
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

AAFL: Asynchronous-Adaptive Federated Learning
in Edge-Based Wireless Communication Systems
for Countering Communicable Infectious Diseases

Jieren Cheng, Member, IEEE, Ping Luo ID , Student Member, IEEE, N. Xiong ID , Senior Member, IEEE, Jie Wu ID

, Fellow, IEEE

Abstract—With the rapid growth of the coronavirus disease
of 2019 (COVID-19) cases, massive amounts of relevant data
are being trained on machine learning models for countering
communicable infectious diseases. Federated Learning (FL) is
a paradigm of distributed machine learning to deal with the
individual COVID-19 data, and enable the protection of data
privacy. However, FL has low efficiency with system heterogeneity
in Edge-Based wireless communication systems. In this paper, we
propose an “Asynchronous-Adaptive FL” (AAFL) scheme. Specif-
ically, we allow that medical devices with different performances
have a heterogeneous number of local SGD iterations in each
communication round, called asynchronous iteration strategy
which is balanced under adaptive control. We theoretically
analyze the convergence of the AAFL scheme under a given
time budget and obtain a mathematical relationship between the
heterogeneous number of local SGD iterations and the optimal
model parameters. Based on the mathematical relationship, we
design an algorithm for parameter server and work nodes to
adaptively control the heterogeneous number of local SGD iter-
ations. Subsequently, we build a prototype heterogeneous system
and conduct experiments on various scenarios for analyzing the
general properties of our algorithm, and then apply our algo-
rithm to public COVID-19 databases. The experimental results
and application performance demonstrate the effectiveness and
efficiency of our AAFL scheme.

Index Terms—Edge computing, infectious diseases, COVID-19,
machine learning, federated learning, heterogeneous systems.

I. INTRODUCTION

THE coronavirus disease of 2019 (COVID-19) instigated a
global pandemic of viral pneumonia. To counter the com-

municable infectious disease of COVID-19, there is a growing
urgency for speedy and accurate detection in likely patients
with COVID-19 [1]. The above detection needs efficient
decision rules from a huge amount of relevant data, e.g., chest
X-ray image [2], and machine learning (ML) helps address it
by refining diagnosis capacity and modelling techniques [3]. In

Manuscript received January 15, 2022; revised June 17, 2022; accepted July
21, 2022. (Corresponding author: N. Xiong and Ping Luo.)

Jieren Cheng and Ping Luo are with the School of Computer Sci-
ence and Technology, Hainan University, Haikou, 570228, China (e-mail:
cjr22@163.com; luoping@hainanu.edu.cn).

N. Xiong is with the National Engineering Research Center for E-
Learning, Central China Normal University, Wuhan 430079, China. (e-mail:
Nicholas.xiong@ccnu.edu.cn).

Jie Wu is with the Department of Computer and Information Sciences
Temple University SERC 362 1925 N. 12th Street Philadelphia, PA 19122
(e-mail: jiewu@temple.edu).

addition, ML can overcome the scarcity of individual COVID-
19 data by data integration across scattered locations in a
centralized repository [4]. However, the centralized repository
of COVID-19 data is expensive and limited by the inherent
issue of data sharing, which has ethical, regulatory and legal
complexities for the owners’ privacy protection [5]. Thus, it is
crucial to develop a widely available learning technique which
trains a model for decentralized individual COVID-19 data
while maintaining privacy.

One solution is Federated Learning (FL) [6], which is a
paradigm of distributed ML and allows multiple decentralized
users to train an ML model on their individual COVID-
19 databases without sharing patient information. FL was
initially developed for mobiles, the Internet of Things, and
edge devices, and recently attained the popularity of the health
domain in Edge-Based wireless communication systems [7]–
[9].

In the context of the COVID-19 detection system, FL
include medical devices (e.g., X-ray machine), called work
nodes, which hold the patients’ private training database. Work
nodes train local models with Stochastic Gradient Descent
(SGD) [10] in parallel and send the updated model parameters
to a centralized parameter server. The server aggregates the
models from work nodes, then updates the weighted average
for the new model parameters, and pushes the new model back
to all work nodes as the initial point for the next local SGD
iterations. The above intervals start with the distribution of
new model from the server, and end with the submission of
the updated model parameters from all work nodes, which are
called the communication rounds (which we refer to as ‘round’
in the following). After several given rounds, the trained
model gives the identification of ‘Normal’, ‘Pneumonia’ or
‘COVID-19’ patients through chest X-ray images. However,
the COVID-19 detection system consists of the work nodes
which have significant variability in different devices and
networks, and the heterogeneity of the work nodes results
in the inefficiency of the whole training process [11]–[13].
Therefore, it is challenging to efficiently perform FL on the
COVID-19 detection system based on heterogeneous devices
and networks.

In this paper, we address the problem of how to efficiently
utilize the heterogeneous number of local SGD iterations

0000–0000/00$00.00 © 2021 IEEE

https://orcid.org/0000-0001-5132-5831
https://orcid.org/0000-0002-0394-4635
https://orcid.org/0000-0002-8648-141X
https://orcid.org/0000-0002-8648-141X
cjr22@163.com
luoping@hainanu.edu.cn
Nicholas.xiong@ccnu.edu.cn
jiewu@temple.edu

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

Work nodes with COVID-19

databases

Network

element

Model

Network

element

Model
Model Model

... ...

Parameter

server

...

Work nodes with COVID-19

databases

Fig. 1. FL in Edge-Based wireless communication systems for countering
communicable infectious diseases.

TABLE I
SUMMARY OF MAIN NOTATIONS

F (w) Global loss function
Fi(w) Local loss function at work node i
k Round index
λ Local SGD iteretion index
wi,λ
k Local model parameters at work node i, round index k and

iteration index λ
w̃ Local model parameters submitted to the parameter server
wk Global model parameters at round index k
wf Final global model parameters obtained at the end of process
w∗ True optimal model parameters that minimizes F (w)
η Learning rate in SGD
τi The number of local SGD iterations at work node i in a round
N Number of work nodes
K Total number of rounds
T Total budget of time
cik Consumption of time in one local SGD iteration at work node i
bk Consumption of time in one global aggregation step
ρi Lipschitz parameter of Fi(w), defined in Assumption 1
βi Smoothness parameter of Fi(w), defined in Assumption 1
θk Gradient divergence in round k, defined in Definition 2
gi(λ) Function defined in Theorem 1, gap between the local model

parameters obtained from λ and λ− 1 at work node i
ω Constant defined in Lemma 1, control parameter

(associated with computing speeds and networks) [14] and
time resource [15] in the COVID-19 detection system based
on heterogeneous devices and networks for the optimal FL
performance. As illustrated in Fig. 1, we consider a typical FL
architecture in Edge-Based wireless communication systems
for countering communicable infectious diseases of COVID-
19. Work nodes are composed of Edge-Based medical devices
with different computing capabilities, and carry the local
training database of COVID-19 in an environment which is
composed of different network elements. According to these
differences, the work nodes are divided into fast work nodes
and slow work nodes, fast work nodes take a shorter time than
slow work nodes to complete a fixed number of local SGD
iterations and to submit the results of FL in a round. The
performance of different work nodes results in the synchro-
nization barrier on the fixed number of local SGD iterations
[11], which means that the time of completing each round
depends on the maximum training and submission time among
the slow work nodes. To solve the FL synchronization barrier
in the COVID-19 detection system based on heterogeneous
devices and networks, we allow all the different work nodes
have a heterogeneous number of local SGD iterations in each

round, called asynchronous iteration strategy.
As for the asynchronous iteration strategy, we focus on

the relationship between the heterogeneous number of local
SGD iterations and the convergence of the FL final model. In
asynchronous iteration strategy, fast work nodes can perform
more local SGD iterations than slow work nodes within a
given time resource, thus there is a large disparity between the
number of local SGD iterations of work nodes, and the new
model of parameter server strays towards the local model of
fast work nodes, away from the optimal model [14]. Therefore,
it is necessary to balance the fast work nodes and slow work
nodes under time resource budget for stable performance.

We propose an Asynchronous-Adaptive FL (AAFL) scheme
to adaptively control the number of local SGD iterations at
each work node in each round, so that the time resource is
most efficiently used to get the optimal model of FL in the
COVID-19 detection system based on heterogeneous devices
and networks. The main contributions of this paper are as
follows:
• We perform a qualitative analysis of the FL problem in

the COVID-19 detection system based on the heteroge-
neous devices and networks, and obtain a novel con-
vergence bound of the AAFL scheme. The convergence
bound incorporates with the heterogeneous number of
local SGD iterations at each work node and the loss
function of the trained model under a fixed time budget.

• Using the above theoretical convergence bound, we pro-
pose the AAFL algorithm that adaptively balances the
number of local SGD iterations at each work node to
accelerate the speed of model convergence.

• We evaluate the general performance of the AAFL
scheme via extensive experiments on general public
datasets, and apply the AAFL scheme to public COVID-
19 X-ray images on our heterogeneous prototype system,
which confirms that the AAFL scheme provides efficient
performance in Edge-Based wireless communication sys-
tems for countering communicable infectious diseases.

The main notations in this paper are summarized in Table
I and this paper is organized as follows. Related work is
introduced in Section II. The basics of FL is summarized in
Section III. The convergence analysis and control algorithm of
AAFL scheme are presented in Section IV. Experimentation
results and the application in COVID-19 are shown in Section
V. The conclusion is presented in Section VI.

