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Abstract—The spreading of information in social networks
can be modelled as a process of diffusing information with a
probability from its source to its neighbors. There is a challenge
in the real world where competing companies implement their
strategies in order to gain influence in the same social network at
the same time. To effectively control the spreading of processes
within the network, the effective use of limited resources is of
prime importance. When budgets are fixed, competitors will
search for a set of seed members to diffuse influence and
maximize the number of members that are affected. Each
competitor seeks to maximize its influence by investing in the
most influential members in the given social network. In this
paper, we utilize the Colonel Blotto game to help competitors
figure out how many resources should be allocated to influential
nodes to increase the influences on nodes. This is done while
also taking into account that competing campaigns are trying to
do the same thing. We propose a Max-Influence-Independent-Set
(MIIST) algorithm to determine the most influential independent
set and find the optimal investment to gain maximum influence
in the given social network. The effectiveness of this approach is
evaluated under different parameter values, namely probability
distributions, topologies, and density.

Index Terms—Blotto game, budget allocation, competitive influ-
ence maximization, social network analysis, viral marketing.

I. INTRODUCTION

Online Social Networks (OSNs) have increasingly become
an effective means of communication, thanks to the fast-
spreading of information from user to user on the networks.
In this regard, finding a set of the most influential nodes to
generate the largest influence spread [1]–[3] is an ongoing re-
search problem. The objective is to identify such sets of nodes
that are most influential. A major idea is that it is possible
to trigger a large cascade of information dissemination in a
social network by targeting just a few nodes. These nodes are
known as seed nodes. In general, a node with a significant
propagation capability is regarded as influential because it can
spread influence over a large number of nodes. Ideally, seed
nodes in the graph G should have the greatest influence on
the other nodes. For this reason, determining the propagation
capabilities of nodes as well as identifying influential nodes are
essential to ensure a successful and rapid spread within social
networks. In an OSN, represented by a graph G(V,E,W ),
each individual node is either active or inactive. A node that
is inactive is one that is not influenced by others. A node
that is active is one that is either a source of influence or has
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Fig. 1: Influence of seed member in a social network.

been influenced by other nodes that are active or influenced.
A node whose status has been changed from inactive to
active cannot be further modified. The tendency for each
node to become active increases monotonically as more of its
neighbors become active. Independent cascade (IC) [1] and
linear threshold (LT) [4] are the two most popularly studied
models in information diffusion. With both models, we can
distinguish between active nodes, which spread information,
and inactive nodes. Nodes in the active state can potentially
affect neighbors. The influence of an active node is determined
by its relationships with its neighbors. Following a number
of propagations, a large number of nodes become active in
the network. According to the LT model, a node becomes
active if a large number (> threshold) of its neighbors are
also active. In the IC model, the success of the seed node u in
influencing one of its inactive neighbors v is only a function of
the edge propagation probability between node u and node v.
Both models terminate after a certain number of propagations
when no further nodes are activated. Both the propagation
of influence as well as the impact of the initial targeting are
linear. The influence maximization problem is NP-complete;
however, an approximate solution exists.

Fig. 1 illustrates a social network where two players (gray
and dark gray) invested on some of the influential members.
Part (a) shows the initial investment by these two players.
Each one found two influential ones in his favor. Part (b)
demonstrates the outcome of the influence propagation re-
sulted from the gray player’s seed nodes and the dark gray
player’s seed nodes. It is clear that the gray player player
is the winner of this game, because he has more activated
members in comparison to the dark gray player’s activated
persons. This result could be due to the influence probability
on links and the importance of each seed node. In general, the
result of the influence propagation depends on the importance
of seed nodes in the case of influence, competitors’ investment



TABLE I: Main Notations
Symbol Meaning
G Social network
B1/B2 Total budget of player 1/2
B

(v)
1 /B

(v)
2 Allocated budget of player 1/2 on node v

Nv Neighbor set of node v
V Set of nodes in the network
wv Weight of node v
w′

v Effective weight of node v
pvu Influence probability of edge between v and u
pvuwu Influence weight of node v on node u
apv Activation probability node v
S Set of seed nodes in the network
A1/A2 Activated nodes by player 1/2 in the network

strategies, the influence of nodes on each other, and the
topology of the network.

