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Abstract— Wireless Sensor Networks (WSNs) have crit-
ical applications in diverse domains like environmental
monitoring and military operations where accurate loca-
tion of sensors is vital. One common method of location dis-
covery uses a set of specialty nodes known as beacon nodes
(BNs) that assist other sensor nodes (SNs) to determine
their location. This paper proposes a novel reputation-
based scheme called Distributed Reputation-based Beacon
Trust System (DRBTS) for excluding malicious BNs that
provide false location information. To the best of our
knowledge, DRBTS is the first model to use the concept
of reputation for excluding BNs. In DRBTS, every BN
monitors its 1-hop neighborhood for misbehaving BNs and
accordingly updates the reputation of the corresponding
BN in the Neighbor-Reputation-Table (NRT). The BNs
then publish their NRT in their 1-hop neighborhood. BNs
use this second-hand information published in NRT for
updating the reputation of their neighbors after it qualifies
a deviation test. On the other hand, the SNs use the NRT
information to determine whether or not to use a given
beacon’s location information, based on a simple majority
voting scheme.

Index Terms— Beacon node, malicious node, reputation,
revocation, security, sensor node, trust.

I. INTRODUCTION

WSNs are often deployed in unattended or even
hostile environments, which would allow an adversary
to capture and compromise one or more sensors. This
would allow an adversary to launch attacks from within
the system, bypassing encryption and password security
systems, as the adversary would have access to all the
information that the compromised node held. This prob-
lem has been extensively studied in wireless networks,
but the introduction of BNs creates a new challenge.
Most distributed reputation-based systems require that a
node be able to interact personally with its neighbors
to judge for itself their trustworthiness. Since SNs are
not capable of determining their own location, they have
no way of determining which BNs are being truthful.

This information asymmetry has not been considered by
previous works, and as such complicates their imple-
mentation in this environment. To solve this problem,
we propose Distributed Reputation-based Beacon Trust
System (DRBTS).

DRBTS is a distributed security protocol aimed at
providing a method by which BNs can monitor each
other and provide information so that SNs can choose
who to trust, based on a quorum voting approach. In
order to trust a BN’s information, a sensor must get votes
for its trustworthiness from at least half of their common
neighbor(s), which is explained in detail in sections IV
and V-A. We will show that this allows a sensor to ac-
curately guess the misbehaving/non-misbehaving status
of a given BN, given a certain assumption about the
level of corruption in the system. We show that our
system grows in robustness as node density increases,
and show through simulations the effects of different
system parameters on robustness. This distributed model
not only alleviates the burden on the base station to a
great extent, but also minimizes the damage caused by
the malicious nodes by enabling sensor nodes to make a
decision on which beacon neighbors to trust, on the fly,
when computing their location.

The rest of this paper is organized as follows. Sec-
tion II presents related work. In Section III we give a
formal definition of the problem addressed in this paper
along with the assumptions made. Section IV outlines
our DRBTS model. In Section V we present an analysis
of our DRBTS scheme. In Section VI we conclude our
paper with directions for future work.

II. RELATED WORK

Security in sensor networks and mobile ad-hoc net-
works has become a major focus of research in recent
years. In particular, secure localization has been a key
research area. Savvides et al [1] present a novel approach
for localization of sensors in an ad-hoc network called
AHLoS (Ad-Hoc Localization System) that enables SNs



to discover their locations using set distributed iterative
algorithms. An extension to this was presented in [2].
Lazos and Poovendran [7] have addressed the problem
of enabling sensors of WSNs to determine their loca-
tion in an un-trusted environment and have proposed a
range independent localization algorithm called SeRLoc.
SeRLoc is a distributed algorithm and does not require
any communication among sensors. In [8], Sastry et al
introduced the concept of secure location verification,
and show how it can be used for location-based access
control.

Two techniques for improving throughput in ad-hoc
networks were presented in [9]. One is the watchdog,
which identifies misbehaving nodes and the other is
the pathrater, which helps routing protocols to avoid
these nodes. The watchdog system has often been used
as the prototypical promiscuous monitoring system in
subsequent research.