II. RELATED WORK

The most recent work focuses on applying FL for COVID-
19 detection [16]–[18], which study medical diagnostic im-
ages, for example, the chest X-ray images of COVID-19. There
are two main motivations for applying the FL approach in
these works, the insufficiency of data and privacy concerns.
However, they do not address the coordination of different
work nodes (medical devices) in the COVID-19 detection
system based on heterogeneous devices and networks, which is
important for improving the efficiency of FL for countering the
communicable infectious disease of COVID-19. In the setup of
a heterogeneous FL system, there are two common schemes

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

for the coordination based on parallel iterative optimization
algorithms: asynchronous and synchronous.

The asynchronous scheme can better solve the problem of
scattered devices in the heterogeneous multi-device environ-
ment, and computation heterogeneity is a more pronounced
bottleneck [19]. Thus, the asynchronous FL requires flexibility
and scalability, and it is proved that the asynchronous FL has
near-linear convergence to a global optimum, for both strongly
convex and a restricted family of non-convex problems [20]. In
addition, the practicality of asynchronous SGD is a non-trivial
problem due to the complex heterogeneous environment. A
Semi-Asynchronous federated learning protocol (FedSA) in
[21] addresses the problems in FL such as low round efficiency
and poor convergence rate. An FL architecture in [22], called
CoLearn, is deployed on resource-constrained IoT devices to
demonstrate an asynchronous participation mechanism. An
asynchronous FL scheme in [23] performs the convergence
boosting by updating verification and weighted aggregation for
resource sharing in vehicular networks. An enhanced federated
learning technique in [24] is an asynchronous learning strategy
on the work nodes that the different layers of the Deep
Neural Networks (DNNs) are categorized into shallow and
deep layers. All these works show that the asynchronous
scheme is widely adopted for the efficiency of FL.

Despite its popularity, the practical performance of asyn-
chronous FL methods for solving large scale machine learning
problems are not as good as theoretical results indicate, as
known to suffer from the problem of delayed gradients [25].
A natural solution is to use the local solver in which the work
nodes train their model independently and synchronize every
once in a while, called synchronous scheme [6].

In synchronous FL, most recent works analyze the con-
vergence of federated optimization algorithms with the as-
sumption that the dataset of local SGD is Idenpendent and
Identically Distributed (IID). For IID data, it is proved that
synchronous FL converges for convex problems with local
GD/SGD [26]. Also, the intensive convergence analysis of IID
data shows that synchronous FL can be applied more generally
and is less expensive [27]. Further, the convergence bound of
synchronous FL is analyzed from a theoretical point of view
[15], [28]. Except for the convergence analysis of IID data,
the local SGD method is also a concern. A new analysis of
local SGD removes unnecessary assumptions and elaborates
on the difference between two data regimes: IID and Non-IID
[29]. Likewise, local SGD is analyzed with delayed updates
on smooth quasiconvex and non-convex functions and derives
concise, non-asymptotic, convergence rates [30]. It is proved
that local SGD strictly dominates minibatch SGD and presents
a lower bound on the performance [31].

Further, for analyzing the convergence of synchronous local
SGD in FL, the Non-IID dataset is a much more common
situation. It is provided in a thorough and rigorous theoretical
study that shows why local SGD can work as well as parallel
mini-batch SGD with significantly less communication over-
head and Non-IID dataset [32]. The proof of local SGD shows
that there is a trade-off between communication efficiency
and convergence rate for Non-IID data [33], and achieves
a linear iteration speedup with a lower communication com-

plexity even if work nodes access Non-IID datasets [34]. The
convergence of local SGD on Non-IID data is analyzed in [33],
[35], which establish a convergence rate of strongly convex
and smooth problems and demonstrates the applicability of
local GD/SGD in federated learning. However, it is proved
that heterogeneity (Non-IID) data results in a ‘drift’ in the
local SGD resulting in poor performance [36]. Therefore, it
is difficult to determine the optimal number of local SGD
iterations for work nodes in each round to improve the
training speed in the COVID-19 detection system based on
heterogeneous devices and networks.

To our best knowledge, we are the first to propose a
novel Asynchronous-Adaptive scheme and formally address
the problem of dynamically determining the number of local
SGD iterations at different work nodes. The AAFL scheme
has a faster convergence rate than the synchronous scheme
because of the asynchronous iteration strategy, and has a more
stable performance than the asynchronous scheme because of
adaptively controlling the number of local SGD iterations.
For these reasons, the AAFL scheme is able to optimize the
FL model with a given resource budget in the heterogeneous
Edge-Based wireless communication systems for countering
the communicable infectious disease of COVID-19.

III. PRELIMINARIES AND DEFINITIONS

In this section, we first briefly introduce the definitions of
loss function in the COVID-19 detection system based on
heterogeneous devices and networks (Section III-A). Then,
we describe the definitions and calculations of the FL ba-
sic algorithm which is the Federated Averaging (FedAvg)
algorithm [6], and show the detailed workflow of FedAvg in
pseudo-code form (Section III-B). Finally, we formalize our
learning problem and ultimate goal with a given time resource
constraint (Section III-C).

A. Loss Function

In the COVID-19 detection system based on heterogeneous
devices and networks, each work node has a local model from
the parameter server. The local model has a loss function
fj (w) defined on its vector of model parameters w (is
assumed to be column vectors) for each data sample j [6].
The local loss function captures the prediction variance of
the model on the local training datasets of COVID-19 X-ray
images, and the model learns the local image features by local
SGD iterations to update model parameters, that is to minimize
the local loss function. In the next step, we aggregate the
loss functions on all work nodes and obtain the global loss
function.

According to the definitions in [6] and [15], assume that we
have N work nodes with the local training datasets of COVID-
19 X-ray images D1,D2, ...,Di, ...,DN , and the loss function
on the collection of data samples at work node i is

Fi(w) ,
1

|Di|
∑
j∈Di

fj(w), (1)

where “,” denotes “is defined to be equal to”. We define Di ,
|Di|, where |.| denotes the size of the set, and D ,

∑N
i=1Di.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

0 1 ... k ... K

0 1 ... λ ... τi

Commu-

nication

rounds

Local SGD

iterations

Fig. 2. Two time scales of FedAvg which have K rounds. Each round
comprises τi number of local SGD iterations.

Assuming Di ∩ Di′ = ∅ for i 6= i
′
, we define the global loss

function on all the distributed datasets as

F (w) ,

∑N
i=1DiFi(w)

D
. (2)

Note that F (w) cannot be directly computed without sharing
information among multiple work nodes.

B. The Federated Averaging (FedAvg) Algorithm

Federated Averaging (FedAvg) algorithm was first proposed
in [6], and provided the basic principles for our AAFL scheme
in the heterogeneous Edge-Based wireless communication
systems for countering the communicable infectious disease
of COVID-19. As shown in Fig. 2, FedAvg has K (K ≥ 1)
rounds, and each work node has τi (τi ≥ 1) local SGD
iterations in a round, where k = 0, 1, 2, ...,K denotes the
round index and λ = 0, 1, 2, ..., τi denotes the local SGD
iteration index, and the number of τi is set to be fixed on
all work nodes and rounds. The server has global model
parameters wk and each work node i has its local model
parameters wi,λ

k in all rounds. When FedAvg begins (k = 0),
the server initializes the global model parameters w0 and sends
it to all work nodes. At λ = 0, the local model parameters for
all work nodes are received from the server (wi,λ=0

k = wk).
For λ > 0, the new values of wi,λ

k are computed according to
the SGD update rule on the local loss function, based on the
local model parameters in the previous iteration λ − 1. After
one or multiple local SGD iterations, a global aggregation is
performed through the aggregator (at the parameter server) to
update the global model parameters, which is the weighted
average of the local model parameters at all work nodes. We
define that each above round includes one global aggregation
step and τi local SGD iterations. The values of τi are assigned
to the same at each work node i and throughout all rounds.

The local SGD in each local iteration is performed on the
local model parameters in the previous local iteration. For each
work node i, the update rule is as follows:

wi,λ
k = wi,λ−1

k − η∇Fi
(
wi,λ−1
k

)
, (3)

where k ∈ [0,K], λ ∈ [1, τi] and η > 0 denotes the learning
rate which is used in SGD. In this paper, η is fixed with a pre-
specified value and is equal at all work nodes. For the global
aggregation step, we define

wk =

∑N
i=1Diw

i,λ=τi
k−1

D
. (4)

Algorithm 1 FedAvg in the k-th (k ∈ [1,K]) round.

Input: τi
Output: Global model parameters wk in the k-th round
1: Receive the last global model parameters wk−1 from

aggregator;
2: Initialize λ = 0 for all work nodes i;
3: wi,λ

k−1 ← wk−1;
4: for λ = 1, 2, ..., τi do
5: Update wi,λ

k−1 using (3);
6: end for
7: Collect wi,λ=τi

k−1 from all work nodes i by aggregator;
8: Compute wk using (4) by aggregator;

We define that the value of round K is limited by the total
budget of time T . In the k-th (k ∈ [1,K]) round, the logic
of FedAvg with distributed SGD is presented in Algorithm 1,
which ignores aspects related to the communication between
the aggregator and edge work nodes [6]. We define that wk−1
is the global model parameters in the last round k−1 (Line 3
of Algorithm 1), and the global model parameters is defined in
(4). When k = 1, the value of wk−1 is equal to the initialized
w0.

