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Abstract—A cyclic mobile social network (MSN) is a new type
of delay tolerant network, in which mobile users periodically
move around, and contact each other through their carried
short-distance communication devices. In this paper, we introduce
utility-based routing into cyclic MSNs, and propose a deadline-
sensitive utility-based routing model. If a message is successfully
delivered to its destination before a deadline, its source will
receive a positive benefit as the reward. Otherwise, the source
receives zero benefit. Also, each message delivery incurs a
forwarding cost, no matter whether it succeeds or fails. The utility
of a message delivery is defined as the benefit minus the for-
warding cost. Under this model, we propose a deadline-sensitive
opportunistic utility-based single-copy routing algorithm, DOUR.
Each node first determines an optimal forwarding sequence,
which is composed of a series of forwarding opportunities, in
a distributed and greedy manner. Then, it forwards messages
via these forwarding opportunities. Theoretical analysis and
extensive simulations prove that DOUR can achieve the optimal
utility for each message delivery. Moreover, we extend our
algorithm to the case of multi-copy routing, and show that our
proposed algorithms can inherently make a good tradeoff among
the benefit, delay, and cost for each message delivery.

Index Terms—deadline, delay tolerant network, mobile social
network, opportunistic routing, utility

I. INTRODUCTION

A mobile social network (MSN) is a special kind of delay
tolerant network (DTN), in which mobile users walk around,
and communicate with each other via Bluetooth or WiFi in
their carried short-distance wireless communication devices
[9], [11], [15]. As more and more users use smart phones,
iPads, and mobile PCs to contact each other, MSNs have
attracted considerable attention. By far, many routing algo-
rithms have been proposed for MSNs [2], [5], [8]. However,
most of these algorithms only consider simple metrics, such as
delivery delay or delivery ratio, which cannot work well in real
applications. It is thus necessary to design routing algorithms
that take multiple factors into account at the same time.

To this end, a time-sensitive utility-based routing algorithm
is proposed [16]. This is a routing scheme based on a special
utility metric, which is a composition of benefit, delivery delay,
and forwarding cost. In this utility model, each message has
a linearly decreasing benefit along with the delivery time, and
the source needs to charge a cost for each message forwarding.
The utility of a message delivery is defined as the final benefit
minus the total forwarding costs of this message. Moreover,

an important message contains a large initial benefit, and a
reliable delivery path charges a large forwarding cost. Then,
this utility-based routing delivers each message by maximizing
its expected utility. It can make a good balance between
benefit, delivery delay, and forwarding cost [16].

In this paper, we focus on the cyclic MSN, and propose
a deadline-sensitive utility model for this type of networks.
A cyclic MSN means that nodes in the network periodically
encounter each other so as to follow a cyclic mobility with
a high probability. Many real MSNs have this cyclic re-
appearance characteristic, due to the social behaviors of mobile
users [7], [13]. On the other hand, in real MSN applications,
users usually concern whether messages can be delivered to
their destinations before some deadline. Thus, we propose
a deadline-sensitive utility model. Unlike the time-sensitive
utility, when a message in the deadline-sensitive utility model
is successfully delivered to its destination before a given
deadline, its source can receive a fixed benefit. Otherwise, the
source receives zero benefit.

The key problem of our deadline-sensitive utility-based
routing is how to determine a forwarding scheme that can
maximize the expected utility for each message delivery. To
this end, we propose an optimal opportunistic forwarding
scheme to solve this problem. More specifically, we define
and determine an optimal forwarding sequence for each mes-
sage sender. The forwarding sequence consists of a series of
forwarding opportunities, each of which includes a contact
time, a node, and a contact probability, which indicates that
the sender has a probability to meet and contact this node at
some time. Then, if the message sender encounters a node
and the corresponding forwarding opportunity belongs to the
forwarding sequence, it will forward the message to this node;
otherwise, it will ignore this node and wait for the next
forwarding opportunity. When all nodes forward messages in
this way, the message delivery can achieve the optimal utility.
Based on this idea, we design an optimal deadline-sensitive
opportunistic utility-based routing (DOUR) algorithm. The
major contributions are summarized as follows.

1) We first introduce a deadline-sensitive utility model into
MSN routing. Compared to previous utility models, our
model takes the deadline of message delivery into ac-
count, and it can inherently balance the benefit, delivery
delay, and forwarding cost of each message delivery.
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Fig. 1. Example: (a) shows a simple cyclic MSN with three nodes, in which
the dashed lines are the trajectories of nodes (their lengths are not proportional
to time), and each solid line indicates a possible contact between two nodes;
(b) illustrates the precise time slots and probabilities of each contact (T =60).

2) We propose a distributed deadline-sensitive opportunis-
tic utility-based single-copy routing (DOUR) algorithm.
In DOUR, each node maintains an optimal forwarding
sequence, and only delivers messages via the forwarding
opportunities in the sequence. We also design a greedy
algorithm to determine the optimal forwarding sequence
for each node. Moreover, we have proven that such a
routing scheme can achieve the optimal expected utility.

3) We extend the deadline-sensitive utility model to the
case of multi-copy routing. Each message delivery can
achieve its reward when any copy is successfully for-
warded to the destination. For this case, we design a
multi-copy deadline-sensitive opportunistic utility-based
routing (m-DOUR) algorithm.

4) We have conducted extensive simulations on a real MSN
trace to evaluate our proposed algorithms. The results
show that DOUR can achieve the optimal performance.
Moreover, both DOUR and m-DOUR can provide a
good balance among benefit, delay, and cost.

The remainder of the paper is organized as follows. We
introduce the utility model and problem in Section II. The
basic idea and the detailed solution of DOUR are proposed
in Sections III and IV, followed by the m-DOUR algorithm
in Section V. In Section VI, we evaluate the performance of
our algorithms through extensive simulations. After reviewing
the related work in Section VII, we conclude the paper in
Section VIII. All proofs are presented in the Appendix.

