.

(b) Sketch of the execution logic of the aware-dependency
controller.

Fig. 3. The logic structure of the DATM mechanism

The basic idea of the controller consists of four parts: real-

time connection and monitoring, information acquisition, in-

telligent analysis and processing, and control of information

distribution as illustrated in Fig. 3(b). We design the controller

that uses Sidecars to limit the reachability of proxy. Sidecar

can explicitly define dependencies, or visibility relationships,

between services. For example, Reviews service only relies

on Ratings service. So after configuration, Istiod will only

distribute Ratings information to Reviews. The controller

considers both the namespace and the monitoring data, thus

improving the real-time performance of the traffic manage-

ment, and ultimately each agent will only get its required

configuration, with optimal performance. Based on the above

studies, We here propose a controller component that can be

easily deployed in a service mesh. The controller’s component

is not deployed directly in the cluster. Rather, it configures

Kubernetes API resources to govern cluster traffic behavior.

A. Monitor

Real-time connect and listen to the running cluster with a

monitor. It is difficult to know the service status and to a

priori determine call dependency before services run. During

development, a software developer cannot reasonably know

what time service works, unless the underlying logic is known

to be stable over time. However, as our results show, it is

possible for the software to check the service calling relations

in real-time. Determining which actions are possible to cache

and storage length can also be a challenge. There is no

such definition at the protocol level and the control level,

so developers and operators can judge the behavior to be

performed by some attribute information defined by a monitor.

The monitor server can pull monitoring indicator data from the

active (up) target host regularly and save it locally as a time

series. Configuring static tasks or service discovery to monitor

the services in the Kubernetes cluster can collect monitoring

data. The triggered alarms are delivered to the Alertmanager

by configuring the alarm rules. Using the monitoring logs indi-

cator data, obtain real-time information about the Kubernetes

cluster, and store the services participating in the business and

their accompanying service dependencies in the configuration

filtering controller according to a predetermined format.

B. Information Acquisition

Get the data required for cluster traffic management from

the monitoring system. The data are obtained after the full

configuration is called, when the business service expands or

decreases, or when the dependence relationship between the

service change. Acquire the latest service information in the

cluster, as well as the service dependency information that

goes with it, and preserve it in the configuration filtering

controller. The local storage is compared to the most recent

configuration information, and the result is forwarded to the

controller’s task queue, which updates the local storage in the

order that the comparison results arrive.

C. Intelligent Analysis and Processing

First of all, the acquired data are sorted out and stored in

Newest Config. Then, the local existing stored data of Newest

Config are passed into a Control-Loop for Diff processing,

and the action that needs to be updated is analyzed. It is

necessary to add a Sidecar for a new service. A Sidecar needs

to be deleted or the existing Sidecar configuration needs to

be updated. The generated update action and update data are

passed into a work queue for execution.

Alg.1. gives the pseudocode of the configure-on-demand

algorithm. The controller is configured with one parameter:

the service’s basic information. The result is provided to the

control plane, which distributes it to each sidecar in xDS

and records all activities to Etcd to provide data support

for other services based on the policy’s final service de-

pendency. To function, our controller requires the metric of

the recently executed service as input. We select all services

with Istio’s metric destination service as running services

from the result array that Prometheus monitored. Then filter

them as business services using security istio io tlsMode
from Istio, which correlates well with Istio’s business services.