We note that when τi = 1 in Algorithm 1, i.e., when
we perform the global aggregation step after every local
SGD iteration, the distributed SGD (ignoring communication
aspects) is equivalent to the centralized SGD, where the latter
assumes that all data samples are available at a centralized
location. This is due to the linearity of the gradient operator.
See Appendix A for detailed discussions about this.

C. Problem Formulation

In this paper, our ultimate goal is efficiently getting the
highly accurate identifications of COVID-19 patients through
chest X-ray images, which is based on FedAvg algorithm in the
heterogeneous Edge-Based wireless communication systems.
Thus, the first learning problem of FL is to minimize the global
loss function F (w), i.e., to find

w∗ , argminF (w), (5)

and we define

wf , argmin
w∈{wk:k=0,1,2,...,K}

F (w). (6)

There are the inherent complexity and communication over-
head of the large-scale distributed training of neural networks
in FL, it is usually impossible to find a closed-form solution
within the effective time to (5). Thus, (5) is often solved using
SGD techniques for FedAvg algorithm [37]–[39].

When a large amount of chest X-ray images are distributed
at different work nodes in a heterogeneous health system, the
FL process can consume a significant amount of time. One
often has to limit the time used for learning each model, in
order not to backlog the system and to keep the operational

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

cost low. This is particularly important in Edge-Based wire-
less environments where the computation and communication
resources are not as abundant as in data centers.

Therefore, a natural question is how to make the efficient
use of a given time to minimize the loss function of model
training. Our solution is the asynchronous iteration strategy,
where the number of local SGD iterations τi is no longer set
to be fixed can be adaptively controlled, called Asynchronous-
Adaptive FL (AAFL), and the question narrows down to
determining the optimal values of τi at each work node i in all
rounds, so that the global loss function is minimized subject
to a given time resource constraint for this learning task.

In the k-th (k ∈ [1,K]) round, we define that each local
SGD iteration at work node i consumes cik time resource, and
each global aggregation step consumes bk time resource. To
make the problem tractable, we assume that cik is the same for
all local SGD iterations λ of work node i on the k-th round,
and bk is the same for all work nodes. Moreover, we assume
that the initialization process for k = 0 does not consume cik
and bk. When T denotes the total budget of time, we seek the
solution to the following problem:

min
{τi},K∈{1,2,3,...}

F
(
wf
)

s.t.
K∑
k=1

(
max
i
cikτi + bk

)
≤ T,

(7)

where {τi} represents the set of the number of local SGD
iterations on N work nodes {τ1, τ2, ..., τi, ..., τN}.

To solve (7), we need to find out how {τi} and K (and
thus T) affect the loss function F

(
wf
)

computed on the final
global model parameters wf .

IV. OUR PROPOSED AAFL SCHEME

In this section, we first analyze the convergence of the
AAFL scheme and get a convergence upper bound. Next,
we find an approximate solution to (7) according to the
relationship between the convergence upper bound and the
value of {τi}. Based on the solution, we design the algorithm
of parameter server and work nodes to adaptively controls the
value of {τi} for the AAFL scheme.

A. Convergence Analysis

We analyze the convergence of the AAFL scheme in this
subsection and find an upper bound of F (wf) − F (w∗). To
facilitate the analysis, we first introduce some notations. At the
end of each round k = 1, 2, ...,K, the aggregator computes
the global loss function that we define

F (wk) ,

∑N
i=1DiFi

(
wi,λ=τi
k−1

)
D

, (8)

where Fi
(
wi,λ=τi
k−1

)
is local loss function which is computed

from wi,λ
k−1 and local training dataset at work node i.

To facilitate comparison with F (wk), we use vi,λk to denote
an auxiliary vector of model parameters that has the same size
of wi,λ

k , and follows a centralized SGD according to

vi,λk = vi,λ−1k − η∇F
(
vi,λ−1k

)
, (9)

where vi,λk is only defined for λ ∈ [1, τi] for a given k at
work node i. This update rule is based on the loss function
F
(
vi,λk

)
which is trained on all data samples at a central place

(thus we call it centralized SGD), whereas the iteration in (3)
is on the local loss function Fi (w) and local data samples.
Equivalently, we define

F (vk) ,

∑N
i=1DiF

(
vi,λ=τik−1

)
D

. (10)

Note that F (vk) 6= F
(
vi,λ=τik−1

)
when τi is different (and

thus the different loss functions F
(
vi,λ=τik−1

)
due to cen-

tralized SGD) for each work node. We define that vi,λk is
“synchronized” with wi,λ

k at the beginning of each round k,
i.e., vi,λ=0

k = wi,λ=0
k = wk (k ∈ [0,K]), where wk is global

model parameters defined in Section III-B.
The above definitions enable us to find the convergence

bound of FedAvg by taking a two-step approach. The first
step is to find the gap between wk and vk for each round k,
which is the difference between the distributed and centralized
SGD after τi steps of local SGD and one global aggregation
at all work nodes. The second step is to combine this gap with
the convergence bound of vk within each round k to obtain
the convergence bound of wk.

For further analysis, we use the following assumption in
[15] to the loss function.

Assumption 1. We assume the following is valid for any work
node i:

• Fi (w) is convex
• Fi (w) is ρ-Lipschitz, i.e.,

∥∥∥Fi (w)− Fi
(
w
′
)∥∥∥ ≤

ρi

∥∥∥w −w
′
∥∥∥ for any w, w

′
at work node i

• Fi (w) is β-smooth, i.e.,
∥∥∥∇Fi (w)−∇Fi

(
w
′
)∥∥∥ ≤

βi

∥∥∥w −w
′
∥∥∥ for any w, w

′
at work node i

The symbol of ‖.‖ denotes the L2 norm, and Assumption
1 is satisfied for squared support vector machine (SVM),
which is an example of the loss function defined in Section
III-A and a generalized linear classifier that performs binary
classification of data. The experimentation results that will be
presented in Section V show that our control algorithm also
works well for models (such as the neural network) whose
loss functions do not satisfy Assumption 1.

We also define the following metric to capture the diver-
gence between the gradient of a local loss function and the
gradient of the global loss function. This divergence is related
to how the training data is distributed at different work nodes.

Definition 1. (Gradient Divergence) For any i and w, we
define δi as an upper bound of ‖∇Fi (w)−∇F (w)‖, i.e.,∥∥∥∇Fi (wi,λ

k

)
−∇F

(
wi,λ
k

)∥∥∥ ≤ δi. (11)

The below theorem gives an upper bound on the difference
between wi,λ

k and vi,λk when λ is within the round k.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

Theorem 1. For any k, i and λ ∈ [0, τi], we have∥∥∥wi,λ
k − vi,λk

∥∥∥ ≤ gi(λ), (12)

where

gi(λ) ,
δi
βi

(
(ηβi + 1)

λ − 1
)
. (13)

Furthermore, as Fi (w) is ρ-Lipschitz, we have

F (wk)− F (vk) ≤
∑N
i=1Diρigi (τi)

D
. (14)

Proof. We first obtain an upper bound of
∥∥∥wi,λ=τi

k − vi,λ=τik

∥∥∥
for each work node i, then accumulate the above results. For
details, see Appendix B.

Note that we always have η > 0 and βi > 0 because
otherwise the SGD procedure or the loss function becomes
trivial. Therefore, we have (ηβi + 1)

λ ≥ ηβiλ + 1 for
λ = 0, 1, 2, ..., τi due to Bernoulli’s inequality. Substituting
this into (13) confirms that we always have gi(λ) ≥ 0.

It is easy to see that gi(0) = 0. Therefore, when λ = 0, i.e.,
at the beginning of the round k, the upper bound in (12) is
zero. This is consistent with the definition of vi,λ=0

k = wi,λ=0
k

for any k at all work nodes i. When λ = 1 (i.e., the
second iteration in round k), the upper bound in (12) is
ηδi. This agrees with the definition of (3), (9) and (11),
showing that there is gradient divergence between distributed
and centralized SGD when only one local SGD iteration is
performed after the global aggregation.

For λ > 1, the value of λ can be larger. When λ is large, the
exponential term with (ηβi + 1)

λ in (13) becomes dominant,
and the gap between wi,λ

k and vi,λk can increase exponentially
with λ for λ ∈ [0, τi]. We also note that gi(λ) is proportional
to the gradient divergence δi, which is intuitive because the
more the local gradient is different from the global gradient,
the larger the gap will be. The gap is caused by the difference
in the local gradients at different work nodes starting at the
first local SGD iteration after each global aggregation. Thus,
when all work nodes have the exactly same data samples (and
thus the same local loss function), the gradients will always be
the same and δi = 0, in which case wi,λ

k and vi,λk are always
equal in each round k.

Then, (14) gives an upper bound of the difference between
distributed and centralized SGD at the end of round k (after
global aggregation). Based on these results, we first obtain the
following lemma.