II. MODEL & PROBLEM

In this section, we introduce the network model, and the
deadline-sensitive utility model, followed by the problem.

A. Network Model

In this paper, we focus on the cyclic MSN, in which nodes
periodically move around. Time is divided into equal-length
time slots. Each node has some probabilities to meet other
nodes at some particular time slots in each cycle. When two
nodes encounter, they can form a contact and communicate
with each other. Fig. 1 shows a simple example. Nodes 1, 2,
and 3 move along a diamond path, a triangle path, and a linear
path, respectively. The three nodes have a common motion
cycle T =60 time slots, as shown in Fig. 1(a). Nodes 1 and
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Fig. 2. The weighted graph of the MSN in Fig. 1 (destination: d = 3;
successful delivery reward b=20).

2 contact at time slot 0 and time slot 30 of each cycle (i.e.,
[0, 60)) in the probabilities 0.7 and 0.3, respectively. Nodes 1
and 3 contact at time slot 50 of each cycle in the probability
0.5. Nodes 2 and 3 contact at time slot 20 of each cycle in
the probability 0.4, as shown in Fig. 1(b).

For simplicity, a cyclic MSN can be seen as a weighted
graph, in which an edge between two nodes contains a set of
probabilistic contacts. Each probabilistic contact is associated
with a time slot and a contact probability, which indicate that
two nodes have the probability to encounter and communicate
with each other at the time slot. Moreover, in this paper, we
assume that each node has a cost to forward messages. Thus,
each node in the graph has a cost as the node weight. Fig.
2 shows the weighted graph of the cyclic MSN in Fig. 1.
The weight of the edge between nodes 1 and 2 contains two
probabilistic contacts ⟨0, 0.7⟩ and ⟨30, 0.3⟩, in which 0 and 30
are the contact time, and 0.7 and 0.3 are the corresponding
contact probabilities, respectively. The node weight c1 =5 is
the forwarding cost of node 1.

More specifically, we consider a cyclic MSN composed
of n nodes. The cycle is T time slots. The corresponding
weighted graph is G=⟨V,E⟩, where V={1, · · · , n} is the node
set, and E={⟨τi,j , pi,j⟩|i, j ∈ V } is the set of probabilistic
contacts. Each pair of nodes i and j might have multiple
probabilistic contacts in each cycle. We use ⟨τi,j , pi,j⟩ to
denote a probabilistic contact between nodes i and j, in which
τi,j and pi,j are the contact time and probability, respectively.
Moreover, if there is at least one probabilistic contact between
nodes i and j, we say that nodes i and j are neighbors, and
we use Ni to denote the set of neighboring nodes of i. In
addition, we use ci to indicate the forwarding cost of node i.

B. Deadline-sensitive Utility Model

The deadline-sensitive utility model uses a composite met-
ric, i.e., utility, to evaluate each message delivery. When a
message is successfully delivered to its destination within a
deadline (i.e., the remaining time-to-live (TTL) of this mes-
sage), the source will receive a positive benefit as the reward.
Otherwise, if the message fails to arrive at its destination
before the deadline, the message will be discarded, and the
failed delivery will result in zero benefit. More specifically,
the concept of benefit is defined as follows.

Definition 1: The benefit of a message delivery refers to the
real reward received by the source. Let t denote the deadline
of the message delivery, and b the reward of the successful
delivery. Then, the benefit, denoted by b(t), satisfies:

b(t)=

{
b, successful delivery within time t;
0, failed delivery. (1)



TABLE I
DESCRIPTION OF MAJOR NOTATIONS.

Variable Description
Ni neighboring node set of node i.
b benefit/reward for the successful delivery.
ci forwarding cost of node i.
t time variable about the deadline.
τ time constant (contact time).
ui(t),
u∗
i (t)

expected utility for node i to send a message
to its destination within the deadline t (Defini-
tion 3). The superscript means that it is optimal.

⟨τ, v, p⟩ a forwarding opportunity including time, node,
and the contact probability (Definition 4).

Oi(t) the set of all forwarding opportunities of node i
before a deadline t (Definition 4).

Si(t),
S∗
i (t)

forwarding sequence of node i (Definitions 5
and 7). The superscript means that it is optimal.

ui(t)|Si(t) expected utility for node i to forward messages
according to the forwarding sequence Si(t).

Each message delivery will incur a forwarding cost, no mat-
ter whether the delivery is successful or failed. The forwarding
cost includes the carrying cost and the transmission cost of
each step. Moreover, the benefit and the cost are assumed to
have been unified as the same unit.

Definition 2: The utility of a message delivery is the benefit
minus the total cost of this delivery, which means the overall
gain of the message delivery. Let the total cost be c. Then, the
utility, denoted by u(t), satisfies:

u(t)=b(t)−c. (2)

The above concepts b and u are related to a message delivery
from a source to a destination. For simplicity of the following
discussion, we also define a virtual notion for each node, i.e.,
the expected utility of a node, as follows

Definition 3: The expected utility of a node i, denoted by
ui(t), is the expected value of the utility for node i to send a
message to its destination within the deadline t. The optimal
expected utility of node i is denoted by u∗

i (t).
Note that the above-defined utility is a function of deadline,

which takes the benefit, delay, reliability, and cost of the
message delivery into account. For example, node 1 in Fig. 2
has a message at time slot 0, and it wants to directly send this
message to node 3 before the time slot 60, where the reward of
successful delivery is b=20. The probability of the successful
delivery is 0.5. The corresponding utility is b−c1=20−5=15.
The probability of the failed delivery is also 0.5. The corre-
sponding utility is 0 − c1 = 0 − 5 =−5. Then, the expected
utility of node 1 is u1(60)=0.5×15 + 0.5×(−5)=5.

