
Data Aware Caching for Big-Data
Applications Using MapReduce

Yaxiong Zhao, Jie Wu



Outline

• MapReduce and big-data
• Cache description
• Protocol

– Relationship between job types and cache 
organization

– Cache item submission
– Lifetime management of cache item
– Cache request and reply

• Experiment results
• Conclusion



Outline

• MapReduce and big-data
• Cache description
• Protocol

– Cache request and reply
– Lifetime management of cache item

• Experiment results
• Conclusion



MapReduce

• MR is a simple model of distributed parallel 
computing
– Capture the data parallelism and serialization in Map, 

Reduce, and the intermediate phases
– Versatile and robust

• Big-data refers to the applications that work on 
unconventionally large amount of data
– Large corpse of data
– New data is generated at high rate
– Summarizing business insights requires fast processing and 

low cost



5

Outline

• MapReduce and big-data
• Cache description
• Protocol

– Cache request and reply
– Lifetime management of cache item

• Experiment results
• Conclusion



Why caching?

• Big-data requires small insights
– A small amount of results are obtained from a huge 

amount of input
– Repeating computations are expensive
– Many processing are repetitive

• Sorting, a sorted data split is obtained in a global sorting
• Summary, the summary of each data split is computed

– Processing results of data splits are generally small
• Easy to store without too much cost
• Some results may be large in size but save a lot of computation: 

sorting, data transformation.

• Caching is a great aid to the efficiency of MR



7

Map phase cache description

• Source data split ID + operation
– Data file is stored in HDFS
– Each data split is a fixed size chunk
– Map phase operations are performed on each 

data split
– The users are allowed to define their own 

operations
• MR’s java implementation provides such 

interface to obtain the data split ID
• Operations need to be defined by users



Reduce phase cache description
• Unlike the Map phase, reduce phase needs the 

partition method to determine what data records 
are processed together

• Each data record has a key
– Partition method, usually certain Hash function, computes 

the reducers the data record should go
– We are not interested in what reducer the data record 

goes
– Instead, we want to know what data records goes to the 

“same” reducer
• We want to cache the results of the processed data from Map 

phase that are processed at one reducer
• These are the results that could be reused



9

Outline

• MapReduce and big-data
• Cache description
• Protocol

– Cache request and reply
– Lifetime management of cache item

• Experiment results
• Conclusion



Cache request and reply



11

Lifetime Management

• We only consider storage cost
• Fixed Storage Quota

– A fixed fraction of the total space used for input 
data is used for storing caches

• Optimal Utility
– Consider the storage expense with the saved 

computation time
– This usually can be obtained from analyzing 

historical jobs
• Storage expenses can be obtained from public Cloud 

pricing model



Outline

• MapReduce and big-data
• Cache description
• Protocol

– Cache request and reply
– Lifetime management of cache item

• Experiment results
• Conclusion



Job completion time



14

Conclusion

• Dache requires only a slight modification in 
the input format and task management of the 
MapReduce framework

• Testbed experiments show that it can 
eliminate redundant computations and saves 
computation time