Michiardi and Molva [10] proposed CORE which
has a watchdog along with a reputation mechanism to
distinguish between subjective, functional and indirect
reputation, all of which are weighted to get the combined
reputation. Here, nodes exchange only positive reputa-
tion information. The authors argue that this prevents a
false-negative (badmouthing) attack, but do not address
the issue of collusion to create false praise. In CORE,
members have to contribute on a continuing basis to
remain trusted or they will find their reputation dete-
riorating until they are excluded.

Buchegger and Boudec [11] have presented CONFI-
DANT with predetermined trust, and later improved it
with an adaptive bayesian reputation and trust system and
an enhanced passive acknowledge mechanism (PACK) in
[12] and [15] respectively. Mundinger and Boudec [17]
have presented a two-dimensional reputation system for
protecting the system from liars to ensure cooperation
and fairness in mobile ad-hoc networks. This system
works based on a simple deviation test, i.e., nodes accept
second-hand information only if it does not deviate too
much from the node’s reputation value.

Ganeriwal and Srivastava [16] proposed a reputation-
based framework for sensor networks where nodes main-
tain reputation for other nodes and use it to evaluate
their trustworthiness. They show that their framework
provides a scalable, diverse and a generalized approach
for countering all types of misbehavior resulting from
malicious and faulty nodes. Like CORE, the authors have
chosen only to disseminate positive interactions, in order
to block false-negative attacks, but have shown interest
in extending their work with a second metric similar to
the one used by Mundinger and Boudec.

Finally, in [6], Liu and associates have presented a

suite of techniques that detect malicious beacon signals,
identify malicious BNs, avoid false detection, detect
replayed beacon signals, and revoke malicious BNs.
Their revocation scheme works on the basis of two
counters maintained for each BN, namely attack counter
(Ac) and report counter (Rc). This system is a very
simple example of a reputation-based system, in which
nodes garner negative reputation for misbehavior. It is,
to the best of our knowledge, the only current work to
address the specific BN model with respect to WSNs.
Our paper aims to extend [6] by introducing a reputation-
based scheme.

III. PROBLEM DEFINITION

In this paper we consider a WSN consisting of n SNs
s1, s2, ..., sn and m BNs b1, b2, ..., bm . We model the
network as an undirected graph G = (V, E), with the
set of vertices V being the set of SNs and BNs and the
set of edges E being the link between them. An edge
exists between any two nodes that are in each other’s
communication range. Formally, the problem addressed
in this paper can be stated as, “Given a network with BNs
and SNs, how to exclude malicious BNs that provide SNs
with incorrect location information?”

DRBTS is developed with the following underlying
assumptions:

1) BNs are static after deployment. Malicious BNs
can collaborate.

2) We are considering only dense networks. In order
for a neighborhood to be resilient to k malicious
BNs, there must be at least 2k BNs in that neigh-
borhood.

3) Location information is broadcast to the requesting
sensor node by the BN, unlike [6] where it is
unicasted.

4) Location information is not encrypted using a pair-
wise key, unlike [6]. We instead assume a network-
wide group key for encryption, to allow promiscu-
ous observation in the network, while preventing
outsiders from overhearing.

5) We assume an ideal environment, such that trans-
missions are not lost due to collision or back-
ground noise. If two nodes are within each others’
transmission range, they will always be able to
communicate.

Table 1 is used as an index to the acronyms used
throughout this paper.

IV. REPUTATION

Reputation is the opinion of one entity about another.
In an absolute context, it is the trustworthiness of an en-



TABLE I
NOTATION INDEX

si, bj Sensor Node i / Beacon Node j
SN , BN Sensor Node / Beacon Node

TBNsi Trusted Beacon Neighbor Table of si

NRTbj Neighbor Reputation Table of bj

Ri,j Reputation of bj in NRTbi

N(si), N(bj) Neighbor Set of si / bj

(si, bj) Sensor Beacon Pair
C(si, bj) Common Neighbor(s) set of (si, bj)