Game theory provides a more realistic solution to the Influ-
ence Maximization problem in competitive networks compet-
ing sources of information. Such a scenario can be modeled as
a multiple-person competition game where each of the players
tries to make its influence spread maximally. An inactive node
that receives influence from different parties at the same time
will be activated by the one who sends the highest influence.
An influenced node can increase its influence on its neighbors
by allocating a large portion of the budget to those nodes. The
Colonel Blotto Game (CBG) is one of the most widely adopted
game-theoretic frameworks to model and analyze competitive
resource allocation problems. Essentially, the CBG represents
the competitive interactions between two players seeking to
make investments across a network of nodes. The player
who allocates the most resources to a given node wins it
(influences it) and receives a corresponding valuation. In a
CBG, the fundamental issue confronting players is how to
allocate their resources in order to maximize the value of the
nodes they win. The main difference between the competitive
influence game and the influence game is the propagation that
occurs in social networks. Nodes in CBG are independent,
while influence maximization problems involve relationships
between the nodes.

Active nodes can have inference on their inactive neighbors
based on the influence probability. The higher the value of
the weight, the higher the chance is to influence the given
neighbor. Considering this fact, adding some extra investment
on nodes just to increase the weight of influence would be
helpful to raise the chance of influence propagation. The
scenario described above can be modeled using a multi-
person competitive one-shot game where both players try to
maximize the number of influenced nodes by direct investment
under a budget constraint. The budget allocation and influence
propagation are done in one-shot, and the investment among
nodes is based on the importance of the node in the case of
influence propagation. In a one-shot game, players need to
make a decision at beginning of the game without observing
the result of the competition. The objective function of IM
problem in the case of considering weights is submodular
whenever the unweighted version is, so we can still use the

greedy algorithm for obtaining a (1−1/e− ε)-approximation.
Contributions of this paper are summarized as follows:
• With two players competing simultaneously in a social

network, we define a special one-shot game. Under bud-
get constraints, players must select an optimal investment
strategy to maximize their activation probabilities. This
investment is done in one shot.

• We present a two-phase budget allocation strategy that
integrates seed selection with budget allocation. By taking
the effective weight of the nodes into account, this study
improves the process of seed selection. Furthermore, it
shifts the focus of the problem to convincing influential
nodes to participate as seeds depending on the amount
invested.

• We propose a competitive Max-Influence-Independent-
Set (MIIS) in order to find the maximum influence
independent sets in a social network. We introduce a
new measurement called the effective weight, which
is calculated for each independent maximum influence
set. The node with the highest effective weight will be
selected as the seed node.

• The model is validated by analyzing the effects of differ-
ent parameters of influence distributions, densities, and
network structure measurements.

This paper is organized as follows: Section II reviews the
related works of competitive influence maximization and re-
source allocation approaches. The background and motivation
are represented in the Section III. Section IV explains the MIIS
approach based on the two different algorithms. The evaluation
and performance of our scheme are discussed in Section V.
We finally give a brief conclusion in Section VII.

II. RELATED WORKS

A. Competitive influence maximization problem

In a number of studies [5]–[8], maximization of competitive
influence has been investigated in situations where multi-
ple competing sources propagate simultaneously. Bharathi
et al. [9] discussed the problem of competitive influence
maximization for the first time in online social networks.
They extended the single source IC model to the competitive
setting and gave an approximation algorithm for computing
the best response to an opponent’s strategy. Competitive IM
aims at finding strategies that maximize one’s influence while
minimizing his opponents’ influence in a social network [10]
[11]. In addition to the IC model and the LT model, there
are other extensions that allow a variety of competing ideas
to be spread in social networks [12] [9] rather than focusing
on spreading a single idea. Li et al. [13] consider a model
for competitive IM. According to a graph G and diffusion
model, the strategy space comprises all IM algorithms that
players can adopt. It is the aim of each player to find
an optimal Nash equilibrium strategy which maximizes his
influence over the game. Wu in [14] discussed the sub-
modularity and approximation degree of the algorithm for
competitive influence maximization based on the LT model



with respect to viral marketing. Authors in [13], [15], [16] used
the game-theoretic strategy to solve the competitive influence
maximization problem. Authors in [17] modeled an attack-
defender game where both parties want to maximize their
territory. A two-party influence game is a special type of
such a security game. Jafari and Navidi [18] introduced a
game-theoretic approach for modeling competitive diffusion
over social networks. They considered the topological structure
of the graph, individual’s initial tendency, and information
content on the diffusion process. Authors in [19] proposed
an optimization problem where there are multiple competitive
and complementary products in the network. This approach is
follower-based and aims to find the top-k influential nodes for
the target product.