We deposit the names of these services in a slice and then

clean it through the map to determine the length of the

business service queue, assuming that there is more than one

business instance of a service, most likely multiple. To test

our controller, we leverage the above-mentioned metrics and

Istio’s istio requests total metrics. The basic idea behind

the processing algorithm is a three-step approach:

Initialization (Line 1-4). This step initializes some vari-

ables. The GApp is a priority queue that records all appli-

cations in the cluster. The Qlist is used to store the running

business services of Istio. The Cmap is a map data structure

based on Hash tables. The initialized Cmap value is set to

nil, which is used as the call relationship between receiving

services. The Dlist is used to store the services which have

the calling relationship.
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Algorithm 1: Configure On-demand Algorithm

Input: Metric M;

Output: Newest Sidecar Configuration Cmap;

1 GApp ← getGlobalApplication(M);

2 Qlist ← ∅;

3 Cmap ← ∅;

4 Dlist ← ∅;

5 for q ∈ GApp do
6 if isRunning(q) ∩

q.isContains(security istio io tlsMode) then
7 if Qlist.notContains(q) then
8 Qlist.collect(q);

9 else
10 continues;

11 end
12 continues;

13 end
14 end
15 for p ∈ Qlist do
16 Cmap.keyCollect(p);

17 if Dlist ==
p.getProperties(metric destionation service)
then

18 while Dlist do
19 Cmap.valueCollect(p);

20 end
21 else
22 ns = getNamespace(p);

23 Cmap = DefaultSidecarConfiguration(ns);

24 end
25 continues;

26 end

Generate the initial cluster relationships (Line 5-14). In

this step, we calculate the initial relationships of the cluster.

We first use a condition query to find all the running services.

Note that we may get a lot of worthless data, such as

services that have run out of time or services that are used

to control scheduling. For a service with on-demand enabled,

the controller stores the dependency of the service in the cache

and creates a Sidecar resource for it to limit the visibility of

this app and notifies Kubernetes’ APIServer of updates to the

service.
Determine the final results (Line 15-26). This component

will check whether the Qlist initial relationships need to be

collected in the Cmap key. We calculate the new service

information, including Namespace and default configuration.

By comparing the original call information with the new call

information, the controller expresses the new dependency into

the Sidecar to update the resources.

D. Control Traffic Delivery
With the increasing number of services in the distributed

clusters, the configuration quantity is more and more required.

Therefore, the topic of loading configuration must be explored

Fig. 4. The generated workload scenario.

in the micro-service environment. Pilot isolates services by

namespace when creating listeners and clusters, reducing the

number of listeners and clusters in the Envoy somewhat.

But it’s still too rough and has limited memory optimization

effects. For this problem, the community provides a solution:

Sidecar, the Custom Resource Define (CRD), but this requires

manual operation and is cumbersome.

When the resources are distributed, the traffic control re-

sources mainly control the routing of services and the traffic

of cluster entrances and exits. The final dependency of each

service obtained according to the policy will be transmitted to

the control plane. Meanwhile, all operations will be recorded

to Etcd to provide data support for other services. The con-

troller is implemented in the Golang language. This scheduling

mechanism will follow this process in each working cycle until

a manual stop or failure. Our implementation design objectives

are scalable, suitable for research through instrumentation/ob-

servability, and easily integrated with the existing service

mesh. The latter implies an application-independent approach

such that existing services can benefit without modifying the

source code.

V. Performance Evaluation

We start by describing the experimental setting, followed

by a discussion of the pressure test scenario we created, and

finally a comparison of different strategies. We want to count

the number of update times and memory usage for different

settings.

A. Experiment Setup

Experiment Setting. To evaluate our proposed method,

all experiments are performed on a bare-metal machine with

Hygon C86 7151 16-core CPU, and a 256 GB NVMe hard

drive running Ubuntu 18.04 LTS. The cluster is set up with

Docker 20.10.7, Kubernetes 1.20.0, and Istio 1.8.2. We test

a mock service in three kinds of isolated environments to

evaluate the performance: our proposed controller (DATM),

loading configuration by default modes (Default), and a control

strategy developed using scaffolding (Lazyload). In the study

of configuration delivery improvements for service mesh, the

Lazyload is the best seen in the industry.

Benchmarks. Bookinfo [23] is the benchmark in our ex-

periments. It is a basic sample bookstore application made up

of four services that provide a web productpage, book details,
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reviews, and ratings—all of which are stateless and use Istio

to demonstrate the fundamental phases of traffic management.