In addition, we list the main auxiliary variables for ease of
the following presentation in Table I.

C. Assumption and Problem

Consider an arbitrary cyclic MSN G=⟨V,E⟩ with a cycle
T time slots. Like previous works [2], [5], [8], we assume that
each node has known its own probabilistic contacts to other
nodes, which can be derived from historical meeting records.
Let nodes s and d be the source and the destination, and let
b and t be the reward of successful delivery and the delivery

deadline, respectively. Then, our objective is to design a utility-
based routing algorithm that can maximize the expected utility
us(t). For generality, we aim at maximizing ui(t) for each
node i in the following sections. We only discuss the solution
for a single fixed destination, which can easily be extended
to the case of multiple destinations. Moreover, for simplicity,
we also assume that the start time of each message delivery
is time slot 0, unless otherwise stated. This will not affect the
correctness of our solution, since all time slots in the paper
are relative to the zero start time.

III. OVERVIEW OF THE SOLUTION

In this section, we focus on the single-copy routing problem,
and propose a distributed deadline-sensitive utility-based rout-
ing algorithm, i.e., DOUR. This algorithm adopts an optimal
opportunistic routing strategy, which can let each message
delivery achieve the maximum expected utility. The basic idea
is presented as follows.

When each node i ∈ V encounters a neighboring node
j ∈ Ni, node i first receives the (current) optimal expected
utility u∗

j (t) from node j. Based on this information, node
i derives its own optimal expected utility, during which an
optimal forwarding sequence of node i will be determined.
Then, node i sends this latest optimal expected utility to
neighboring nodes for their computations. All nodes in the
network iteratively conduct this operation. As a result, each
node will determine an optimal forwarding sequence.

The detailed method to compute the optimal expected
utility and determine the optimal forwarding sequence will
be proposed in the next section. Moreover, we will also
show the convergency of the iterative computation in the next
section. Here, we only present the basic concept of the optimal
forwarding sequence.

Definition 4: A forwarding opportunity of a node i, denoted
by ⟨τ, v, p⟩, is composed of a contact time τ , a message
receiver v, and a contact probability p, which indicates that
node i can send messages to node v at time τ with the contact
probability p. Moreover, the set of all forwarding opportunities
of node i for a given deadline t is denoted by Oi(t).

The forwarding sequence is a sequence of forwarding op-
portunities of a node. That is,

Definition 5: A forwarding sequence of a node i, denoted
by Si(t), is an ordered subset of Oi(t), where all forwarding
opportunities are in terms of ascending contact times. That is,
Si(t) = {⟨τ1, v1, p1⟩, ⟨τ2, v2, p2⟩, · · · , ⟨τm, vm, pm⟩}, where
Si(t)⊆Oi(t), and 0≤τ1≤τ2≤· · ·≤τm≤ t.

Here, the neighboring node of i might appear in Si(t)
more than once, which is related to different forwarding
opportunities. Moreover, when given an arbitrary forwarding
sequence, a node will forward messages according to the
following rule.

Definition 6:The opportunistic forwarding rule: for a given
forwarding sequence Si(t) = { ⟨τ1, v1, p1⟩, ⟨τ2, v2, p2⟩, · · · ,
⟨τm, vm, pm⟩}, node i forwards messages, in turn, to nodes
v1, v2, · · · , vm at the time slots τ1, τ2, · · · , τm, until the
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Fig. 3. An example of opportunistic forwarding

messages are successfully forwarded to some node, or all of
these forwarding opportunities are exhausted.

Fig. 3 shows a forwarding sequence of node 1 in Fig. 2,
i.e., S1(60)={⟨0, 2, 0.7⟩, ⟨30, 2, 0.3⟩, ⟨50, 3, 0.5⟩, ⟨60, 2, 0.7⟩}.
According to the opportunistic forwarding rule, node 1 will
forward the message to node 2 at the time slots 0 and 30,
to node 3 at the time slot 50, and to node 2 at the time slot
60; this is done in turn, until a forwarding succeeds, or all
attempts fail.

Note that a node will achieve different expected utilities
when it forwards messages via different forwarding sequences.
Let the expected utility of node i related to the forwarding
sequence Si(t) be denoted by ui(t)|Si(t). Then, we have:

Definition 7: The optimal forwarding sequence, denoted by
S∗
i (t), is the forwarding sequence, through which node i can

achieve its optimal expected utility when it forwards messages:
S∗
i (t)= argmax

Si(t)⊆Oi(t)

ui(t)|Si(t). (3)

Once the optimal forwarding sequences have been deter-
mined, all nodes forward messages following these sequences.
The optimality of the forwarding sequences will ensure each
node to achieve its optimal expected utility.

IV. SOLUTION DETAILS

In this section, we first derive the formula to compute the
expected utility. Then, we determine the optimal forwarding
sequence by computing the optimal expected utility for each
node. Finally, we present the detailed DOUR algorithm, fol-
lowed by the performance analysis.

A. Expected Utility Computation

We compute the expected utility of each node i∈V through
an iterative manner. That is, each node continuously collects
the latest optimal expected utility of each neighboring node.
Then, it derives its own optimal expected utility, based on the
collected information. Here, we present the general formula
to compute the expected utility for an arbitrary forwarding
sequence as follows.