B. Resource allocation against opponents

Authors in [10] investigate competitive influence when
players had to decide on resource allocation against their
competitors. In such a game of Colonel Blotto, the price
of competition appears to be unlimited. Authors in [20]
consider the budget allocation scenario in terms of maximizing
influence. When competitors allocate varying budgets to each
node, nodes will favor the product of the company offering the
highest value in the network. Competitors compete according
to how much budget each of them allots to each node in
the network. A Nash equilibrium based model is proposed by
Masucci et al. [21] to compete for obtaining more customers in
online social networks. In [22] the voter model is extended to
include nodes with continuous states that reflect their opinion
about the competitor. Each competitor has the objective of
increasing their overall opinion within the network. Depending
on the continuing action of the two competitors, the budget of
the competitors may vary. According to their proposed model,
there is a pure Nash equilibrium in the game. Additionally,
they extended their analysis to repeated marketing campaigns.
in [23].

III. PRELIMINARIES

A social network can be modeled with a weighted and
directed graph G(V,E, P,W ), where V and E are the set of
nodes and edges, respectively. The network participants corre-
spond to node set V and their relations are represented by arc
set E. P represents the weight/influence probability of edges.
Each edge (u, v) ∈ E between node u and v has an influence
probability puv ∈ P which is in [0,1] and

∑
u∈Nv

puv ≤ 1.
When puv = 0, it shows that edge (u, v) 6∈ E. In addition,
we define W as a set of weights associated with each vertex
in V . The importance of node v in the case of influence is
shown by wv ∈ W . Fig. 8 illustrates these parameters in a
social network with five members. Assume there are players
interested in promoting the ideas to the individuals in the social
network. A member of the social network becomes active via
one of the players if this member accepts the product or idea
of the player. The term active indicates that a node v adopts a
product or information and begins to exert influence by sharing
that information with its neighbors u along edge (u, v) ∈ E

Fig. 2: Direct investment based on the weight of node.
with an influence probability of puv ∈ P . As a matter of fact,
an attempt to trigger node v occurs with probability puv . It is
important to note that activated nodes are permanently active
and cannot be reactivated at a later date by another node. The
propagation process comes to a halt if no node is activated
within a certain time period.

A. Influence analysis

Social influence in a network occurs when an individual
is influenced by their friends, without being forced to take
those actions directly [24]. Activating a node u in G means
accepting an idea from the player i. Once a node u accepts
the idea of being occupied by a player i, it cannot change
occupation to another party. If the given node does not
accept any idea, it means that the state of the node u is
inactive. Mathematically, we can define the influence diffusion
as finding S∗k such that S∗k = argmaxS∈V,|S|=k σ(), where
σ(S) denotes an influence function that gives the expected
number of influenced nodes resulted from the set of S. An
influence function σ(.) is monotone iff σ(S) ≤ σ(S ′) for
any S ⊆ S ′ ⊆ V . As well as, an influence function σ(.) is
submodular iff σ(S ∪{v})−σ(S) ≥ σ(S ′ ∪{v})−σ(S ′) for
any S ⊆ S ′ ⊆ V .

One of the popular influence diffusion models in social net-
works is the Linear Threshold model [1] [4]. Linear Threshold
model describes how influence is propagated throughout the
network starting from the initial seed vertices. Each node v
selects a threshold θv ∈ [0, 1] randomly. Thresholds intuitively
represent the fraction of the neighbors of node v that must
become active for node v to become active. Node v checks
if the weighted sum of its active neighbors is greater than or
equal to its threshold θv; if so, node v is activated. In a multi-
round propagation, in step t, all nodes that were active in step
t−1 remain active, and any node v for which the total weight
of its active neighbors is at least θv (

∑
u ∈ N(v) puv ≥ θv)

will be activated. The process runs until no more activation
is possible.

The independent cascade is another model of influence
propagation that uses a Greedy solution. With an initial set,
the diffusion process of this model occurs in multiple steps.
In the first step, only nodes in the initial set S are active,
and all other nodes are inactive. The inactive nodes will be
activated successively by each of the active nodes. During
step t + 1, every newly activated node u in St is attempting
to influence its inactivated neighbors v that do not belong
to St with an independent probability pvu. The process is
repeated until an equilibrium state is reached and no further



Algorithm 1 Strict MIIS

1: Initialize S to an empty set
2: for each node v ∈ V do
3: Compute effective weight w′v = wv +

∑
u∈Nv

pvuwu

4: while there is not eligible seed node in V do
5: Choose v ∈ v with the highest effective weight
6: Add node v to the set S
7: Remove node v and all v’s neighbours from V
8: for each node u ∈ V − S do
9: if u ∈ Nv then