RNGsi , RNGbj Sensing/Transmission Range of si / bj

CLocbj Computed Location of bj

ALocbj Actual Location of bj

TLocbj Location Transmitted by bj

+vebj Votes for bj

−vebj Votes against bj

TH Threshold below which TLocbj is discarded

tity. The foremost difficulty in adapting standard watch-
dog mechanisms to systems involving location-aware
BNs is that the SNs do not have first-hand experience to
compare second-hand information provided to them by
BNs. Hence, without any assumptions, there is no way to
determine who can be trusted. One logical method is to
assume that the majority of BNs are honest. From there,
one can use a simple majority principle to determine the
truth.

Sensors in the DRBTS operate on the aforementioned
simple majority scheme. Each BN is responsible for
monitoring its neighborhood. When a sensor within its
range asks for location information, it responds with its
location, as do all other beacon nodes within the range of
the requesting node. Due to the promiscuity of broadcast
transmissions, a BN can overhear the responses of other
BNs in its area. It can then determine its location using
this claimed location of each BN and comparing them
against its true location. If the difference is within a
certain margin of error, then the corresponding BN is
considered benign, and its reputation increases. If the
difference is greater than the margin of error, then
that BN is considered malicious and its reputation is
decreased.

A decision must be made as to the status of a BN’s
reputation at time t = 0. The system can either assume
that all nodes are good nodes (Reputation is 1 at t = 0)
until they do something bad, or it can assume they are
bad nodes (Reputation is 0 at t = 0) until they prove
themselves. The benefit of the former is that the system
needs no initial setup time. The main drawback is that
it not only allows, but encourages nodes who have bad
reputation to simply spoof a new ID, and re-enter the

system with fresh reputation. This is solved by assuming
that an unknown beacon is untrusted, i.e., when a BN
hears another BN responding for the first time, it sets the
new BN’s reputation to 0 before evaluating the transmis-
sion. Thus, there is no incentive for identity spoofing.
The drawback to this is that the system begins at 0.
No one trusts anyone else, and SNs cannot get location
information. Our system assumes the untrusted model,
but adds a method for BNs to bootstrap reputation. Each
BN is given a small number of fake IDs, as in [6]. In
periods of low network activity, a BN can use one of
these IDs to disguise itself as an SN and request location
information, triggering responses from nearby BNs. This
allows reputation to build, even in the absence of network
traffic. It should be noted, though, that there will still be a
period of training as the bootstrap mechanism initializes
the network to a stable state.

While this bootstrap mechanism allows for network
traffic to be created where it is lacking, the reputation
values can still take a considerable time to build. The
commonly recognized solution to this problem is to
allow neighbors to share their experiences. This allows
for much more rapid buildup of information, but comes
at the expense of security, as it makes the system
vulnerable to false praise and slander. Another benefit of
sharing second-hand information is that it tends to lead
to a more consistent local view. In most systems, nodes
will publish reputation information to their neighbors
at certain time intervals. We have chosen to couple
the publishing to dissemination of location information.
In this way, the rate at which reputation information
is published is directly tied to the rate at which the
reputation changes.

So, when a SN sends a broadcast asking for location
information, each BN will respond with a single broad-
cast. In this broadcast is both the location it is reporting,
and its reputation values for each of its neighbors. Other
BNs within the 1-hop neighborhood will evaluate these
findings in light of their own using a deviation test
[17], and incorporate the findings as explained later
in this section. Meanwhile, the SNs will also receive
these reports, and use them to form an opinion of their
neighborhood. If a BN reports a trust value over the
SN’s trust threshold for another BN, the sensor counts
that as a positive vote from the first BN to the second.
For a BN bj to be trusted by a SN si, it must have votes
of trust from at least half of the BNs in the common
neighbor(s) set, C(si, bj), of (si, bj). For example, in
Figure 1, sA’s neighborhood includes five BNs, i.e.,
N(sA) = {1, 2, 3, 4, 5}. In order for sA to trust b1, at
least 1 other BN in C(sA, b1) must trust b1. This will be
a correct assessment, assuming there are no more than
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Fig. 1. N(sA) = {1, 2, 3, 4, 5}; N(b1) = {2, 5, 6, 7}; C(sA, b1) =
N(sA)

⋂
N(b1) = {2, 5}
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Fig. 2. (a)RNGbj = RNGsi . (b)RNGbj = 1.5×RNGsi .

k = 1 malicious BNs in C(sA, b1).