Lemma 1. When all the following conditions are satisfied:
• 0 < ηβi ≤ 2

• Fi

(
vi,λk

)
− F (w∗) ≥ ε for all k and λ

• F (wK)− F (w∗) ≥ ε
where ε is a unknown quantity that represent the lower bound
of Fi

(
vi,λk

)
−F (w∗) and F (wK)−F (w∗), and we define

ω = mini,λ
1∥∥∥∥vi,λ

k
−w∗

∥∥∥∥2 , and ϕi ,
(
1− ηβi

2

)
ω. It is easy

to see that 0 ≤ ϕi < ω for 0 < ηβi ≤ 2 according to the
definition of η > 0 in Section III-B and βi ≥ 0 in Assumption

1, then the convergence upper bound of Algorithm 1 after K
iterations is given by

F (wK)− F (w∗) ≤ I +KBi −Kηε2Ci, (15)

for the definition of that I = F (w0) − F (w∗), Bi =∑N
i=1Diρigi(τi)

D and Ci =
∑N
i=1Diϕiτi

D .

Proof. We first analyze the convergence of F
(
vi,λk

)
within

each round k. Then, we combine this result with the gap
between F (vk) and F (wk) from Theorem 1 to obtain the
final result. For details, see Appendix C.

We then have the following theorem

Theorem 2. When 0 < ηβi ≤ 2, we have

F
(
wf
)
− F (w∗) ≤

√
I

KηCi
+

Bi
ηCi

+Bi. (16)

Proof. Condition 1 in Lemma 1 is always satisfied due to the
condition ηβi ≤ 2 in this theorem.

We can choose ε to be arbitrarily small (but greater than
zero) so that conditions 2–3 in Lemma 1 are satisfied. Com-
bining with the condition 3 and (15), we have

ε ≤ F (wK)− F (w∗) ≤ I +KBi −Kηε2Ci. (17)

Solving for ε, we obtain
ε ≥
−
√

1 + 4KηCi (I +KBi)− 1

2KηCi

ε ≤
√

1 + 4KηCi (I +KBi)− 1

2KηCi
,

it is obvious that the first term is less than 0, and be ignored
according to the definition ε > 0. Thus we define that ε0 > 0
is the maximum value of ε and is equal to√

1 + 4KηCi (I +KBi)− 1

2KηCi
≤
√
4KηCi (I +KBi)

2KηCi

=

√
I

KηCi
+

Bi
ηCi

,

(18)
where the first term is because

√
1 + χ ≤ 1 +

√
χ for

χ = 4KηCi (I +KBi) ≥ 0 (according to the definitions in
Lemma 1). We know that there does not exist ε > ε0 that
satisfies both conditions 2 and 3 in Lemma 1, otherwise the
ε0 contradicts with its definition of the maximum value of ε.
This means that

min

{
min

k=1,2,...,K
F (vk) ;F (wK)

}
− F (w∗) ≤ ε0. (19)

From Theorem 1, F (wk) − F (vk) ≤ Bi for any round k.
Combining with (19), we get

min
k=1,2,...,K

F (wk)− F (w∗) ≤ ε0 +Bi. (20)

Using (20) and (18), we obtain the result in (16). As a result,
when K =∞, the upper bound of F

(
wf
)
− F (w∗) will be

converged to
√

Bi
ηCi

+Bi. Furthermore, we will use the above

definitions and theorems to solve the problem in (7)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

B. Approximate Solution to (7)

We assume that η is chosen small enough such that η ≤ 1
βi

for each work node i, and use the upper bound in (16) as
an approximation of F

(
wf
)
− F (w∗). Because for a given

global loss function F (w), its minimum value F (w∗) is a
constant, the minimization of F

(
wf
)

in (7) is equivalent to
minimizing F

(
wf
)
− F (w∗). With this approximation and

rearranging the inequality constraints in (7), we can rewrite
(7) as

min
{τi},K∈{1,2,3,...}

√
I

KηCi
+

Bi
ηCi

+Bi

s.t. K ≤ T

maxi,k
(
cikτi + bk

) , (21)

where Bi =
∑N
i=1Diρigi(τi)

D and Ci =
∑N
i=1Diϕiτi

D .
It is easy to see that the objective function in (21) decreases

with K. Therefore, for any τi, the optimal value of K is
b T

maxi,k(cikτi+bk)
c, i.e., the largest value of K that does not

violate any inequality constraint in (21), where b.c denotes the
floor function for rounding down to integer. To simplify the
analysis, we approximate by ignoring the rounding operation
and substituting K ≈ T

maxi,k(cikτi+bk)
into the objective

function in (21), yielding

G({τi}) ,
√

IT

maxi,k
(
cikτi + bk

)
ηCi

+
Bi
ηCi

+Bi, (22)

and we can define the (approximately) optimal {τi} as

{τ∗i } = argmin
τi∈{1,2,3,...}

G({τi}). (23)

There is no closed-form solution for {τ∗i } and the deter-
mination of convexity for G({τi}), because G({τi}) includes
both the polynomial and exponential terms of τi, where the
exponential term is embedded in gi (τi). As the value of τi
can only be a positive integer according to the definition of τ ,
one strategy is to compute G({τi}) within a finite range of τi
at all work nodes to find {τ∗i } that minimizes G({τi}), and it
can finally find the global optimal value [15]. However, due to
its exponential complexity, when the number of work nodes
increases, the computation becomes unworkable. Therefore,
we use the other approximate solution strategy:
• We use the gradient descent method in each round k,

where the set {τi} is the variable associated with the
function G({τi}), and the parameters cik, bk, ρi, βi, and
δi are constants associated with the function G({τi}).

• The set {τi} is initialized to the same fixed value for all
work nodes at the beginning of the gradient descent.

• During the gradient descent, the value of {τi} will change
to reduce the value of the function G({τi}). Therefore,
we obtain an approximate optimal result {τ∗i } which
minimize the function G({τi}) at the end of the gradient
descent.

We assume that the value of τ is not an integer during
gradient descent for smoother operation, and it finally obtains
a rounded local optimum value around the initial value of
{τ∗i }. Compared to training the model of FL, the time spent

on the gradient descent method is negligible and belongs to
the global aggregation time bk. We implement our approximate
solution strategy in the following control algorithm of AAFL
and obtain the optimal result {τ∗i } in each round. The effective
performance of our strategy will be presented in Section V.

C. Control Algorithm of AAFL

We propose an Asynchronous-Adaptive FL scheme, called
AAFL, which approximately solves (7) in Edge-Based wire-
less communication systems for countering the communicable
infectious disease of COVID-19. We first set the time budget
T and the initialized values of {τi} in (22) for the first
local SGD iteration and the first global aggregation. Then,
we consider practical scenarios where cik, bk, and some other
parameters are unknown and may vary over time, and we
propose a control algorithm that estimates the parameters and
dynamically adjusts the value of {τi} in real-time. Specifically,
we present the complete control algorithm for the AAFL
scheme, which recomputes {τ∗i } in every global aggregation
step based on the most recent system state. We use the
theoretical results above to guide the design of the algorithm.

As illustrated in Fig. 3, the parameter server and work nodes
train a model from the datasets of COVID-19 X-ray images
in medical devices, where different work nodes have different
time points for completing tasks. The architecture of the AAFL
scheme is divided into three main building blocks:

• Local SGD: All work nodes receive a global model wk

from parameter server, and perform local SGD iterations
from the local training datasets of COVID-19 X-ray
images. After finishing τi local SGD iterations, each work
node sends the result of local model w̃ to the parameter
server.

• Server aggregate: The parameter server receives the
local model w̃ from each work node i, and computes
wk according to (4).

• Compute new {τ∗i }: The parameter server receives
control parameters Ei from each work node i, where Ei
is defined as the estimated value of cik, bk, ρi, βi, and δi.
Then, the parameter server computes a new approximate
value of {τ∗i }, and sends it to all work nodes for local
updating.

As mentioned earlier, the local SGD iteration runs on the
work nodes, and the global aggregation is performed with
the assistance of the parameter server (logical component)
which runs on a laptop, see details in Section V-A. The
complete process of the parameter server and each work node
is presented in Algorithm 2 and Algorithm 3, respectively,
where Lines 13-16 of Algorithm 3 are local SGD iterations,
and the rest are considered as a part of the initialization,
global aggregation and computing new {τ∗i }. We assume
that the aggregator initiates the learning process, then ini-
tializes the model parameters w0 and sends it to all work
nodes. We note that instead of transmitting the entire model
parameters in every global aggregation step, one can also
transmit compressed or quantized model parameters to further
save the communication bandwidth, where the compression or

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

Parameter server
... ...

Time

Work nodes

ŵ1 ŵ2 ŵ3 ŵ4

Time points for submission at different work nodes

ŵ5

Local SGD

ŵ wk

Server aggregate Compute new {τi}

E1 E2 E3 E4 E5

{τi}

*

*

Fig. 3. The architecture of the AAFL scheme.

quantization can be performed using techniques that described
in [40], for instance.

1) Estimation of Parameters in G({τi}): The expression of
G({τi}), which includes gi (τi), has parameters that need to be
estimated in practice. Among these parameters, cik and bk are
related to time consumption, ρi, βi, and δi are related to the
loss function characteristics. These parameters are estimated
in real-time during the learning process.

The values of cik and bk are estimated based on the mea-
surements of time consumption at the work nodes and the
aggregator of server (Line 14 of Algorithm 2 and Line 19 of
Algorithm 3). The value of mk in Line 16 of Algorithm 2 is the
max value of time consumption among all previous k rounds,
which is defined in (22), where maxi ĉ

i
kτi + b̂k is described

in (21) as the sum of time consumption in round k. The total
time consumption of the first k rounds sk is computed at Line
19 of Algorithm 2 and compared against the time budget T .
Once the consumed time sk is over the budget limit, it stops
the learning and returns the final result.