10: Update wu = wu(1− pvu)
11: return S

Algorithm 2 Weak MIIS

1: Initialize S to an empty set
2: for each v ∈ V do
3: Compute effective weight w′v = wv +

∑
u∈Nv

pvuwu

4: while V is not empty do
5: Choose v ∈ V with the highest effective weight
6: Add node v to the set S
7: for each node u ∈ Nv do
8: Update wu = wu(1− pvu)
9: Add node v to S

10: Remove node v
11: for each u ∈ V − S do
12: if u ∈ Nv then
13: Update wu = wu(1− pvu)
14: return S

activation is possible [1]. The important point to note is that
in an independent cascade model, each node will only be able
to influence its neighbors once after it has been activated. The
active nodes will remain active permanently. The number of
activated nodes in the final step is the spread of influence of
the seed set S, denoted by σ().

B. Competitive influence maximization

When there are multiple competitors that attempt to make
nodes active in their favor, we need to consider and compare
different total weights of edges. Suppose that there is a CIM
game with two players and n nodes in a social network G.
Player 1 has a budget of size B1, and player 2 has a budget
size of B2. Each node u has a value, wu > 0, which can be
regarded as the reward of taking this node for players. The total
value of n nodes in this social network is W =

∑
u∈V wu. The

winner of this game would be the player who can obtain the
most reward by influencing the more important nodes. Players
engage in a competition based on the amount of the budget
they allocate toward seed nodes (the most influential nodes).

Competitive linear threshold model: The inactive node v
would be activated by player 1 if for all of the neigh-
bors of node v that are activated by player 1, there is∑

u∈N1
v
puv ≥ θv . For all of the neighbors of u that are

activated by player 2 there is
∑

u∈N2
v
puv < θv . Simi-

larly, the inactive node v would be activated by player 2 if

Algorithm 3 Monetary-Incentive-CIM

Require: G(V,E,W,P ), total budget B1 and B2

1: Step 1 (Finding Seed Sets):
2: S ← Call MIIS(G)
3: Step 2 (Investments):
4: for each set s ∈ S do
5: Investment on s based on w′s
6: Step 3 (Propagation):
7: for each node u ∈ V do
8: if node u is invested by both players directly then
9: Calculate apu = Bu

1 /(B
u
1 +Bu

2 )
10: else if node u is invested by player 1 directly then
11: A1 = A1 ∪ u
12: else if node u is invested by player 2 directly then
13: A2 = A2 ∪ u
14: else if node u is under different influence v and w

then
15: apu = (pvu)(1− pvupwu)/(pvu + pwu)
16: return list of activated nodes A1 and A2

∑
u∈N2

v
puv ≥ θv and

∑
u∈N1

v
puv < θv . If both of players 1

and 2 have higher aggregated weights of edges than θv , then
node v will be activated by 1 if:∑

u∈N1
v

puv ≥ θv, (1a)∑
u∈N2

v

puv ≥ θv, (1b)∑
u∈N1

v

puv >
∑

u∈N2
v

puv. (1c)

Competitive independent cascade model: If a node v is
activated at a certain time step t, it immediately tries to activate
all its neighbors u along edge (v, u) ∈ E. In the event that
a node v activation attempt is successful (which occurs with
probability pvu), node v becomes active at time t + 1 and
subsequently tries to influence its neighbors. The nodes can
be activated either by an influence cascade initiated by player 1
or by an influence cascade initiated by player 2. In the event
of a tie, each player has a 50% chance. The active node is
permitted to attempt to activate each neighbor only once during
propagation, and each activation attempt is presumed to occur
independently. The propagation process stops if no nodes are
activated within a certain period of time.

C. Blotto game

The Colonel Blotto problem is a zero-sum game about how
to best position resources. In the Colonel Blotto game, two
players concurrently allocate resources across n battlefields.
The player with the greatest resources in each battlefield wins
that battle and the player with the most overall wins is the
victor. The Colonel Blotto game involves two colonels simul-
taneously distributing their troops across different battlefields.
Colonels receive their ultimate reward based on the number of
battles they win. Colonel Blotto is a game which is commonly
used for the analysis of a wide variety of applications. The
search for the optimal strategy for the Colonel Blotto game
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Fig. 3: Influence Independent Sets
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Fig. 4: Strict and Weak Influence Independent Sets

has been ongoing for some time. Colonel Blotto is a zero-sum
game, but since the number of pure strategies of the agents is
exponential in terms of the number of troops and the number
of battlefields, it is quite difficult to determine which strategy
is best. Several attempts have been made to solve variants
of this problem. After almost a century Ahmadinejad et al.
in [25] provided an algorithm for finding the optimal strategies
in polynomial time.

