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1. Edge-Cloud Networks

Application-driven: AR/VR and
LLM (ChatGPT, GPT4)

Key indicators: latency, accuracy,
energy, and privacy

Latency-sensitive
How edge contributes to AT/ML ?
How to use rich resources in cloud ?

Collaboration
Edge-Cloud 50 billion IoTs: connected intelligence

Within Cloud Edge: End IoTs + Edge



Efficient AL/ML Implementation

Work hard

Faster processing, e.g., GPU accelerator

Work smart

Partition AL/ML model and map parts to edge-cloud

AI/ML model and optimization

Deep neural networks (DNN)
Stochastic gradient descent (SGD)




2. Parallelism

Model (task) parallelism: Edge-cloud collaboration
Data parallelism: Federated Learning (FL)
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Wu, Parallel Processing: Past, Present, and Future, early 90s



3. Model: Collaborative Edge-Cloud

Three-stage collaborative pipeline and offloading

Local, communication, remote (Cloud)
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Offloading Sample: Multiple Paths

Given a partition (i.e., cut)
Fine-grained pipeline: path-based (rather than phase-based)

Extended Johnson's solution with approximation ratio
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Multiple DNNs Offloading

Internet of Vehicles: smart city
Autonomous driving systems: perception is a key
Multiple cameras/sensors: multiple (identical) DNNs
V2X: V (vehicle); X for I (infrastructure), N (network), P (pedestrian)




Johnson Algorithm: Multiple Lines

Computation at cloud can be neglected

JA for optimal schedule
2-stage pipeline with given partitions

Algorithm 2 Johnson Algorithm (JA)
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7: Sort H increasingly based on p; (i)
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Partition and Scheduling

Partition and scheduling of 2-stage pipeline
Brute force: O(k")
n: # of copies, k: # of layers

Existence of a better solution?
Exploring special properties
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Convolution NNs

CNNs (image classification)

convolution
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Special Application Property

As the number of layers increase
Computation time: linear increasing (convex) function

Communication time: monotonic decreasing convex function
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Theorem : A uniform partition of n line DNNs at the
intersection will guarantee an approximation of 1 + %




Simulation

Partition methods
Joint Partition and Scheduling: JPS, Brute Force: BF

Applications
VGG-16, AlexNet, and AlexNet' (curve fitting) withn=1, ..., 29
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Extension: Training

Inference forward pass/training backward pass

* Reduce resource idle time by adjusting the ratio of resources

i i i Staleness BUbble SIOTS
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Backward

Aligning Pipeline with Resource Allocation

« Combine forward/backward passes (insert 1' after 1 to fill up space)

Time
Duan and Wu, Optimizing Job Offloading Schedule for Collaborative
DNN Inference, IEEE TMC, 2023.



An Ongoing Project
Extension to DNN training

Data compression

Testbed implementation
Visual detection & tracking

Field test
KUSARA at Kettering University

NSF CNS Medium: Cooperative AL Inference in Vehicular Edge
Networks for Advanced Driver-Assistance Systems (PI, 2021-2024)

(Temple, Stony Brook, Rowan, and Kettering)



4. Data: Decentralized Federated Learning

DFL

CFL shortcoming: central failure
Nodes coordinate themselves to
obtain the global model

Gossip learning

Exchange/aggregate models

Random perfect pairing
Comparable performance to CFL

% infected

Merits and drawbacks

0.0

Easy to use, robust, and robust

Drawbacks: long-tail



Structured Peer-to-Peer (P2P)
Spectral gap 8 (ML community)

The difference between the moduli of the two largest eigenvalues of
adjacency matrix W

The larger 8 is, the faster the convergence

Sample regular topologies with n nodes (HPC community)
Ring (# neighbors d: 2; diameter D: n/2)
2-D torus (4; vn ), and hypercube (log n; log n)




Relationship between & and D

Known results of 0

—{o—{
Rings: O(1/n?) C %
2-D torus: O(1/n) T——o— -
Hypercube &: O(1/logn) @ —1¢—19—1®
In general,d = 1/7/D @20

To maximize spectral gap is to minimize diameter!

Duan, Li, and Wu, Topology Design and Graph Embedding for
Decentralized Federated Learning, accepted to appear in ICN.