Theorem 1: Assume that node i has a forwarding sequence
Si(t) = {⟨τ1, v1, p1⟩, ⟨τ2, v2, p2⟩, · · · , ⟨τm, vm, pm⟩}, where
v1, v2, · · · , vm ∈Ni, and their optimal expected utilities are
u∗
1(t), u

∗
2(t), · · · , u∗

m(t). The expected utility, which is related
to this forwarding sequence, satisfies:

ui(t)|Si(t)=

m∑
j=1

j−1∏
h=1

(1−ph)pju∗
j (t−τj)−ci. (4)

Besides the iterative formula, we can directly compute the
optimal expected utility of the destination, which is given by
the following formula.

u∗
d(t)=b. (5)

For example, the expected utility of node 1 of the cyclic
MSN in Fig. 2 can be computed according to Eq.(4), where
the successful message delivery reward is b = 20, and the
forwarding sequence is S1(60) in Fig. 3. The successful
probabilities of the four forwarding opportunities are 0.7, 0.09,
0.105, 0.0735, respectively. The failed forwarding probability
is 0.0315. Note that the optimal expected utilities of nodes 3
and 2 are u∗

3(t) = 20, and u∗
2(t) = (1−0.6m)×20−1, where

m=⌊ t−20
60 ⌋+1, and 1−0.6m is the successful probability of

message delivery from node 2 to node 3 before the deadline.
Thus, we have u1(60)|S1(60)=0.7×u∗

2(60)+0.09×u∗
2(30)+

0.105×u∗
3(10)+0.0735×u∗

2(0)−5=2.5565.

B. Optimal Forwarding Sequence

According to Eq.(3), we derive the optimal forwarding
sequence of an arbitrary node i for a given deadline t, i.e.,
S∗
i (t), as follows.
First, we determine the set of all forwarding opportuni-

ties of node i for the deadline t, i.e., Oi(t). In fact, the
forwarding opportunities can be derived from the probabilis-
tic contacts between nodes. From an arbitrary probabilistic
contact ⟨τi,j , pi,j⟩, node i can derive the corresponding for-
warding opportunities from itself to node vj : ⟨τi,j , vj , pi,j⟩,
⟨T+τi,j , vj , pi,j⟩, · · · , ⟨⌊ t

T ⌋T+τi,j , vj , pi,j⟩, where T is the
cycle. In this way, all forwarding opportunities of node i can
be determined. For example, the set of all forwarding opportu-
nities of node 1 in Fig. 2 is O1(60)={⟨0, 2, 0.7⟩, ⟨30, 2, 0.3⟩,
⟨50, 3, 0.5⟩, ⟨60, 2, 0.7⟩}.

Second, we derive the optimal forwarding sequence S∗
i (t)

according to Eq.(3). That is, we search for the forwarding
sequence from all subsets of Oi(t) and compute the corre-
sponding expected utility of node i according to Eq.(4), until
we find a forwarding sequence to maximize this expected
utility value. However, searching all possible subsets of Oi(t)
will result in an exponential computation cost. To this end, we
present the following theorem, by which we can determine the
optimal forwarding sequence in a greedy manner.

Theorem 2: Let Si(t > τ) denote a subsequence of Si(t),
where the contact time of each forwarding opportunity in
Si(t>τ) is larger than the time τ . Then, a forwarding oppor-
tunity ⟨τj , vj , pj⟩ in Oi(t) belongs to the optimal forwarding
sequence S∗

i (t) if and only if the expected utility of node vj
about the deadline t−τj minus the cost ci is larger than the
expected utility of node i through the forwarding sequence
S∗
i (t>τj). That is,
⟨τj , vj , pj⟩∈S∗

i (t)⇔u∗
j (t−τj)−ci>ui(t)|S∗

i
(t>τj), (6)

where ⟨τj , vj , pj⟩∈Oi(t).
According to Theorem 2, we can efficiently derive the

optimal forwarding sequence. First, we sort all forwarding
opportunities of Oi(t) in the ascending order of time. Then, we
test these forwarding opportunities one-by-one, to determine
whether they belong to the optimal forwarding sequence
according to Eq.(6). The test is in the reverse order of these
forwarding opportunities in Oi(t), i.e., the descending order



Algorithm 1 Derive the optimal forwarding sequence S∗
i (t)

Require:Oi(t)={⟨τ1,v1, p1⟩,· · ·,⟨τm,vm, pm⟩}, u∗
1(t),· · ·,u∗

m(t),ci
Ensure: S∗

i (t), u
∗
i (t)

1: Initialize: S∗
i (t)=∅; ui(t)|S∗

i
(t)=−ci;

2: for j=m to 1 do
3: if u∗

j (t−τj)−ci>ui(t)|S∗
i
(t) then

4: S∗
i (t)=S∗

i (t)∪{⟨τj , vj , pj⟩};
5: Compute ui(t)|S∗

i
(t) according to Eq.(4);

6: return S∗
i (t), u

∗
i (t)=ui(t)|S∗

i
(t);

of time. Such a test order will ensure that, when we determine
a forwarding opportunity ⟨τj , vj , pj⟩, S∗

i (t > τj) has been
determined before this. This test method can derive the optimal
forwarding sequence by scanning Oi(t) one time. Moreover,
when the optimal forwarding sequence is derived out, the
optimal expected utility u∗

i (t) also is determined. That is,

u∗
i (t)=ui(t)|S∗

i
(t). (7)

For instance, we can derive the optimal forwarding sequence
S∗
1 (60) for node 1 in Fig. 2 through the above greedy

method. At the beginning, we determine all forwarding op-
portunities, i.e., O1(60)={⟨0, 2, 0.7⟩, ⟨30, 2, 0.3⟩, ⟨50, 3, 0.5⟩,
⟨60, 2, 0.7⟩}. Then, in the first step, we determine whether
⟨60, 2, 0.7⟩ belongs to S∗

1 (60) or not. In fact, u∗
2(0)− c1 =

−1−5 = −6< u1(60)|S∗
1 (t>60) = u1(60)|∅ =−5. According

to Theorem 2, we have ⟨60, 2, 0.7⟩ ̸∈ S∗
1 (60). In the second

step, we determine whether ⟨50, 3, 0.5⟩ belongs to S∗
1 (60) or

not. Note that u∗
3(10)−c1 =20−5 = 15>u1(60)|S∗

1 (t>50) =
u1(50)|∅=−5. Thus, ⟨50, 3, 0.5⟩∈S∗

1 (60). In the same way,
we have ⟨30, 2, 0.3⟩ ̸∈ S∗

1 (60) and ⟨0, 2, 0.7⟩ ̸∈ S∗
1 (60) in the

third and fourth steps, respectively. Finally, we get S∗
1 (60)=

{⟨50, 3, 0.5⟩}. Accordingly, u∗
1(60)=u1(60)|S∗

1 (60)
=5.