IV. MAXIMUM INFLUENCE INDEPENDENT SET (MIIS)

The information diffusion game models the diffusion pro-
cess of information in the social network G for the competi-
tive players where players want to spread their information
as much as possible. The scenario we are interested in is
one in which players identify the most influential nodes in
the network, and then they compete over them by directly
investing in the nodes in order to activate the node according
to their individual preference. This investment is personalized.
The weight of edges between node v and u in the G shows the
amount of influence that node v gives node u. The competitors
in a CIM problem select the seed nodes and allocate portions
of the budget depending on the importance of the selected
node. A ranked list of nodes based on the importance of nodes
in the given social network is advantageous for the players to
have an optimal investment. Suppose that there is a CIM game
with two players, 1 and 2, and n nodes in a social network G.
Player 1 has a budget of size B1, and player 2 has a budget
size of B2.

Each node v has a value, wv > 0, which can be regarded
as the reward that a given player would achieve for taking
this node. The total value of n nodes in this social network
is W =

∑
v∈V wv . The winner of this game would be the

player who can obtain the most reward by influencing the
more important nodes. Players engage in the competition based
on the amount of the budget they allocate toward seed nodes

TABLE II: Weight and Effective Weight
Node
(v)

Weight
(wv)

Effective Weight (wv +
∑

u∈Nv
pvuwu)

1 6 6+(2)(0.6)+(4)(0.1)+(3)(0.2)=8.2
2 2 2+(6)(0.3)+(3)(0.1)+(4)(0.3)=5.3
3 4 4+(6)(0.1)+(3)(0.1)+(2)(0.3)+(2)(0.2)+(4)(0.1)+(8)(0.1)=7.1
4 3 3+(6)(0.2)+(2)(0.4)+(4)(0.1)+(1)(0.1)+(4)(0.3)+(8)(0.1)=7.5
5 2 2+(4)(0.3)+(4)(0.3)=4.4
6 1 1+(3)(0.1)+(8)(0.1)=2.1
7 4 4+(4)(0.2)+(3)(0.3)+(2)(0.2)+(8)(0.1)=6.9
8 8 8+(4)(0.3)+(3)(0.1)+(1)(0.2)+(4)(0.1)=10.1

(the most influential nodes). In this game, three types of
competition can occur. The first type of competition is players’
competition on seed nodes by the amount of allocated budget,
which can be called Node-Node competition. The second type
is Link-Link, which is the competition of influence when two
different links with different influences try to activate the given
node in their favor. The last one is Node-Link. This will
happen when one of the competitors allocates some portion
of the budget to the given node, and the influence of another
competitor reaches this node by the influence of the link.

1) Node-Node influence competition: A Node-Node com-
petition on the node u is the competition of two competitors
with the amount of allocated budget. Suppose that B(u)

1 and
B

(u)
2 are the amount of the budget that players 1 and 2 have

allocated to node u. The winning probability for player 1 for
this competition is as follows:

apu = B
(u)
1 /(B

(u)
1 +B

(u)
2 ) (2)

2) Link-Link influence competition: Each active node prop-
agates its influence on its neighbors following the budget
allocation process. Consider the case where there is a node u
with two active neighbors with different influences. This node
receives the influence from player 1 via node v with influence
probability pvu. In addition, it receives the influence from
player 2 via another neighbor, node w, with pwu. Here, link-
link influence competition will happen. The probability that
node u would be activated by player 1 is as follows:

apu =
pvu

(pvu + pwu)
× (1− pvupwu), (3)

where (1− pvupwu) considers the probability of activation of
node u by at least one of the players. The probability that
node u would be activated by player 2 is as follows:

apu =
pwu

(pvu + pwu)
× (1− pvupwu) (4)

3) Node-Link influence competition: Based on our assump-
tions, we assumed that direct allocation has a higher priority in
comparison with the influence of links. Consider the scenario
in which player 1 has a direct investment in node v. If player 2
is influencing node v via its neighbors, node v will be activated
by player 1.