It is important to explain why the simple majority
system works and is necessary. As has already been
stated, we assume that there are malicious BNs in the
system, and that they can cooperate with each other.
Consider the Figure 1 above. Assume that nodes b1 and
b5 are malicious. If a simple system of “If anyone trusts
him, I trust him” was used, b5 could send false praise of
b1, and b1 could falsely praise b5. Similarly, if a system
of “If anyone distrusts him, I distrust him” was used, b1

could falsely accuse b2 of being malicious, and have her
location information discarded. In our system, though,
we can illustrate the majority rule’s validity. Let us look
at the sensor-beacon pair (sA, b2) in Figure 2(b). Their
common neighbor(s) set, i.e., C(sA, b2) = {1, 3, 4, 5}.
Since there are 4 nodes in C(sA, b2) , we can survive a
collusion of up to k = 2 malicious nodes in C(sA, b2).
First, if b2 is good, that means it will get up to 2 negative
votes, and 2 positive votes (from the malicious and the
good nodes, respectively). If b2 is bad, then there can be
at most 1 other malicious node in this neighbor-set, and
so b2 will receive 3 negative votes, and 1 positive vote.
Since a good node will always give a positive vote to
another good node, and a negative vote to a discovered
malicious node, only the malicious node’s votes can vary.
But since it is shown that even lying all the time, the
malicious nodes cannot exclude a good node, and cannot
falsely elevate a malicious node, this is acceptable.

A. Algorithms

Algorithm 1
Construct N(si)

1: N(si) ← ∅
2: for each bj that publishes TLocj and NRTbj

that si can
receive do

3: N(si) ← N(si)
⋃

bj ;
4: end for

We recognize two classifications of information avail-
able to the reputation system.

1) A BN may overhear location information trans-
mitted by another BN in its communication range.
This observation is first-hand information.

2) BNs publish their gathered reputation information
while responding to a request for location infor-
mation. This is second-hand information.

Both these types of information are used by the BNs to
update the reputation of their neighbors. For illustration
of the first type of information refer to Algorithm 2A.
Consider a network setup in which BNs bi, bj , and bk

are 1-hop neighbors. To simplify the example, assume a
SN outside of bj and bk’s range asks for location infor-
mation. bi responds by broadcasting its own location. bj

and bk overhear. They then determine, using their own
location, if they believe bi is lying. They then update
their bi entry as follows, using bk as the example.

RNew
k,i = µ1 ×RCurrent

k,i + (1− µ1)× τ (1)

If the location was deemed to be truthful, τ = 1,
otherwise τ = 0. µ1 is a factor used to weight previous
experience against current information. This factor can
be varied according to system requirements. This is a
simplified method of recording reputation, and more
complicated representations, such as a Beta distribution
[12], [16], may yield better performance. We have cho-
sen a simplistic system for clarity, and will examine how
more complicated systems influence performance in our
future work.

When a node requests location information, every
beacon neighbor of the requesting node will publish its
Neighbor Reputation Table (NRT) (see Table II) along
with its own location. To understand how a BN in-
corporates second-hand information from a neighboring
BN let us refer to Algorithm 2B and return to the
previous example. Assume that bk is the publishing node.
bj receives Rk,j Rk,i. Since bj does not maintain an
entry in its NRT about itself, Rk,j is discarded. Before
incorporating Rk,i, bj first performs a simple deviation



Algorithm 2 Reputation Update

A: Firsthand Reputation:
1: for each TLocbi

do
2: if bi /∈ NRTbk

then
3: Rk,i ← 0
4: end if
5: compute CLocbk

using TLocbi ;
6: if CLocbk

−ALocbk
< TH then

7: RNew
k,i = µ1 ×RCurrent

k,i + (1− µ1);
8: else
9: RNew

k,i = µ1 ×RCurrent
k,i ;