C. The Detailed Algorithm

Based on the above solution, we first present the greedy
algorithm to determine the optimal forwarding sequence and
calculate the optimal expected utility, as shown in Algorith-
m 1. In Step 1, the optimal forwarding sequence and the
corresponding expected utility is initialized. Steps 2-5 test
each forwarding opportunity in Oi(t) in a reverse order, to
derive the optimal forwarding sequence by using Theorem 2.
If a forwarding opportunity satisfies the condition in Step 3,
this forwarding opportunity will be added into the optimal
forwarding sequence in Step 4, and the corresponding expected
utility is calculated in Step 5. The computational overhead of
this algorithm is dominated by Step 5. In fact, the expected
utility in Eq.(4) can be incrementally calculated. Thus, the
computational overhead is O(|Oi(t)|).

The DOUR algorithm iteratively executes Algorithm 1
to calculate the optimal expected utility and determine the
optimal forwarding sequence for each node, as shown in
Algorithm 2. The destination directly determines its optimal
expected utility and optimal forwarding sequence in Step 1.
The other node i determines its optimal expected utility and

Algorithm 2 DOUR
Require: b, ci, t, T , {⟨τi,j , pi,j⟩|j∈Ni} for each node i∈V
Initialization: For each node i do
1: S∗

i (t)=∅; u∗
d(t)=b; u∗

i(̸=d)(t)=−ci;
For each node i (∈V −{d}) do
2: while node i encounters a neighbor j do
3: Receive u∗

j (t) from j and update its local version;
4: Determine the set of forwarding opportunities Oi(t);
5: S∗

i (t), u
∗
i (t) ← Algorithm 1;

6: if current forwarding opportunity ∈S∗
i (t) then

7: Forward messages to j.

optimal forwarding sequence in Steps 2-5, when it encoun-
ters a neighboring node. If this encounter is a forwarding
opportunity in the optimal forwarding sequence, the node will
forward the message in Steps 6-7. The computational overhead
is dominated by the execution of Algorithm 1 in Step 5, that
is, O(|Oi(t)|).

D. Performance Analysis

DOUR adopts an iterative computation in the whole network
to derive the expected utility of each node. For the convergency
of the iterative computation, we have the following theorem.

Theorem 3: The iterative computation in DOUR will con-
verge within at most |V | rounds of computation.

In Theorem 3, a round means that each pair of nodes will
meet at least once. If the average contact probability per cycle
between nodes is p̄, a round of computation will take T

p̄
time slots. If there is a small contact probability between
a node and a neighboring node, it might take a long time
to complete a round of computation. In this case, we can
ignore this neighboring node’s contribution to the expected
utility computation. According to Eq.(4), this contribution is
proportional to the contact probability of this node and is very
small to be neglected. Thus, the results of DOUR will be still
sufficiently good.

Since Theorems 1, 2 and 3 ensure the correctness and
convergency of DOUR, we can straightforwardly get the
optimality of DOUR without extra proofs, as follows.

Corollary 4: DOUR can achieve the optimal expected utility
for each message delivery.

V. EXTENSION

In this section, we extend our deadline-sensitive utility
model into the case of multi-copy routing. Concretely, each
message has multiple copies to be forwarded. If any one copy
arrives at the destination before the deadline, the message
delivery will achieve a positive benefit as the reward. If a
copy fails to reach the destination at the deadline, it will
be discarded. If all copies fail to reach the destination, the
message delivery will result in zero benefit. On the other hand,
the delivery of each copy has a forwarding cost. The utility is
the benefit minus the forwarding cost of all copies.

For simplicity, we only focus on two-hop multi-copy rout-
ing. In fact, two-hop multi-copy routing is important in
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practical applications. A recent study in [4] has revealed the
performance of multi-hop routing in many real MSN traces,
including Infocom trace, Dieselnet bus trace, etc. The results
show that two-hop routing brings the most contributions to
the routing performance among multi-hop multi-copy routing
schemes, and it can even achieve a performance close to the
optimal. The contribution will significantly diminish when the
routing goes beyond two-hops. Thus, it is enough to only
consider the two-hop multi-copy routing problem.

To this end, we consider the two-hop k-copy routing from
the source s to the destination d for a given deadline t. By
using the method in the last section, we can derive the set of all
forwarding opportunities Os(t) from the contact information
between s, d, and their common neighboring nodes. Without
loss of the generality, let Os(t) = {⟨τ1, v1, p1⟩, ⟨τ2, v2, p2⟩,
· · · , ⟨τm, vm, pm⟩} (v1, v2,· · ·, vm ∈Ns∩Nd∪{d}, and τ1 <
τ2 < · · ·<τm). Under the two-hop routing model, each node
vj in Os(t) first receives messages from s at the time slot τj .
Then, it directly forwards the messages to d with the deadline
t−τj . Thus, the successful forwarding probability from node
vj to d, denoted by p′j , can be calculated. Then, our problem
is how to maximize the utility of k-copy routing for the given
Os(t) and p′1,· · ·, p′m.

However, solving the above problem optimally will lead
to an exponential computation overhead. Thus, we propose a
heuristic two-hop multi-copy deadline-sensitive opportunistic
utility-based routing algorithm m-DOUR. The basic idea is
that the source s always dynamically selects k best forwarding
opportunities from Os(t), denoted by S∗

s (t), and lets them
transfer messages until all forwarding opportunities are ex-
hausted. The detailed solution is presented as follows.