We developed three sets of Bookinfo in different namespaces

in the same mesh, one uses DATM in the namespace, the other

uses Lazyload in the namespace, and the remaining one does

nothing. The obtained service deployment information in the

cluster is as follows:

• Four business services: productpage, details, reviews, and

ratings. There are one version of productpage-v1 and

details-v1 respectively. Reviews have three versions.

• A global configuration service that contains the configu-

ration information for all of the services, e.g., service dis-

covery information, network routing rules, and network

security rules.

Workload test settings. The workload for the experiment

is generated by the Isotope (the ”Load Service”) [24], Istio’s

official loading-test tool set. It is a comprehensive application

with configurable topology results. The simulation services

component of Isotope is a reasonably simple HTTP server that

obtains Prometheus measures by following the instructions in

YAML files. The GKE (Google Kubernetes Engine) cluster

runs the Fortio1.1.0 client and an Isotope service, with the

service machine limited to 1vCPU and 3.75GB of memory. To

imitate mesh scale growth, we gradually increase the number

of workload services. Each namespace contains 19 services,

with each initial pod consisting of 5 services for a total of 95

pods. The workload traffic scenario, a multiple server load, is

shown in Fig. 4. The experiments are each 60 minutes long

(3600 seconds), constituting a complete period for the above

workload.

B. Tuning the controller

Our controller can adapt to the workload, complex service

dependencies, and cluster service changes. Various methods

for such controller tuning have been proposed [25]. However,

because the use of these methods is beyond the scope of

this work, we will concentrate on comparing the proposed

controller to the default mode and Lazyload. To define good

measures for determining appropriate controller settings, we

deployed the Bookinfo service and our controller (as specified

in Algorithm 1) on our server. We use the benchmark work Iso-

tope officially recommended by Istio as the influencing factor,

the workload of a single namespace has 18 services, and the

generated workload is shown in Fig. 4, adding one namespace

workload every 5 minutes. Based on these experiments, we

conclude that it is a smart option to include commonly used

dependencies in Sidecar. This is consistent with our intuition

that the controller should avoid abrupt output changes and

maintain relative stability. Prometheus is widely regarded as

a good monitoring architecture for gathering cluster service

information and calling relationships. Hence, we use it to mon-

itor the whole system in our proposed mechanism and deploy

DATM on the Master node. The controller queries Prometheus

to obtain the service information and the dependencies of

services and then tunes the relationship of running the service

in the Sidecar’s configuration (EgressHosts).

Fig. 5. The number of CDS update.

C. Comparing the number of updates

We compare the metric of updates using Prometheus’

envoy cluster manager cluster updated. In the passive

distribution mode of the Pilot and Envoy communication,

the Envoy subscribes to specific resource events, generates

configurations and delivers them when the resource is updated.

Envoy’s full update strategy provides strongly consistent con-

figuration synchronization as a stream. As a result, any change

will trigger the full configuration delivery, which imposes a

high burden on the entire mesh.

Fig. 5 manifests the performance comparison of Default

delivery mode, Lazyload mode and DATM mode in Istio.

In contrast, the DATM mode reduces redundant service data

more than the other two modes. The number of CDS updates

increases dramatically as the workload increases in the default

namespace. As the load within the cluster increases and the

number of instances proliferates, both DATM and Lazyload

scenarios do not update as drastically as in the Default mode

because of the restrictions placed on configuration distribution.

Lazyload uses a form of scaffolding in the form of operator-

sdk to change the scope of the limit, while DATM is a more

radical rewriting of the sidecar (CR). With our controller in

action, the control plane delivering the xDS protocol associ-

ated with Sidecar limits the service visibility so that the envoy

does not receive the full xDS updates in the same scenario.

Therefore, the service is shielded from the majority of the

system’s unnecessary update requests.