10: end if
11: end for

B: Secondhand Reputation:
1: for each NRTbk

published do
2: for each receiving bj ∈ N(bk) : j 6= k do
3: for each bi ∈ N(bk)

⋂
N(bj) : i 6= j 6= k do

4: if |RCurrent
j,i −RCurrent

k,i | ≤ d then
5: RNew

j,i = µ2×RCurrent
j,i +(1−µ2)×RCurrent

k,i ;
6: else
7: RNew

j,k = µ3 ×RCurrent
j,k ;

8: end if
9: end for

10: end for
11: end for

ID Ri,j;∀j 6=i

j 0.83
k 0.47
l 0.93

TABLE II
A SAMPLE NRTbi .

ID +ve Vote -ve Vote
j 2 1
k 1 2
l 0 3

TABLE III
A SAMPLE TBNsA .

test as follows.

|RCurrent
j,i −RCurrent

k,i | ≤ d. (2)

If the above deviation test is positive, then the infor-
mation is considered compatible with bj’s first-hand
experience, and is accepted. bj then updates Rj,i in
NRTbj

as follows

RNew
j,i = µ2 ×RCurrent

j,i + (1− µ2)×RCurrent
k,i . (3)

However, if the deviation test in equation 2 is negative,
then the published information is considered to deviate
too much from its own first-hand experience, and is
disregarded as incompatible information. In order to
discourage nodes from publishing false information, the
lying node’s reputation is decreased as follows

RNew
j,k = µ3 ×RCurrent

j,k . (4)

Note that this is equivalent to bj overhearing bk giving
false location information. In both cases, bk’s reputation

is reduced for providing false information, but in differ-
ent amounts. Also, in DRBTS, we don’t have to worry
about a node that first detects a misbehaving node getting
punished since its findings will deviate from the public
opinion. This is because, location information and NRT
is broadcast locally and can be detected by all the nodes
in the neighborhood simultaneously. Hence, a benign
node’s findings will never deviate too much from the
honest public opinion.

The SN si, on receiving the location information
(TLocbj

) and NRTbj
broadcast by its beacon neighbor

bj , after a certain time-out delay, assumes all BNs
have answered and then tabulates results as follows.
si first constructs N(si) using Algorithm 1B. Then,
for each bj in N(si), it counts the number of +vej

votes and the number of −vej votes, storing them in a
table called Trusted Beacon Neighbor (TBN) similar to
NRT (see Table III). Then, finally location information
from remaining beacon neighbors is used to calculate
its location. Once the location is computed, the TBN
is flushed to free up memory since the BNs are already
keeping track of long term reputation. In equations 1, 3,
and 4, µ1, µ2, and µ3 respectively are system dependant
parameters and are each range bound between 0 and 1.
They each decide the extent to which past history can be
discounted and substituted with most recent behavior.

V. ANALYSIS

A. Common Neighbor(s) Set Requirement

The extent to which SNs can withstand collusion
depends on the size of their common neighbor(s) set.
For a SN to withstand a collusion of k malicious BNs in
its neighborhood, its common neighbor(s) set with any
beacon neighbor should have at least 2k BNs. Therefore,
the robustness and performance of DRBTS depends on
the size of the common neighbor(s) set. Any violation of
the size requirement of the common neighbor(s) set will
result in degraded system performance and may result in
breach of security.