First, the source s sorts all forwarding opportunities in
descending order of the contribution to maximizing the utility
of the message delivery. Denote the new ordered set of all
forwarding opportunities by O′

s(t). Then, s sets S∗
s (t) as the

first k forwarding opportunities in O′
s(t).

Here, O′
s(t) is determined according to the following com-

pare rule: if a node vj has a large value on pj(p
′
jb−cj), it

will be better than other nodes at maximizing the utility of
the message delivery, and it will rank before others in O′

s(t).

In fact, for a given S∗
s (t)={⟨τ1, v1, p1⟩, · · · , ⟨τk, vk, pk⟩}, the

utility of the message delivery satisfies:

us(t)|S∗
s (t)

=

(
1−

k∏
j=1

(1−pjp′j)
)
b−

k∑
j=1

pjcj − cs. (8)

According to Eq.(8), for a node vj in S∗
s (t), the larger the

value pj(p
′
jb−cj) is, the larger the utility us(t)|S∗

s (t)
will be.

Thus, the above rule can correctly derive O′
s(t). Moreover, we

term pj(p
′
jb−cj) as the contribution factor of node vj (to the

utility).
Second, the source s dynamically updates S∗

s (t) and for-
wards messages opportunistically. Along with the time’s e-
clipse, each forwarding opportunity ⟨τj , vj , pj⟩ ∈ Os(t) is
considered. More specifically, if the forwarding opportunity
⟨τj , vj , pj⟩ does not emerge at the time slot τj , then it will
be deleted from O′

s(t). Moreover, if ⟨τj , vj , pj⟩ belongs to
S∗
s (t), it will also be deleted from S∗

s (t). In this case, S∗
s (t)

will select the next best forwarding opportunity from O′
s(t),

to ensure that it always contains the best k (the number of
current permitted message copies) forwarding opportunities.
If the forwarding opportunity ⟨τj , vj , pj⟩ does emerge at the
time slot τj , it means that the contribution factor of node vj
to the utility becomes 1×(p′jb−cj) from pj(p

′
jb−cj). Then,

by using the above comparison rule, s determines whether the
current forwarding opportunity, under the condition that the
contact between s and vj has emerged, is better than those in
S∗
s (t). If this holds, s will forward a message copy to node

vj , will let k be subtracted by 1, and will delete the worst
forwarding opportunity in S∗

s (t) to still ensure that it contains
the best new k forwarding opportunities. Otherwise, s will
ignore the current forwarding opportunity ⟨τj , vj , pj⟩.

Fig. 4 shows a simple example of two-hop 2-copy routing.
The source s wants to forward messages to the destination
d via the set of forwarding opportunities Os(60), as shown
in Fig. 4(a). Fig. 4(b) shows the opportunistic routing pro-
cess of m-DOUR. At the beginning, s derives the ordered
forwarding opportunity set O′

s(60), in which ⟨20, 2, 0.8⟩ and
⟨30, 3, 0.5⟩ are the best two forwarding opportunities. Then, s
lets S∗

s (60) = {⟨20, 2, 0.8⟩, ⟨30, 3, 0.5⟩}. At the time slot 10,
the forwarding opportunity ⟨10, 1, 0.1⟩ emerges. For this case,
the contribution factor of node 1 becomes 1×(0.9×20−1)=
17>p2(p

′
2b−c2), which means that the current forwarding op-

portunity is even better than those in S∗
s (60). Then, s forwards

a copy to node 1, and updates k=1, S∗
s (60)={⟨20, 2, 0.8⟩}.

At time slot 20, the forwarding opportunity ⟨20, 2, 0.8⟩ fails
to emerge. For this case, s deletes this opportunity from
O′

s(60), and lets S∗
s (60)={⟨30, 3, 0.5⟩}. At time slot 30, the

forwarding opportunity ⟨30, 3, 0.5⟩ emerges. Then, s forwards
the second copy to node 3 to end its message forwarding.

VI. EVALUATION

We conduct extensive real trace-driven simulations to evalu-
ate the performance of the proposed algorithms. The compared
algorithms, the real trace that we used, the evaluation settings,
and the results are presented, as follows.
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Fig. 5. The utility performance comparison of single-copy algorithms.
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Fig. 6. The utility performance comparison of multi-copy algorithms.

A. Algorithms in Comparison

Like the work in [16], we implement three other single-copy
routing algorithms to evaluate the performances on the delivery
ratio, delay, and cost: MaxRatio, MinDelay, and MinCost.
They deliver each message along the paths with the largest
successful delivery probability, the smallest delivery delay, and
the smallest forwarding cost, respectively. Here, we cannot
turn the utility-based algorithm in [16] into our utility model
due to the totally different utility computation models.

Moreover, we also modify two related typical MSN routing
algorithms under our utility model, to make them be compara-
ble: Delegation [2] and OOF [8]. Delegation forwarding is a
simple and efficient multi-copy routing algorithm. Each node
in this algorithm forwards a message only when it encounters
another node, which has a better metric than any one seen by
this message by far. Under our utility model, we define the
metric as the deadline-sensitive utility for each message deliv-
ery. OOF is a multi-copy opportunistic routing algorithm. By
using the optimal stopping rule, this algorithm maximizes the
delivery ratio, while ensuring that the number of forwardings
per message does not exceed a certain threshold.

With regard to the multi-copy routing algorithms, we set the
number of copies as 3, since a 3-copy routing can achieve most
of the gain in real traces, and the marginal benefit of using
additional copies is small, according to [4]. Moreover, in order
to make the comparison fair, we also modify Delegation and
OOF as two-hop routing algorithms.