A. Activation probability and utility function

Definition 1. (Influence Weight) When a node v is selected
as a seed node, each u ∈ Nv will have the adjusted weight



TABLE III: Updated Weights with Strict MIIS (second step)
Node
(v)

Weight (wv) Effective Weight (wv +
∑

u∈Nv
pvuwu)

1 6(0.9)(0.8)=4.32 4.32+(0.84)(0.6)=4.82
2 2(0.6)(0.7)=0.84 0.84+(4.32)(0.3)=2.32
3 4 Ineligible
4 3 Ineligible
5 2(0.7)(0.7)=0.98 0.98+(0)+(0)=0.98
6 1 Ineligible
7 4 Ineligible
8 8 Selected

TABLE IV: Updated Weights with Weak MIIS
Node
(v)

Weight (wv) Effective Weight (wv +
∑

u∈Nv
pvuwu)

1 6 6+(2)(0.6)+(2.8)(0.1)+(2.1)(0.2)=7.9
2 2 2+(6+0.3)(2.8*0.3)+(2.1)(0.1)=4.85
3 4(1-0.3)=2.8 2.8+(6)(0.3)+(2)(0.3)+(2.1)(0.1)+(2)(0.2)+(2.4)(0.1)=6.05
4 3(1-0.1)=2.1 2.1+(6)(0.2)+(2)(0.4)+(2.8)(0.1)+(0.8)(0.1)+(2.4)(0.3)=5.18
5 2 2+(2.8)(0.3)+(2.4)(0.3)=3.56
6 1(1-0.2)=0.8 0.8+(2.1)(0.1)=1.01
7 4(1-0.1)=2.4 2.4+(2.8)(0.2)+(2.1)(0.3)+(2)(0.2)=14.7
8 8 Selected

(1 − pvu)wu, where pvuwu is called the influence weight of
node v on node u.

Definition 2. (Effective Weight) The effective weight of i is
the summation of its own weight plus influence weights of its
neighbors. It can be calculated by

w′v = wv +
∑

u∈Nv

pvuwu. (5)

Theorem 1. In G(V,E, P,W ), for each node v and its
neighbors Nv = {u1, u2, ..., uk} , which are not in seed set S,
the probability that node v being activated is in proportion to
this relationship:

apv =
∑

ui∈Nv

apui
· puiv

−
∑

ui,uj∈Nv,i<j
(apui

· puiv)(apuj
· pujv) + ...

+ (−1)k(apu1
· pu1v)...(apuk

· pukv).

Proof: The probability that node v is activated by the influence
of its neighbor u1 is apv = apu1 · pu1v . The failure
probability for u1 to activate node v in step 1 is 1 − apv .
There are same attempts from all the neighbors to influence
node v; the probability that u2 succeeded is apu2

· pu2v;
To simplify the notations, we define σui

= apui
· puiv .

Node v cannot be activated by both of these neighbors. The
conditional probability that u1 failed but u2 succeeded in
activating node v is (1−apv)σu2 . Total probability that node v
becomes activated includes activation by u1 or by u2. Thus:

apv=apv + (1− apv)σu2
=σu1

+ σu2
− σu1

σu2
.

If neither u1 nor u2 activated node v, u3 attempts to activate
node v. The probability that u3 can activate v is apu3

·pu3v =
σu3

. Therefore, the conditional probability that u1, u2 failed
but u3 succeeded in activating node v is (1− apv)σu3 . Thus,
the total probability that node v becomes activated.

apv =apv + (1− apv)σu3

=σu1
+ σu2

+ σu3
− σu1

σu2
− σu1

σu3
− σu2

σu3

+ σu1
σu2

σu3
.

Under the condition that none of node v’s previous neighbors
activated, uk attempts to activate node v. The total probability
that node v becomes activated is the following:

apv =apv + (1− apv)σuk

=
∑

ui∈Nv

σui
+
∑

ui,uj∈Nv,i<j
σui

σuj

+ ...+ (−1)k + σu1
σu2

...σuk
.

This completes the proof. �

In the proposed game, the utility for the players is a function
of the total number of activated nodes at the end of the
propagation process. In addition, it is a function of the weight
of activated nodes. In this influence maximization game, the
player with the highest number of weighted activated nodes
will be deemed the winner. Several parameters affect the gain
of players, including the total budget of players, seed selection
strategy, and the influence distribution between nodes.

B. Selecting seed nodes and propagation model

Consider a static social network G and B1 and B2 for
players as their fixed budget. Each player attempts to reach
the maximum gain by activating as many nodes as possible
within a given budget. Based on the effective weights of
each node, players select seed nodes. Investing in nodes with
higher effective weights will have a greater likelihood of
propagating the influence to more nodes across the social
network. The influence propagation between nodes is based
on the influence probability of the links associated with the
relationship. When two players select the same seed node for
investment, the winner will be determined with the help of a
budget proportion.