The values of ρi, βi, and δi are estimated based on the loss
functions and gradients (Line 12 of Algorithm 2 and Lines
8 and 9 of Algorithm 3). The gradient ∇Fi (w̃) is computed
at Fi (w̃), and the gradient ∇F (wk) is the aggregation of
∇Fi (w̃) from all work nodes (Line 28 of Algorithm 2 and
Lines 18 of Algorithm 3). To perform the estimation, each
edge work node needs to have access to its local model
parameters wi,λ=τi

k−1 and the global model parameters wk at
the beginning of round k, where we use w̃ to save the last
local model parameters wi,λ=τi

k−1 . The global model parameters
wk is only observable by each work node after the global
aggregation (see Lines 24 and 26 of Algorithm 2), thus the
estimated values of ρi, βi, and δi are only available at the
second global aggregation step to recompute {τ∗i }.

The parameter η is the learning rate in SGD which is pre-
specified and known. The parameter I is the deviation between
F (w0) and F (w∗) according to the definition in Lemma 1,
and the value of I is estimated to be equal to the value of
F (w0) at Line 6 of Algorithm 2, because the value of F (w∗)
is usually small that F (w0)−F (w∗) ≈ F (w0). The remaining
parameter ϕi (include ω) is non-straightforward to estimate

Algorithm 2 Procedure at the parameter server.

Input: Time budget T , control parameter ω
Output: wf

1: Initialize k = 0,mk = 0, sk = 0;
2: Initialize wk, set wf ← wk;
3: Send wk to all work nodes;
4: Receive Fi (wk);
5: Compute F (wk) according to (2);
6: Initialize I = F (wk);
7: repeat
8: Initialize {τi};
9: Send wk, τi and k to all work nodes;

10: if k > 0 then
11: Receive β̂i and ρ̂i;
12: Estimate δ̂i ← ‖∇Fi (w̃)−∇F (wk)‖;
13: Receive time consumption ĉik from each work node

i;
14: Estimate time consumption b̂k;
15: if mk < maxi ĉ

i
kτi + b̂k then

16: mk = maxi ĉ
i
kτi + b̂k;

17: end if
18: Compute the new value of {τ∗i } for each i;
19: sk ← sk +maxi ĉ

i
kτi + b̂k;

20: if sk ≥ T then
21: Set STOP flag, and send it to all work nodes;
22: end if
23: end if
24: k ← k + 1;
25: Receive w̃ from each node i;
26: Compute wk according to (4);
27: Receive ∇Fi (w̃) from each work node i;
28: Compute ∇F (wk)←

(∑N
i=1Di∇Fi (w̃)

)
/D;

29: Receive Fi (w̃) from each work node i;
30: Compute F (wk) according to (8);
31: if F (wk) < F (wf) then
32: wf ← wk;
33: end if
34: until STOP flag is set

because the algorithm does not know w∗, thus we regard it
as a control parameter that is manually chosen and remains
fixed for the same machine learning model. Experimentation
results presented in the next section show that a fixed value
of ω works well across different data distributions, various
work nodes, and various time budgets. The value of ω can
be approximated as the inverse of the difference between the
initial model w0 and w∗, according to the definition of vi,λk
and ω. When a larger value of ω and ηβi ≤ 2 in Lemma
1, it gives a larger value of ϕi and then a larger value of
Ci , yielding a smaller value of G({τi}), which represents a
smaller gap between the final result wf and w∗. The above
analysis shows that the larger value of ω means the smaller
difference of the initial model w0 and the final result wf , and
it is contrary to reality. Therefore, in practice, it is usually

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

Algorithm 3 Procedure at each work node i.

1: Receive wk from parameter server;
2: Send Fi (wk) to parameter server;
3: repeat
4: Initialize λ← 0;
5: Receive wk, τi and k from parameter server;
6: if k > 0 then
7: Compute Fi (wk) and ∇Fi (wk);
8: Estimate ρ̂i ← ‖Fi (w̃)− Fi(wk)‖ / ‖w̃ −wk‖;
9: Estimate β̂i ← ‖∇Fi (w̃)−∇Fi(wk)‖ / ‖w̃ −wk‖;

10: Send β̂i and ρ̂i to parameter server;
11: end if
12: Set wi,λ

k ← wk;
13: for µ = 1, 2, ..., τi do
14: λ← λ+ 1;
15: Perform local local SGD iteration at wi,λ

k ;
16: end for
17: Set w̃ ← wi,λ=τi

k ;
18: Compute Fi (w̃) and ∇Fi (w̃);
19: Estimate time consumption ĉik;
20: Send ĉik, w̃, Fi (w̃) and ∇Fi (w̃) to parameter server;
21: until STOP flag is received;

tuning the value of ω on a small setup. The sensitivity of ω
is shown in Section V-B6.

2) Recomputing {τ∗i }: The value of {τ∗i } is recomputed
by the aggregator during each global aggregation step, based
on the most updated parameter estimations. When using the
gradient descent method, we set the initial {τi} as a trainable
value and the other parameters in G({τi}) are constant. To
prevent the negative values of {τ∗i }, the boundary of τi value
is set to [1, 100], because if {τ∗i } is too large, it is more likely
to operate beyond the time budget due to incorrect estimation
values in the Edge-Based wireless communication systems.
When there are non-representable values in {τ∗i }, the process
stops and the result is outputted. The result of new {τ∗i } means
the end of a round (see Line 18 and 24 of Algorithm 2), then
the new value is sent to each work node together with wk and
k.

The process of computing the new value of {τ∗i } begins
at the round k = 1 (see Line 10 of Algorithm 2 and Line
6 of Algorithm 3). This is because for k = 0, wk = w̃ as
the initialization in Line 2-5 of Algorithm 2 and Line 1-2 of
Algorithm 3, where we obtain ρi = βi = δi = 0 and δi

βi
in gi (τi) is invalid. Therefore, our AAFL algorithm actually
performs a FedAvg algorithm step first before starting the
control, and the experimentation results presented in Section
V-B3 show that it only has a certain impact when the time
budget is small and the initial value of {τ∗i } is large.

3) Handling of SGD: When using SGD in our AAFL
algorithm at all work nodes, all loss functions and their gradi-
ents are computed on mini-batches. Each local SGD iteration
corresponds to a step of local model parameters update where
the gradient is computed on a mini-batch of local training data,

and then be performed for local model parameters in Line 15
of Algorithm 3. The mini-batch changes for every step of local
iteration, i.e., for each new local iteration, a new mini-batch
of a given size is randomly selected from the local training
data.

The local SGD iterations of distributed SGD at the edge
work nodes include Lines 13-16 of Algorithm 3, where Line
15 of Algorithm 3 corresponds to Line 5 of Algorithm 1. When
the global aggregation is performed, Line 26 of Algorithm 2
computes the global model parameters wk at the aggregator,
which is sent to the work nodes in Line 9 of Algorithm 2, and
each edge work node receives wk in Line 5 of Algorithm 3
and sets wi,λ

k ← wk to use wk as the initial model parameters
for the local SGD iterations.

The optimal model parameters wf that minimizes F (w)
is obtained at the aggregator in Lines 32 of Algorithm 2.
According to (20), we select the value of wk in each round
(Lines 31-33 of Algorithm 2) to ensure that the final value
of wf is the smallest value of wk. In the next section, we
design experiments on the general dataset to verify the general
effectiveness of the AAFL algorithm, then apply the AAFL
algorithm with public COVID-19 X-ray images databases to
validate performance.

V. PERFORMANCE ANALYSIS

To evaluate the AAFL algorithm, the experiments focused
on the qualitative and quantitative analysis of general prop-
erties under the setup of our heterogeneous system. We then
applied it to counter the communicable infectious disease of
COVID-19 and analyzed the performance.

A. Setup

We first evaluate the general performance of our AAFL
algorithm in Edge-Based wireless communication systems,
thus we conducted experiments on a networked prototype
system with five work nodes. The prototype system consists
of five Raspberry Pi (version 4B) devices and one laptop
computer, which are all interconnected via Wi-Fi in an of-
fice building. The laptop computer has an aggregator and
implements the AAFL algorithm of parameter server, and
the Raspberry Pi device implements the AAFL algorithm of
work node. All of these five work nodes have model training
with local datasets and different simulated submission time,
which represents a heterogeneous system with the different
computational capabilities of work nodes.

1) Baselines: We compare with the following baseline
approaches:
• Centralized SGD where the entire training dataset is

stored on a single edge device and the model is trained
directly on that device using a standard (centralized) SGD
procedure.

• Canonical federated learning approach which is equiv-
alent to using FedAvg algorithm and the fixed (non-
adaptive) value of τi at all work nodes in all rounds.

For a fair comparison, we set the result of the first baseline
as the standard model under our fixed time budget, and use this
model for evaluating the convergence of other trained models.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

After the time budget is set, we implement the estimation of
time consumption for all baselines, and the training stops when
we have reached the time budget. When the AAFL algorithm
is compared to the second baseline, we give the fixed τi three
special values: The maximum, average and minimum number
of local SGD iterations after the AAFL algorithm runs under
the same condition at all work nodes in all rounds. When using
the fixed τi, we remove any parts related to the parameter
estimations and recomputation of {τ∗i } in Algorithm 2 and 3.