B. Real Trace Used and Settings

A widely used real trace, that the nodes follow the cyclic
mobility model, is the UMassDieselNet trace [10]. This trace
contains the bus-to-bus contacts of 40 buses over 55 days. The
bus system serves about ten routes. There are multiple shifts
serving each of these routes. Shifts are further divided into
morning, midday, afternoon, and evening sub-shifts. Drivers
choose buses at random to run the sub-shifts. According to
this trace, we construct the weighted contact graph, and set
the simulation parameters as follows.

First, we construct the sub-shift level contact graph. We
generate a mapping from the sub-shifts to the times by parsing

TABLE II
EVALUATION SETTINGS.

parameter name value
the number of nodes in the trace n 92

the cycle T 1 day
the successful delivery benefit b 20, 40

the maximum forwarding cost cmax 1, 2
the number of messages 1,000

one of the dispatch records DA all.txt. Next, we construct a
mapping from day and bus to the sub-shifts served by the
bus on that day by parsing DB sheet.txt. By using the two
mappings, we turn 55 days of the bus-to-bus contacts into
the contacts between sub-shifts. Moreover, if a bus is handed
over from a sub-shift to another, we will create a virtual
contact for them. Second, we assign the weights for the contact
graph, including the contact probability of each edge, and the
forwarding cost of each node. We set the time slot to be one
minute. The cyclic T is set as one day. The contact probability
between two sub-shifts is the ratio of the number of their
contacted days and the total number of days 55. Moreover,
we set a parameter, i.e., the maximum forwarding cost cmax.
Then, the cost of each sub-shift is selected from the cost range
[0.1, cmax]. The cost value is proportional to its degree in the
contact graph. The sub-shift with the largest degree has the
largest forwarding cost cmax.

In each simulation, we generate 1,000 messages by random-
ly selecting the sources and the destinations. Each message
is set with a TTL (i.e., deadline) and a successful delivery
benefit/reward. The TTL of each message ranges from 1 to
10 days, and the successful delivery benefits are 20 or 40.
These evaluation variables are shown in Table II.

C. Metrics and Evaluation Results

The major metric in our evaluation is the average utility,
which is the average value of utilities of all message deliveries.
In addition, we also compare the delivery ratio, the average
cost, and the average delay of the above algorithms. The
delivery ratio is the ratio of successful deliveries and all
message deliveries. The average cost and the average delay
are the average forwarding cost and delay of all message
deliveries, respectively.
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Fig. 7. The performance comparison on the delivery ratio, the average delay, and the average cost.

We first evaluate the utility performance by setting the
successful delivery benefit b = 20, 40 and the maximum
forwarding cost cmax=1, 2. Then, we change the TTL from
1 to 10 days. The results are shown in Figs. 5 and 6. These
results show that DOUR has the largest average utility, which
is much larger than the other algorithms. Moreover, m-DOUR
also achieves a good utility performance, which is much larger
than the other two multi-copy routing algorithms. The average
utilities of all algorithms increase along with the increasing of
TTL and successful delivery benefit, and decrease along with
the increasing of forwarding cost.

We also evaluate the delivery ratio, average delay, and
average cost through three simulations. In each simulation, we
randomly set the successful delivery benefit b=20, 40, and the
maximum forwarding cost cmax = 1, 2. Also, we randomly
select a TTL ∈ [1, 10] for each message. We record the
delivery ratio, average delay, and average cost of all message
deliveries, respectively, as shown in Fig. 7. Moreover, for
fairness of comparison, we let the delay of a failed message
delivery be the TTL. The results show that, in addition to the
optimal utility performance, DOUR achieves a good delivery
ratio, average delay, and average cost, which is even better than
MaxRatio, MinDelay and MinCost, due to its opportunistic
forwarding scheme. Moreover, m-DOUR also achieves a good
performance on the delivery ratio and cost.

VII. RELATED WORK

By far, many routing algorithms have been proposed for
MSNs, such as [1]–[3], [5], [6], [8], [14]. Compared to them,
our utility-based routing is a routing scheme based on a special
composite utility metric, which takes the deadline, benefit, and
cost into consideration at the same time. In fact, the term
“utility” has been widely used, but it is generally a weighted
linear combination of two or more simple metrics, such as
the utility metric in [12]. In contrast, our deadline-sensitive
utility metric is not a simple combination of benefit, delivery
delay, and cost, which is analogous to the postal service in
the real world. The most related work is the time-sensitive
utility-based routing in [16]. Nevertheless, this utility model
is different from ours in that the benefit of each message
delivery is proportional to the delivery delay. Our current
model focuses on an all-or-nothing model based on a deadline,
i.e., full benefit before deadline and zero benefit after deadline.

VIII. CONCLUSION

In this paper, we propose a deadline-sensitive utility-based
routing model for cyclic MSNs, which takes into account the
benefit, deadline, cost of each message delivery, as well as

the reliability. Under this model, we propose a single-copy
routing algorithm, DOUR, and a multi-copy routing algorithm,
m-DOUR. Moreover, DOUR can achieve the maximum ex-
pected utility for each message delivery. Both of the proposed
algorithms provide a good balance among the benefit, delay,
and cost. Moreover, the two algorithms allow the emergent
messages to be delivered along paths with a high probability
for success, but at a large cost, much like the postal service in
the real world. The simulations on the real MSN trace prove
the significant performance of the proposed algorithms.
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Appendix

A. Proof of Theorem 1
Consider the case that node i successfully forwards the

message to a node vj (1 ≤ j ≤m). This means that node i
fails to forward the message via the forwarding opportunities
⟨τ1, v1, p1⟩, · · · ,⟨τj−1, vj−1, pj−1⟩. Then, the corresponding
successful forwarding probability is

∏j−1
h=1(1−ph)pj . More-

over, the deadline of the message delivery becomes t−τj when
node vj receives the message. The expected utility for the
message delivery from node vj to the destination is u∗

j (t−τj).
Thus, the expected utility for the message delivery from node i
to the destination via node vj is

∏j−1
h=1(1−ph)pj(u∗

j (t−τj)−ci).
The failed probability of the whole forwarding sequence is∏m

j=1(1−pj), and the corresponding utility of the message
delivery is 0−ci. Then, the expected utility of node i satisfies:

ui(t)|Si(t) =
m∑
j=1

j−1∏
h=1

(1−ph)pj
(
u∗
j (t−τj)−ci

)
+

m∏
j=1

(1−pj)(0−ci)

=
m∑
j=1

j−1∏
h=1

(1−ph)pju∗
j (t−τj)−ci.