C. Algorithms description

As mentioned before, each node v has a weight wv , and
its influence to its neighbor u is based on probability pvu.
When a node v is selected, its neighbor’s weight (u’s weight)
should be adjusted based on (1 − pvu)wu, where puvwu is
called the influence weight of node v on u. The effective
weight of node v, w′v , is the summation of its own weight
plus influence weights of its neighbors. Algorithm 1 shows
the Strict MIIS algorithm. An eligible node v in G will be
selected. It is a node with the maximum effective weight w′.
Then, it is required to adjust weights of node v’s neighbors
and label them ineligible. Node v should be removed from
network G. This process continues until there are no eligible
nodes in G. Algorithm 2 presents Weak MIIS. The steps are
similar to Algorithm 1. We select an eligible node v in G
with the maximum effective weight w′. The only difference
between Strict MIIS and Weak MIIS is that in the Weak MIIS
after adjusting the weights of node v’s neighbors, v’s neighbors
still will be eligible. We remove node v from G but keep its
neighbors in the social network G.

This process continues until there is not any node to select
and network G is empty. Algorithm 3 represents the steps of
the proposed algorithm in detail. This algorithm includes three
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Fig. 5: Different influence distributions.
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Fig. 6: Effect of network sparsity

steps: 1) Finding the seed set, 2) Investment, 3) Propagation.
Step 1 ends when k nodes which are the nodes with high
effective weight w′ are selected. These seed nodes are selected
through the MIIS in Algorithm 1 or Algorithm 2. In step 2,
players invest on the seed node in S based on the total
budget and weight of each seed node. Step 3 shows the results
of the competition for seed nodes as well as the results of
diffusion process for each of the active nodes. As a result, each
node v has a probability of activation, and this probability is
determined by the ratio of the sum of the budgets invested by
the competitors or by a probability ratio based on the influence
of the neighbors. A number of the nodes will be activated by
direct investments. A number of the nodes will be activated by
the influence of their neighbors. Basically, what this algorithm
determines is the list of nodes that each competitor has
activated so far. Figs 3 and 4 show the difference between
Strict and Weak MIIS for a toy example. We tried to display
the steps with the help of different colors. Tables III and IV
present the details of calculating weights and effective weights
of nodes. Ineligible nodes are the neighbor of selected nodes
in the Strict MIIS algorithm.

V. EVALUATION OF THE ONE-SHOT DIFFUSION
GAME

In this section, we conduct several experiments to show
the efficacy of our proposed framework. We used the Python
library to represent the the nodes and their relations in the
graphs. We used IC as the diffusion model. In order to
check the impact of influence propagation, we consider normal
distribution, with the same µ and different σ2. In the case
of budget, we mainly focus on the symmetric case where
B1 = B2 = B. The steps in this game are as follows: First, the
players have to determine the independent sets from the initial

graph. After selecting seed nodes from the obtained maximum
set, players begin direct investments in seed nodes based on
the importance of nodes (effective weight w′). In the end, we
use a spread model to measure the number of nodes that were
influenced by the two players in a one-shot model.

A. Comparison methods

In order to evaluate the performance of proposed method,
we have used the following strategies in our experiments:
• Strict MIIS: After selecting a node with the maximum

effective weight w′, weights of the given node’s neighbors
will be adjusted and neighbors will be labeled ineligible.

• Weak MIIS: After selecting a node with the maximum
effective weight w′, weights of the given node’s neighbors
will be adjusted and neighbors will be labeled eligible.

• CIM: The traditional version of the competitive influence
maximization method [9].

• Random: With this strategy, we start with the first seed
node and allocate a random value (greater than zero) to
each node while considering

∑
v B

(v) = B.
• Random(z): z is the maximum amount of the budget

allocated to a node. It starts with the first seed node and
allocate a random value (greater than zero and less than z)
to each node while considering budget constraint.

B. Effect of influence distribution

To evaluate final activation probability in the multi-person
competition game we need to consider the effect of influ-
ence distribution. This is because influence probability has a
significant effect on the influence propagation and the total
number of active nodes among the neighbors of seed nodes.
Influence distribution determines the probability of inference
of activated nodes on their neighbors. We analyze the effect
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Fig. 7: Influence probability under different methods for different topologies.

Fig. 8: Shape of the real social network in Gelsenkirchen.

of different influence distribution settings on the proposed
models. We consider the weight of the edges in the range
σ = {0.25, 0.5, 0.75, 1}. Fig. 5 depicts the impact of different
influence distributions on influence probability for Strict MIIS
and Weak MIIS. The result in this figure presents that Strict
MIIS has a higher influence probability in comparison with
Weak MIIS. In the different parts of Fig. 5, we considered
a normal distribution with different variances. With smaller
sigmas, there are larger numbers of edges with high influence
probability. As a result, the influence propagation would be
high in comparison to a network where there is a large sigma
in the influence distribution formula. This shows that when
there are more edges with a higher influence probability, there
would be a higher activation probability, even with a small
number of seed nodes. In addition, it shows that investment
in more seed nodes leads to a higher activation probability.