2) Model and Datasets: We evaluate the training of two
different models on two different datasets, which represent
both small and large models and datasets, as one can expect
all these variants existing in edge computing scenarios. The
models include squared-SVM1 (we refer to as SVM in short
in the following) and deep convolutional neural networks
(CNN)2. Among them, the loss functions for SVM satisfy
Assumption 1, whereas the loss functions for CNN are non-
convex and thus do not satisfy Assumption 1. Unless otherwise
specified, the datasets have data distribution that each data
sample is randomly assigned to a work node (defined as Case
1), thus each work node has uniform (but not full) information.

SVM is trained on the original MNIST (which we refer to as
MNIST in short in the following) dataset [41], which contains
the gray-scale images of 7× 104 handwritten digits (6× 104

for training and 104 for testing).
CNN is trained using SGD on two different datasets: the

MNIST dataset and the CIFAR-10 dataset [42], and the
CIFAR-10 dataset includes 6 × 104 color images (5 × 104

for training and 104 for testing) associated with a label from
10 classes. A separate CNN model is trained on each dataset,
to perform multi-class classification among the 10 different
labels in the dataset.

3) Simulation of Time Consumption: For the prototype
system, we train each model for a fixed amount of time budget.
The values of c and b correspond to the simulated time used for
each local SGD iteration and global aggregation, respectively.
The simulated time values are randomly generated according
to Gaussian distribution, where the mean and standard devi-
ation values are obtained from the real-time consumption of
the SVM model on the prototype system.

4) Simulation of Heterogeneous System: In real situations,
the heterogeneous computing power and network connection
of edge devices cause different submission times which is
designed by adding delay time to the simulated time c. The
delay time are multipliers of the simulated time, and the
multipliers are divided into two intervals: [1, 2] and (2, 10].
If any work node selects one of the above two delay time
intervals, it will be added with a random delay time to all
local SGD iterations in the selected interval. We note that the
random delay time has a small variance in the interval of [1, 2]
(stable) and have a large variance in the interval of (2, 10]
(unstable). Therefore, the work nodes in the delay time interval
of [1, 2] is the stable fast work nodes which have stable short

1The squared-SVM has a fully connected neural network, and outputs a
binary label that corresponds to whether the digit is even or odd.

2The CNN has two 5 × 5 × 32 convolution layers, two 2 × 2 MaxPoll
layers, a 1568×256 fully connected layer, a 256×10 fully connected layer,
and a softmax output layer with 10 units.

time in training the model (local SGD) and submitting the
results, respectively, the work nodes in the delay time interval
of (2, 10] is the unstable slow work nodes that have unstable
long time in training the model (local SGD) or submitting the
results.

At the beginning of each round in experiments, we divide
all these work nodes into the above two delay time intervals to
represent fast work nodes and slow work nodes. According to
the percentage of fast work nodes, the comparison trials were
divided into six groups, from 0% to 100%, with an interval of
20%. Moreover, We divide the delay time interval of (2, 10]
into four independent parts of the same size in Section V-B2,
each representing the delay time interval of stable slow work
nodes, and then observe the effect of different delay time
intervals on the AAFL algorithm. The following results in
Section V-B show that the AAFL algorithm can handle these
fast and slow work nodes correctly.

5) Training and Control Parameters: In all our experi-
ments, we set the maximum τi value max τi = 100 according
to the boundary of τi value in Section IV-C2. Unless otherwise
specified, we set the control parameter ω = 5 × 10−5 for
SVM, ω = 5 × 10−3 for CNN on MNIST dataset and
ω = 5×10−4 for CNN on CIFAR-10 dataset, these parameters
were manually selected based on our experimental results in
Section V-B6. We manually select the learning rate fixed at
η = 0.01, which is acceptable for our learning process. Unless
otherwise specified, the time budget is set as T = 15 seconds
based on our experimental results in Section V-B3.

B. Results

In the above experimental setup, we first analyze the con-
vergence of the trained models and the delay time intervals of
the slow work nodes in the prototype system. Then we single
out the SVM model and the MNIST dataset for experiments
on 80% fast work nodes. These experiments show the impact
of initial {τi}, the number of work nodes, straggles, ω and
instantaneous behavior on the AAFL algorithm. Except for
the instantaneous results in Section V-B7, the others are the
average results of 10 independent experiment/simulation runs.

1) Loss and Accuracy Values: In our first set of experi-
ments, the SVM and CNN models are trained on the prototype
system with time consumptions generated in the way described
in Section V-A3.

We record the values of loss function and classification
accuracy on the SVM and CNN classifiers with the AAFL
algorithm (with adaptive {τi}), and compare them to baseline
approaches, where the results are shown in Fig. 4. Additional
results for CNN (MNIST) are included in Appendix D. We
set time budget T = 15 seconds in Fig. 4a, and it shows the
variation of loss function values and classification accuracy
between the AAFL algorithm and the second baseline with
the different fixed values of τi with 80% fast work nodes. The
centralized case (first baseline) only has one optimal value as
the training result, and we show a flat line across different
time for the ease of comparison. The above percentage of
fast work nodes represent the main reality scenario that fast
work nodes are the majority. We note that the AAFL algorithm

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Time(s)

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

L
o
s
s
 f

u
n
c
ti

o
n

SVM + MNIST

AAFL

Fix τi=min

Fix τi=avg

Fix τi=max

Centralized

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Time(s)

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

A
c
c
u
ra

c
y

SVM + MNIST

AAFL

Fix τi=min

Fix τi=avg

Fix τi=max

Centralized

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Time(s)

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

L
o
s
s
 f

u
n
c
ti

o
n

CNN + CIFAR-10

AAFL

Fix τi=min

Fix τi=avg

Fix τi=max

Centralized

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Time(s)

0.0

0.1

0.2

0.3

0.4

A
c
c
u
ra

c
y

CNN + CIFAR-10

AAFL

Fix τi=min

Fix τi=avg

Fix τi=max

Centralized

(a) Loss and accuracy with 80% fast work nodes

0 20 40 60 80 100(%)

Percentage of fast nodes

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.30

L
o
s
s
 f

u
n
c
ti

o
n

SVM + MNIST

AAFL

Fix τi=min

Fix τi=avg

Fix τi=max

Centralized

0 20 40 60 80 100(%)

Percentage of fast nodes

0.80

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

A
c
c
u
ra

c
y

SVM + MNIST

AAFL

Fix τi=min

Fix τi=avg

Fix τi=max

Centralized

0 20 40 60 80 100(%)

Percentage of fast nodes

1.4

1.6

1.8

2.0

2.2

2.4

L
o
s
s
 f

u
n
c
ti

o
n

CNN + CIRFA-10

AAFL

Fix τi=min

Fix τi=avg

Fix τi=max

Centralized

0 20 40 60 80 100(%)

Percentage of fast nodes

0.15

0.20

0.25

0.30

0.35

0.40

0.45

A
c
c
u
ra

c
y

CNN + CIRFA-10

AAFL

Fix τi=min

Fix τi=avg

Fix τi=max

Centralized

(b) Final loss and accuracy from 0% to 100% fast nodes
Fig. 4. Loss function and classification accuracy with the different percentage of fast work nodes. The curves show the results from the AAFL algorithm and
the baseline with the different fixed values of τi.

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Time(s)

0.20

0.25

0.30

0.35

0.40

0.45

0.50

L
o
s
s
 f

u
n
c
ti

o
n

SVM + MNIST

AAFL

Adaptive uniform τi

Centralized

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Time(s)

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

A
c
c
u
ra

c
y

SVM + MNIST

AAFL

Adaptive uniform τi

Centralized

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Time(s)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

L
o
s
s
 f

u
n
c
ti

o
n

CNN + CIFAR-10

AAFL

Adaptive uniform τi

Centralized

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Time(s)

0.0

0.1

0.2

0.3

0.4

0.5

A
c
c
u
ra

c
y

CNN + CIFAR-10

AAFL

Adaptive uniform τi

Centralized

Fig. 5. Loss function and classification accuracy between the AAFL algorithm
and the algorithm in [15].

has convergence and performs close to the optimal point for
all time and all models. In some cases, the AAFL algorithm
can perform better than the centralized approach, because
for a given amount of time budget, the AAFL algorithm is
able to make the effective use of the computation resource
at heterogeneous multiple work nodes, then get more total
number of SGD iterations.

It can be observed from the Fig. 4a that the great difference
between the AAFL algorithm and the fixed values of τi occurs
around the fifth second. Thus, we set the time budget T = 5
in Fig. 4b to compare the performance of the AAFL algorithm

[1, 2] (2, 4] (4, 6] (6, 8] (8, 10]

Delay time intervals at Node 5

2

4

6

8

10

12

14

A
v
e
ra

g
e
 v

a
lu

e
 o

f
τ
i

SVM + MNIST

Node 1

Node 2

Node 3

Node 4

Node 5

[1, 2] (2, 4] (4, 6] (6, 8] (8, 10]

Delay time intervals at Node 5

4

6

8

10

12

14

16

A
v
e
ra

g
e
 v

a
lu

e
 o

f
τ
i

CNN + CIFAR-10

Node 1

Node 2

Node 3

Node 4

Node 5

Fig. 6. Value of τi with different delay time intervals of slow work node.

and the fixed values of τi at the different percentages of fast
work nodes. As shown in Fig. 4b, the AAFL algorithm has
convergence and performs close to the optimal point for all
models and almost all percentages (except 0% and 100%) of
fast work nodes. The exception is because the AAFL algorithm
degrades into FedAvg algorithm when the heterogeneity of the
prototype system fades away at the 0% and 100% fast work
nodes.