Graph Embedding based on Similarity

Select neighbors with max-similarity

Maximize total neighbor similarity (product of feature vectors)
Similar to a graph embedding in a complete graph

NP-hard problem: max-similarity for a ring

Heuristic polynomial algorithms
2-D torus and hypercube
1/log n approximation ratio for hypercube

Reducing communication frequency
Scan dimensions in sequence \



Simulation Results

Roles of topology on convergence and accuracy
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ResNet-50 on CIFAR-100 with 64 workers



Simulation Results (Cont'd)

Accuracy

Roles of graph embedding based on data similarity
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ResNet-50, HGC/TGC: hypercube/torus, ES: optimal, and RC: random



Simulation Results (Cont'd)

Roles of communication orchestration on hypercubes
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Communication Cost (MB)

Reaching 80% accuracy for CIFAR-10, SS has 19% lower cost compared
to FS (FS: parallel, HS, half-parallel, and SS: sequential)



Overlay Networks

Tunneling

For fast convergence

Emulation of any topology (eg., ~ ~—— 7

all-to-all comm.), but network congestion

Measurement: load, dilation, and congestion




5. Some Final Thoughts

Offloading: dynamic comm. channel conditions
Dynamic cut, compression, link pruning, and phase freezing
AUTO-SPLIT for offloading in Huawei Cloud

DFL: random vs. symmetric graphs
Flexibility (on the number of nodes)

Congestion (at the network level)

Resource allocation and elastic computation
Resource allocation based on data distribution
Data distribution under constraints

Niknami, Sawwan, and Wu, SmartPipe: Intelligently Freezing Layers in Pipeline
Parallelism for Distributed DNN Training,"ICPADS, 2023



https://cis.temple.edu/~jiewu/research/publications/Publication_files/Intelligently%20Freezing%20Layers%20in%20Pipeline%20Parallelism%20for%20Distributed%20DNN%20Training-ICPADS23.pdf
https://cis.temple.edu/~jiewu/research/publications/Publication_files/Intelligently%20Freezing%20Layers%20in%20Pipeline%20Parallelism%20for%20Distributed%20DNN%20Training-ICPADS23.pdf

Random Graphs

Works for any number of nodes
Controlled random graph

eg., d_regular- gmph https://arxiv.org/abs/2112.15486

| (=d/2) virtual random space/rings, approaching foward a

Ramanujan graph (with a large spectral gap)

(a) Coordinates

A 0.05 0.17
B 0.13 0.62
C 0.23 0.91
D 0.36 0.53
E 0.42 0.42
F 0.51 0.58
G 0.63 0.73
H 0.78 0.26
| 0.91 0.97

4 2 'I 1
? Space 1 ,aﬂ Space 2 #
\ /7 \

(b) Virtual spaces

(c) Actual topology


https://arxiv.org/abs/2112.15486

Symmetric Graphs

Moore bound
max nh, given diameter D and node degree d

n = dP+db-1+  +d! -9
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Symmetric graphs | \-10\ @)57

Moore bound has not been reached TA02—>02 1'\”
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n = dP+db-l ie, D = O(log n) for const. d,
symmetric, and c-congestion-free
Simulate all-to-all comm. with ¢ congestion

Li, Lu, and Wu, FISSIONE: A Scalable Constant Degree and Low
Congestion DHT Scheme Based on Kautz Graphs, INFOCOM 2005



Other learning models m

Other FL models

CFL, DFL, and HFL (multi-tier)
Federated reinforcement/graph learning O

Time—var‘ying gr'aphs 2-hop local views in graph learning

TI?A/NKING,

FASTmSLTOW

Learning rates and topology selections

Beyond P2P: multi-models

Local (fast) and global (slow) models

——
Information sharing DANIEL
Push, Pull, and hybrid KAHNEMAN

N VAbhrncrvmAan Thinkinmasa EAact AnA Ay 2011



Resource Allocation

Site and data locations are fixed

O Resource assignment based on data O

» Voronoi diagram to min. data-movement
distance
O Data assignment based on resource

® based on site and network capacity

® Elasticity: offering maximum future

growth under the gossip model

Wu, Lu, and Zheng, On Maximum Elastic Scheduling of Virtual
Machines for Cloud-based Data Center Networks, ICC, 2018.



Maximum Elastic Scheduling

Given a cable connection in a graph, each household has an
occupancy limit and each cable section has banawidth /imit.

What is the maximum total occupancy that can support all possible
simultaneous pairwise telephone conversations (hose model)?

What is the schedule with the maximum elasticity (i.e., maximum
uniform growth in occupancy)?

hose model: statistical multiplexing. topology: tree and general graph



Questions