C. Effect of sparsity

The sparsity of the network inhibits a significant extent of
spreads for spreading models like the independent cascade
even at high probabilities of influence. Fig. 6 shows the impact
of different densities for varying numbers of seed nodes. In
a social network with 85% density, there is higher influence
propagation than a social network with 50% density. The
higher the density, the higher the chance for the player to
find an active node in his favor. In addition, there are more
relations between nodes in a network with higher density. As
a result, there will be a greater likelihood for an activated
node to propagate its influence throughout the network. There
will therefore be a greater probability of influence propagation.
The reason for this can be attributed to the fact that edges
help players to propagate their influence without the need to

TABLE V: Proposed Methods vs. Optimal One

Influence Maximization Methods
Budget Weak MIIS Strict MIIS Optimal

10$ 20% 23.2% 25%
20$ 25% 27.3% 31.5%
30$ 34% 37.5% 41%
40$ 39.3% 42% 47.5%
50$ 45.5% 49% 52%

consider additional seed nodes. The result in Fig. 6 presents
that Strict MIIS, under different density, has a higher influence
probability in comparison with Weak MIIS.

D. Comparison with baseline approaches

The topology of a social network is a significant parameter
in analysing the influence maximization problem. That is
because the number of links and the structure of relations
between nodes depend on topology of network.In this section,
we compare Strict MIIS and Weak MIIS with Random and
Random(z) methods in the case of the different topologies
and different number of seed nodes. The Random method
considers the k nodes with high weight w and starts from
the first node and allocates a random value greater than
zero to each node with the considering budget constraint.
The Random(z) method allocates budget with a limitation on
maximum value. The maximum amount of the allocation to a
node should be z. We compare the proposed method on social
networks with mesh, tree, and star topology. In addition, we
consider a real social network in which the relations between
the members are based on the cooperation in the development
of new ideas related to education that works very well in
Gelsenkirchen [26]. Fig. 7 illustrates the influence probability
of these methods taking into account different topologies of
social networks. It is clear that Strict MIIS improves the result
of the competitive influence maximization problem for all of
the different topologies. In the case of the star network, the
results of different methods seem to be close to each other.

E. Comparison of proposed methods and the optimal one

Table V shows the results of the competitive influence
maximization problem for a simple network of 50 nodes under
a variety of budget allocations. We observe that the results of
Strict MIIS are similar to the optimal values. Nevertheless, the
Weak MIIS method is insufficient to maximize the likelihood
of influence for the case of maximum influence probability.



VI. DISCUSSION

In summary, the experiments indicate that Strict MIIS has
a higher influence probability than Weak MIIS. Moreover, it
is clear that Strict MIIS increases the result of the competitive
influence maximization problem in all topologies. In the case
of the star network, the results of the different approaches
are close to each other. In the case of considering networks
with different densities, the result shows that Strict MIIS has
a higher influence probability compared to Weak MIIS. In
addition, the higher the density, the more often the player will
find an active node in his favor. In a network with a higher
density, there are more connections between nodes. Therefore,
an activated node has a greater likelihood of propagating
its influence across the network. Therefore, there will be a
greater level of influence propagation. In comparison to a
network where there is a large sigma in the influence distri-
bution formula, the propagation of influence would be greater.
The results of scenarios with different influence probability
distributions show that when there are more edges with a
higher influence probability, the activation probability would
be higher. This is even with a small number of seed nodes.
Furthermore, it shows that investing in more seed nodes
results in a higher probability of activation. When there are
enough seed nodes, a different influence distribution does not
substantially affect the outcome of the competition.

VII. CONCLUSION

In this paper, we investigated the strategic investment of
players in one-shot competitive influence game where two
competing players need to simultaneously decide what propor-
tion of budget should be invested directly on nodes in order
to have the maximum inference on neighbors. We utilized the
Colonel Blotto game to characterize the optimal strategic allo-
cation of resources for the competitive maximization influence
game. We proposed a novel approach based on the independent
set for selecting seed nodes. Strict MIIS improves the influence
probability under scenarios with different influence probability
distributions, different network topologies, and different den-
sity. Even with a small number of seed nodes, the experiment
shows a higher activation probability when there are more
edges with a higher influence probability.
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