D. Comparing Envoy Memory

In the memory size experiment, we change the cluster

load while deploying the same service. Examine the impact

of adding a large number of instances to the cluster on

the deployed service’s proxy memory. Recalling Fig. 4, we

simulated the traffic rate in each experiment. The results for

memory usage in three modes of different workloads are

shown in Fig. 6. The memory utilization for our controller

case is 11M, with a mesh size of 360 Pods (5 namespaces).

The default configuration is 25M, and Lazyload configuration

is 13M. This approach reduces memory by 14M relative to

the mesh size, by about 56%. As we can see in the figure, our
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(a) Productpage envoy memory (b) Ratings envoy memory

Fig. 6. Envoy server memory allocated for micro-services in different workload scenarios.

(a) CDS (b) EDS

Fig. 7. The number of CDS/EDS in different workload scenarios.

controller results match Lazyload’s and work a little better

than it. While our controller is only marginally better than

Lazyload, this is just for one agent in the cluster. As the

number of service versions and instances grows, the overall

cost savings become significant.

In short, the amount of statically configured agent memory

varies substantially depending on the load size, whereas the

proposed controller keeps agent memory minimal. When the

system is loaded, both dynamic and static configurations have

no effect on the standard application services. These results

indicate that our controller is able to maintain a reasonable

capacity use and application capabilities.

E. Comparing the number of CDS and EDS

Comparing CDS and EDS, each set of data shown in

Fig. 7 represents an increase in load service namespace, with

three values in each data set: Fig. 7(a) is the number of

CDS detected in the DATM, Lazyload and Default namespace

respectively, and Fig. 7(b) is the number of EDS detected in the

DATM, Lazyload and Default namespace respectively. CDS

dynamically obtains cluster information and is the xDS proto-

col with the most changes. Envoy cluster views all upstream

clusters in it. An Envoy typically abstracts an upstream cluster

from a Listener (for TCP) or Route (for HTTP) as a traffic

forwarding target. As the number of namespaces increases,

it represents an increase in the number of services within

the entire cluster and a heavier cluster load. The advantage

of DATM is greater in larger clusters because the larger the

cluster, the greater the percentage of individual services that

do not want to close with other services, the more stored

information is intercepted, and therefore the less CDS and

EDS are stored relatively. We demonstrate traffic management

on an official micro-service case, which has relatively little

impact on user traffic, and user traffic will not block. The

performance loss is also relatively small.

F. Comparing the different service

To determine the impact of the controller on services with

different business relationships, we deployed the same service

scenario and stress test to evaluate the memory consumption

of Productpage with complex invocation relationships and

Ratings with invoked relationships only. Fig. 6(a) and Fig. 6(b)

respectively show memory usage of a proxy, which also

prove that the configuration in DATM generally maintains

the Envoy memory below 13M and 11M independently of

the service. Because no calling service can be written into

the workloadS elector field for Ratings as the called party,

we examined the service’s memory use in both controlled

and uncontrolled scenarios to see if our controller needs to

act on it. From Fig. 8, we observe that although Ratings do

not require a dedicated Sidecar, it appears that configuring

a sidecar without any workloadS elector field to apply to all
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Fig. 8. The impact of DATM on Ratings in the same namespace.

workloads in a particular namespace is preferred in order to

only reach services running in the same namespace and the

Istio control plane (e.g. required by Istio’s egress).

VI. Conclusion

In this paper, we creatively propose a DATM mechanism

that combines an adaptive controller and monitors, avoiding

the issues that come with fully configuring by default. The

controller uses control theory of traffic management archi-

tecture. This dynamic approach enables the control plane to

be aware of dependencies between services, saving storage

usage and reducing update times. We test it in a wide number

of scenarios. The experimental results demonstrate that our

controller can save the storage space of a single agent by

40% to 60% and the number of cluster updates can be greatly

reduced. The optimization results are even better when viewed

as an entire cluster. And the results show that our proposed

approach can be applied to black-box services and effectively

reflects the dependencies between services in the entire cluster

for configuration.
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