B. Proof of Theorem 2
We first prove a lemma:
Lemma 5: Consider an arbitrary forwarding sequence

Si(t) = {⟨τ1, v1, p1⟩,⟨τ2, v2, p2⟩, · · · ,⟨τm, vm, pm⟩}, and let
S−
i (t)=Si(t)−{⟨τj , vj , pj⟩}, where the forwarding opportunity
⟨τj , vj , pj⟩ ∈Si(t). Then, we have:

ui(t)|Si(t)>ui(t)|S−
i
(t)⇔u∗

j (t−τj)−ci>ui(t)|Si(t>τj). (9)

Proof: According to Eq.(4), we compute ui(t)|Si(t) and
ui(t)|S−

i
(t) as follows.

ui(t)|Si(t)=
m∑

k=1

k−1∏
h=1

(1−ph)pku∗
k(t−τk)−ci

=

j−1∑
k=1

k−1∏
h=1

(1−ph)pku∗
k(t−τk)

+

j−1∏
h=1

(1−ph)
(m∑
k=j

k−1∏
h=j

(1−ph)pku∗
k(t−τk)

)
−ci.(10)

ui(t)|S−
i
(t)=

j−1∑
k=1

k−1∏
h=1

(1−ph)pku∗
k(t−τk)

+

j−1∏
h=1

(1−ph)
( m∑
k=j+1

k−1∏
h=j+1

(1−ph)pku∗
k(t−τk)

)
−ci.(11)

By comparing Eqs.(10) and (11), we have:

ui(t)|Si(t)−ui(t)|S−
i
(t)

=

j−1∏
h=1

(1−ph)pj
(
u∗
j (t−τj)−ui(t)|Si(t>τj)−ci

)
. (12)

Then, Eq.(9) holds.
Now, we derive Theorem 2 from Lemma 5. First, we prove

⟨τj , vj , pj⟩∈S∗
i (t)⇒u∗

j (t−τj)− ci>ui(t)|S∗
i
(t>τj).

In fact, ⟨τj , vj , pj⟩ ∈ S∗
i (t) means ui(t)|S∗

i
(t) >

ui(t)|S∗
i
(t)−{⟨τj ,vj ,pj⟩} due to the optimality of S∗

i (t). Then,
according to Lemma 5, we have u∗

j (t−τj)−ci>ui(t)|S∗
i
(t>τj).

Second, we prove

u∗
j (t−τj)−ci>ui(t)|S∗

i
(t>τj)⇒⟨τj , vj , pj⟩∈S

∗
i (t)

by a contradiction. Assume that ⟨τj , vj , pj⟩ ̸∈ S∗
i (t). Let

Si(t) = S∗
i (t)∪{⟨τj , vj , pj⟩}. Then, we have ui(t)|Si(t) <

ui(t)|Si(t)−{⟨τj ,vj ,pj⟩} due to the optimality of S∗
i (t) =

Si(t)−{⟨τj , vj , pj⟩}. Thus, according to Lemma 5, we can
get u∗

j (t− τj)− ci < ui(t)|Si(t>τj) = ui(t)|S∗
i
(t>τj). This

contradicts the condition u∗
j (t−τj)−ci>ui(t)|S∗

i
(t>τj). Thus,

the assumption about ⟨τj , vj , pj⟩ ̸∈S∗
i (t) is wrong. Then, the

theorem is correct.

C. Proof of Theorem 3
We first show that the iterative computation will not lead

to a loop. Consider an arbitrary node i and a neighboring
node vj ∈ Ni, and assume that the forwarding opportunity
⟨τj , vj , pj⟩∈S∗

i (t). According to Theorem 2, we can get u∗
j (t−

τj)−ci > ui(t)|S∗
i
(t>τj). Note that S∗

i (t > τj) is the optimal
forwarding sequence, in that the contact time is larger than τj .
This means ui(t)|S∗

i
(t>τj)=u∗

i (t−τj). Thus, we have u∗
j (t−

τj)−ci >u∗
i (t−τj). That is, messages are always forwarded

from the nodes with low expected utilities to the nodes with
high expected utilities. In other words, when we compute the
expected utility of a node, we only need the information of
the nodes with higher expected utilities. Thus, the iterative
computation will not result in a loop.

Now, we show that the iterative process will converge within
at most |V | rounds of computation. In fact, there must be at
least one node whose optimal expected utility and optimal
forwarding sequence for a given deadline can be determined
at each round of iterative computation. In the first round,
neighboring nodes exchange information. Then, the destination
can determine S∗

d(t)=∅, and u∗
d(t)=b. Other nodes will add

the destination into their forwarding sequences or let their
forwarding sequences be empty. In the second round, each
pair of nodes will exchange information again. For example,
nodes i and vj will compare their current u∗

i (t− τj) and
u∗
j (t− τj) to determine whether ⟨τj , vj , pj⟩ ∈ S∗

i (t) or not.
There must be a node whose expected utility is the largest.
Then, the forwarding sequence and expected utility of this
node is optimal. Likewise, at least a node in the third round can
determine its optimal expected utility and optimal forwarding
sequence for an arbitrary deadline, and so on. In each round, at
least one node can determine its optimal expected utility and
optimal forwarding sequence. Thus, the theorem is correct.