We also compare the AAFL algorithm to the algorithm
which uses adaptive uniform τ (synchronous iteration strategy)
[15], which means that the value of τ is uniform at all work
nodes i and adjusted in each communication round. The results
are shown in Fig. 5. Also, we set the time budget T = 15
and 80% fast work nodes for ease of comparison. We note
that both of them have convergence, but the AAFL algorithm
has the fastest convergence rate and highest classification
accuracy of model for all cases. The results demonstrate
that our asynchronous iteration strategy performs better than
above synchronous iteration strategy in the heterogeneous edge
device system.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

0 1 2 3 4 5

Time(s)

0.20

0.25

0.30

0.35

0.40

0.45

0.50

L
o
s
s
 f

u
n
c
ti

o
n

SVM + MNIST (T= 5)

{τi} = {5}

{τi} = {10}

{τi} = {30}

{τi} = {50}

{τi} = {100}

Centralized

0 1 2 3 4 5

Time(s)

0.78

0.80

0.82

0.84

0.86

0.88

A
c
c
u
ra

c
y

SVM + MNIST (T= 5)

{τi} = {5}

{τi} = {10}

{τi} = {30}

{τi} = {50}

{τi} = {100}

Centralized

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Time(s)

0.20

0.25

0.30

0.35

0.40

0.45

0.50

L
o
s
s
 f

u
n
c
ti

o
n

SVM + MNIST (T= 15)

{τi} = {5}

{τi} = {10}

{τi} = {30}

{τi} = {50}

{τi} = {100}

Centralized

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Time(s)

0.78

0.80

0.82

0.84

0.86

0.88
A

c
c
u
ra

c
y

SVM + MNIST (T= 15)

{τi} = {5}

{τi} = {10}

{τi} = {30}

{τi} = {50}

{τi} = {100}

Centralized

Fig. 7. Loss function and classification accuracy with different values of
initial {τi}.

2) Varying Delay Time Intervals of Slow Work Nodes:
We evaluate the impact of the slow work nodes with four
independent intervals of delay time (Section V-A4) on the
prototype system (T = 15 seconds). The five work nodes in
the prototype system are divided into four fast work nodes and
one slow woke node, and all work nodes train SVM model on
MNIST dataset or train CNN model on CIFAR-10 dataset.

The results are shown in Fig. 6. We note that there are five
delay time intervals, work nodes in the delay time interval of
[1, 2] represents the stable fast work nodes and the delay time
interval of (2, 10] is divided into four small parts of the same
size (more stable changes). All fast work nodes are in the
delay time interval of [1, 2], the slow work node is selected as
variables in the above five delay time intervals. By comparing
τ5 of slow work node at the different delay time intervals,
we find that the value of τ5 decreases with increasing delay
and gradually approaches the minimum value of τ5 = 1. In
addition, τ1 to τ4 of fast work nodes increase slightly as τ5
of slow work nodes decreases. The reason for this result is
that when the delay of the slow work nodes has an increasing
impact on the FL system, the AAFL algorithm will reduce
the training frequency of the slow work nodes to make the
whole FL system balanced, that is, the fast work nodes do not
have to wait for the slow work nodes, which makes the model
converge faster within the time budget T .

Although the results are presented for the full nodes par-
ticipation setting, and the delay of slow work nodes would
exceed the above range in practice, we can extend the AAFL
algorithm to the case where a subset of nodes are sampled in
each round to solve these problems [6].

Due to the high complexity of evaluating CNN models,
we focus on the SVM model with the MNIST dataset in the
following and provide further insights on the prototype system.

3) Varying Value of Initial {τi}: As discussed in Section
IV-B, our new resulting values of {τ∗i } are always in the

0 2 4 6 8 10 12 14

Time(s)

0.20

0.25

0.30

0.35

0.40

0.45

0.50

L
o
s
s
 f

u
n
c
ti

o
n

Case 1 + 80% fast nodes

N= 5

N= 10

N= 30

N= 50

N= 50(fix)

Centralized

0 2 4 6 8 10 12 14

Time(s)

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

A
c
c
u
ra

c
y

Case 1 + 80% fast nodes

N= 5

N= 10

N= 30

N= 50

N= 50(fix)

Centralized

(a) Loss and accuracy with different number of work nodes

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Time(s)

0.20

0.25

0.30

0.35

0.40

0.45

0.50
L
o
s
s
 f

u
n
c
ti

o
n

Case 2 + 80% fast nodes
N= 5

N= 10

N= 30

N= 50

N= 50(fix)

Centralized

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Time(s)

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

A
c
c
u
ra

c
y

Case 2 + 80% fast nodes

N= 5

N= 10

N= 30

N= 50

N= 50(fix)

Centralized

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Time(s)

0.20

0.25

0.30

0.35

0.40

0.45

0.50

L
o
s
s
 f

u
n
c
ti

o
n

Case 1 + 100% fast nodes
N= 5

N= 10

N= 30

N= 50

N= 50(fix)

Centralized

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Time(s)

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

A
c
c
u
ra

c
y

Case 1 + 100% fast nodes

N= 5

N= 10

N= 30

N= 50

N= 50(fix)

Centralized

(b) Loss and accuracy for two additional settings
Fig. 8. Loss function and classification accuracy (SVM + MNIST) with the
different number of work nodes.

vicinity of the initial value of {τi}. The effect of the initial
value of {τi} for selection on the final results is shown in
Figure 7, where there are two different time budgets with 80%
fast work nodes. We find that the model has fast convergence
speed and high classification accuracy when initial {τi} is {5}
or {10}, and the convergence speed and classification accuracy
decrease with increasing {τi} at T = 5 and T = 15. This
is because the larger initial value of τi, the greater impact of
slow work nodes brings, which reduces the convergence speed.
Thus, when the time budget is small (T = 5) and the initial
value of {τi} is large ({30}, {50} and {100}), the curves
in the loss function and classification accuracy are close to
straight lines, because the step k = 0 in Algorithms 2 and 3
consumes the major time budget. Therefore, we set that the
initial {τi} = {10} and the time budget T = 15 in subsequent
experiments.

4) Varying Number of Work Nodes: The number of work
nodes varying from 5 to 50, and the results of the loss
function and classification accuracy are shown in Fig. 8a,
which are obtained in a simulated environment that we allow
the Algorithm 3 to run multiple times in parallel at each work
node. The AAFL algorithm performs stably as the number
of work nodes increases within the set of budget T = 15

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

0 20 40 60 80(%)

Percentage of stragglers

0.20

0.21

0.22

0.23

0.24

0.25

L
o
s
s
 f

u
n
c
ti

o
n

Case 1

AAFL

FedAvg

Centralized

0 20 40 60 80(%)

Percentage of stragglers

0.80

0.82

0.84

0.86

0.88

0.90

A
c
c
u
ra

c
y

Case 1

AAFL

FedAvg

Centralized

0 20 40 60 80(%)

Percentage of stragglers

0.1

0.2

0.3

0.4

0.5

0.6

0.7

L
o
s
s
 f

u
n
c
ti

o
n

Case 3

AAFL

FedAvg

Centralized

0 20 40 60 80(%)

Percentage of stragglers

0.60

0.65

0.70

0.75

0.80

0.85

0.90
A

c
c
u
ra

c
y

Case 3

AAFL

FedAvg

Centralized

Fig. 9. Loss function and classification accuracy (SVM + MNIST) with the
different number of Stragglers.

and 80% fast work nodes. We note that the convergence rate
and classification accuracy of model decrease as the number
of work nodes increases, because the number of slow work
nodes increases and the size of the dataset at each work node
decreases.

In order to find out what kind of factors have the greatest
influence on the experimental results, we add two settings of
comparison experiments: Case 1 with 100% fast work nodes
and Case 2 with 80% fast work nodes, where Case 1 is defined
in Section V-A2 and Case 2 represents each work node has
the entire dataset (thus full information). Results are shown in
Fig. 8b. In Case 1 with 100% fast work nodes, the different
number of work nodes have less impact on the convergence
speed and classification accuracy. In addition, there is almost
the same convergence speed and classification accuracy for the
different number of work nodes between Case 2 with 80%
fast work nodes and Case 1 with 80% fast work nodes. Thus,
as the number of work nodes increases, the effect of slow
work nodes significantly reduces the convergence speed and
classification accuracy.

We also fix τi equal to the average value which the AAFL
algorithm performs in all the above situations with 50 work
nodes (second baseline), and the result shows that the AAFL
algorithm performs better even when slow work nodes have a
huge impact.

5) Varying Number of Stragglers: The FedAvg algorithm
drops stragglers, thus resulting in missing information when
there is system heterogeneity [6]. We assume that the slow
work node is the straggler, and our AAFL algorithm does
not drop stragglers. The influence of dropping stragglers is
associates with the data distribution, thus, we set two Case to
represent the data distribution: IID and Non-IID. The dataset
in Section V-A2 is set for IID as Case 1, and we set all the
data samples in each work node to have the same label (Non-
IID) as Case 3. For better comparison, we set the 0 − 80%

0 2 4 6 8 10 12 14

Time(s)

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

L
o
s
s
 f

u
n
c
ti

o
n

SVM + MNIST (Case 3)

AAFL

Fix τi=min

Fix τi=avg

Fix τi=max

Centralized

0 2 4 6 8 10 12 14

Time(s)

0.76

0.78

0.80

0.82

0.84

0.86

0.88

A
c
c
u
ra

c
y

SVM + MNIST (Case 3)

AAFL

Fix τi=min

Fix τi=avg

Fix τi=max

Centralized

Fig. 10. Loss function and the classification accuracy in Case 3.