DRBTS has been modeled as an undirected graph.
For details please refer to section III. The set of vertices
V = v1

⋃
v2. Here, v1 = {s1, s2, ..., sn} and v2 =

{b1, b2, ..., bm} where n and m are system dependant
parameters and represent the number of SNs and BNs
respectively. The sensitivity of the system and its per-
formance for different values of n and m have been
studied through simulations and results will be presented
in section V-B. Let N(si) and N(bj) represent the
neighbor set of SN si and BN bj respectively. When we
say neighbor set, we are always referring to the beacon
neighbor set as beacon nodes are of our interest. We
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Fig. 3. (a) SN:BN ratio varied with fixed n=1000. (b) n varied from 500-2000 in steps of 500 with SN:BN ratio fixed at 80:20.

will now look at how the size of C(si, bj) affects the
performance of the system and what is the minimum size
of C(si, bj) needed to defeat a collusion of k malicious
nodes. We know that

C(si, bj) = N(si)
⋂

N(bj) (5)

The value of C(si, bj) determines the extent to which
the system is robust against collusion. For a network
with k malicious BNs that can potentially collude, the
worst case scenario occurs when all the k are in N(si).
However the chances that this scenario occurs is very
unlikely. In any event, the system must have, on average,
a minimum of 2k beacon nodes in ∀j, C(si, bj) for a
completely robust system. Therefore, the equation below
gives the necessary and sufficient condition for a robust
system.

∀i,j , C(si, bj) = 2k (6)

B. Simulation and Results

Our simulation has been done on a custom-built Java
simulator. The simulation results show how different
variables affect the common neighbor(s) set requirement
and consequently the robustness of the system. The
higher the average number of neighbors, the greater the
corruption the network can withstand. The simulation
results help in understanding how various factors affect
performance and can allow for informed decision mak-
ing, based on the expected chance of node corruption, as
well as give an idea of the system’s tolerance of failing
nodes.

For each trial in the simulation, a field of 100mx100m
was randomly seeded with uniformly distributed SNs and
BNs. A trial was examined by taking 200 random sensor-
beacon pairs and measuring the size of their common
neighbor(s) sets. 500 trials were performed and averaged

together for statistical stability. We plot the misbehavior
density against the percentage of SNs that have sufficient
neighbors to withstand collusion in their neighborhood.

In Figure- 3(a), we examine the effect of varying the
ratio of BNs to SNs on the robustness of DRBTS. The
network was deployed with 1000 SNs, and the number
of BNs was varied to get the appropriate ratios. The
transmission range for both SNs and BNs was fixed
at 20m. SN to BN ratios of 95:5, 80:20, 66:33, and
50:50 were tested, and the system performed the best
with 50:50 ratio. However, ratios of 80:20 and 66:33
also performed very well. With an 80:20 ratio, 50% of
SNs can withstand a collusion of k = 5 malicious node
in their neighborhood where as in 66:33 ratio they can
withstand up to k = 8. It is evident from the results that
higher the number of BNs the more robust DRBTS gets.

Similarly, we have studied the impact of the total
number of nodes on the robustness of DRBTS. The
results are presented in Figure- 3(b).

C. Overhead

The proposed DRBTS has some additional overhead.
It requires extra memory to store the NRT and TBN.
Publishing first-hand information adds to the communi-
cation overhead while calculating and updating the repu-
tation of neighboring nodes lends itself to computational
overhead. However, by combining publishing the NRT
with location transmission, we mitigate the communica-
tion overhead to a large extent and almost reduce it to
as much in the base model [6]. Also, using a network-
wide group key over the pairwise keys, as used in [6],
compensates for the memory overhead introduced by the
storage of NRTs and TBNs. Additionally, because the
reputation system is distributed, there is no information
bottleneck at the base station and there is less network
traffic.



VI. CONCLUSION AND FUTURE WORK

In this paper we have presented a novel method for
allowing sensor nodes to rely on trusted beacon nodes,
based on a simple majority principle, to provide location
information. We have shown through simulations that the
proposed scheme is robust in dense networks and can
be tailored to specific security requirements depending
on the application domain. We have also shown that
our scheme adds relatively little overhead, compared to
similar schemes.

In our future work, we will examine more complex
models for reputation, such as Beta distribution. We will
also examine how DRBTS can be adapted to counteract a
broader range of malicious behavior. We will also like to
investigate the possibility of using BNs as cluster heads
for routing purposes by extending the proposed DRBTS.
This will enhance the life of SNs thereby enhancing the
overall system lifetime. we would also conduct more
exhaustive simulations to confirm the robustness of of
our system.
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