10−5 10−4 10−3 10−2 10−1

Value of ω

6

8

10

12

14

16

V
a
lu

e
 o

f
τ
i

SVM + MNIST

Node 1

Node 2

Node 3

Node 4

Node 5

(a) Value of τi with different ω

0 2 4 6 8 10 12 14

Time(s)

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.30

L
o
s
s
 f

u
n
c
ti

o
n

SVM + MNIST

ω= 10−5

ω= 10−4

ω= 10−3

ω= 10−2

ω= 10−1

Centralized

0 2 4 6 8 10 12 14

Time(s)

0.82

0.83

0.84

0.85

0.86

0.87

0.88

A
c
c
u
ra

c
y

SVM + MNIST

ω= 10−5

ω= 10−4

ω= 10−3

ω= 10−2

ω= 10−1

Centralized

(b) Loss and accuracy with different ω
Fig. 11. Impact of ω on the average value of τi, and loss function and
classification accuracy with the different values of ω.

of stragglers which correspond to the 20− 100% of fast work
nodes. As shown in Fig. 9, we set the time budget T = 15, and
the AAFL algorithm performs as well as the FedAvg in Case
1, but it has the distinctive gap between them in Case 3. The
gap shows that the AAFL algorithm has better convergence
by the adaptive {τ∗i } instead of dropping stragglers which
deteriorates the convergence of FedAvg with Non-IID data.

We also compare the loss function values and the clas-
sification accuracy of the AAFL algorithm to baseline ap-
proaches(not dropping stragglers) for the SVM (MNIST) in
Case 3. We set the 80% stragglers, and the average results are
shown in Fig. 10. We find that our AAFL algorithm still has a
faster convergence rate in Case 3, and the final loss function
values and classification accuracy are essentially the same as
the 20% fast work nodes in Case 1 (see Figure 4b).

6) Sensitivity of ω: The sensitivity of the control parameter
ω evaluated on the prototype system is shown in Fig. 11. Fig.
11a shows the average value of τi in the AAFL algorithm at

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

0 2 4 6 8 10 12 14

Time(s)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

V
a
lu

e
 o

f
c
i

ci
Node 1

Node 2

Node 3

Node 4

Node 5

0 2 4 6 8 10 12 14

Time(s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

V
a
lu

e
 o

f
b

b
Node 1-5

0 2 4 6 8 10 12 14

Time(s)

0

5

10

15

20

25

30

V
a
lu

e
 o

f
τ
i

τi
Node 1

Node 2

Node 3

Node 4

Node 5

0 2 4 6 8 10 12 14

Time(s)

0.0

0.1

0.2

0.3

0.4

0.5

V
a
lu

e
 o

f
δ
i

δi
Node 1

Node 2

Node 3

Node 4

Node 5

0 2 4 6 8 10 12 14

Time(s)

0.0

0.2

0.4

0.6

0.8

1.0

V
a
lu

e
 o

f
ρ
i

ρi
Node 1

Node 2

Node 3

Node 4

Node 5

0 2 4 6 8 10 12 14

Time(s)

0

5

10

15

20

25

30

35

40

V
a
lu

e
 o

f
β
i

βi
Node 1

Node 2

Node 3

Node 4

Node 5

Fig. 12. Instantaneous results of a single run (SVM + MNIST) with the AAFL algorithm.

each work node i with the time budget T = 15. As for more
visual observation, we set that the five work nodes have their
uniform delay time interval which is one of the five intervals in
Section V-B2. The simulated time of five work nodes, in order
from smallest to largest, are Node 1, Node 2, Node 3, Node 4
and Node 5. We see that the slowest nodes have the small value
of τ , and the gap between τi decreases approximately linearly
with logω and degrades into FedAvg algorithm at ω = 0.1.
When ω = 0.1, all the fast work nodes and slow work nodes
have the same value of local iterations that bring less global
aggregation times. This is because the initial value of model
parameters is close to the optimal value where the model has
no more training by the definition of ω.

Fig. 11b shows the average value of loss function and clas-
sification accuracy in the AAFL algorithm with the different
values of ω, time budget T = 15 and 80% fast work nodes
on the prototype system. We see that the small changes of ω
does not change the value of loss function and classification
accuracy much, indicating that one can take big steps when
tuning ω in practice and the tuning is not difficult.

7) Instantaneous Results: We finally study the instanta-
neous behavior of the AAFL algorithm for a single run with
the time budget T = 15 and 80% fast work nodes on the
prototype system. Results for SVM (MNIST) is shown in Fig.
12, the red line represents the slowest work node (Node 5) in
the delay time interval of (2, 10], and the rest are the fast work
nodes (Node 1-4) in the delay time interval of [1, 2]. There is
only one curve for the b-value record, which is because all
work nodes share a global aggregation time.

We see that the simulated value of ci at Node 5 changes
dramatically over time, representing unstable performance,
while on other work nodes the opposite is true. It is consistent
with the description we mentioned in Section V-A4. Also, the
simulated value of b is unstable over time, where it represents
our simulation of the heterogeneous system. Moreover, we
find that The value of τ5 and c5 (Node 5) has an opposite
relationship. It represents that the slowest work node has a
small value of τ , and is the same as what we mentioned in
Section V-B6.

The values of δi, βi and ρi are parameters to recompute

{τ∗i }. By their definitions in Section IV, δi and βi are related
to the gradients of the model on the training dataset, and the
data samples on different work nodes are usually different, so
δi and βi are consistently varied. In addition, the value of ρi
is related to the model loss function, and as the global model
converges, the difference between the loss functions becomes
small, and the value of ρi at each work node reduces over
time.

C. Applications

We also apply the FedAvg algorithm and the AAFL algo-
rithm on CNN-SVM model [43] with six public COVID-19 X-
ray images databases (Da, Db, Dc, Dd, De, Df)3, and evaluate
the performance under the situation of Case 1 with 80% fast
work nodes on the prototype system. The CNN-SVM model
is CNN network with SVM output layer, and see [43] for the
definitions of loss function and accuracy. These images are fed
to CNN deep learning model followed by SVM classifier with
the identification of ‘Normal’ or ‘COVID-19’. It can learn with
not much data, thus is more suitable to run on our prototype
system. In databases Db and Df , because there is no test
dataset, we use the validation dataset to replace the test dataset.
As for Da, Dc, and Dd, we use the 10-fold cross-validation
strategy.

1) Performance: In this set of experiments, we fix the time
to 500 seconds and record the loss and accuracy values of
the models trained by the AAFL algorithm and the FedAvg
algorithm on all datasets. We choose the time point of 500
seconds because the time required for all models to complete
training is around 1000 seconds. The difference between the
AAFL algorithm and the FedAvg algorithm is pronounced at
around halfway through training according to what is shown by
Section V-B1. Then, we conduct 10 independent experiments

3The six public databases can be accessed from these links:
Da:www.kaggle.com/amanullahasraf/covid19-pneumonia-normal-chest-xray-
pa-dataset
Db: www.kaggle.com/fusicfenta/chest-xray-for-covid19-detection
Dc: www.kaggle.com/tawsifurrahman/covid19-radiography-database
Dd: www.kaggle.com/tarandeep97/covid19-normal-posteroanteriorpa-xrays
De: www.kaggle.com/khoongweihao/covid19-xray-dataset-train-test-sets
Df : www.kaggle.com/darshan1504/covid19-detection-xray-dataset

https://www.kaggle.com/fusicfenta/chest-xray-for-covid19-detection
https://www.kaggle.com/darshan1504/covid19-detection-xray-dataset
https://www.kaggle.com/amanullahasraf/covid19-pneumonia-normal-chest-xray-pa-dataset
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/tarandeep97/covid19-normal-posteroanteriorpa-xrays
https://www.kaggle.com/amanullahasraf/covid19-pneumonia-normal-chest-xray-pa-dataset
https://www.kaggle.com/amanullahasraf/covid19-pneumonia-normal-chest-xray-pa-dataset
https://www.kaggle.com/fusicfenta/chest-xray-for-covid19-detection
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/tarandeep97/covid19-normal-posteroanteriorpa-xrays
https://www.kaggle.com/khoongweihao/covid19-xray-dataset-train-test-sets
https://www.kaggle.com/darshan1504/covid19-detection-xray-dataset

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

TABLE II
PERFORMANCE ON VARIOUS COVID-19 DATASETS WITHIN FIXED TIME

Dataset Algorithm Optimal Accuracy (%) Loss Accuracy (%)

Da
FedAvg 96.23 0.21 84.38
AAFL 0.11 95.15

Db
FedAvg 95.56 0.27 92.93
AAFL 0.19 94.14

Dc
FedAvg 96.36 0.22 93.13
AAFL 0.15 94.86

Dd
FedAvg 93.03 0.26 87.79
AAFL 0.21 90.51

De
FedAvg 88.44 0.51 82.00
AAFL 0.36 85.21

Df
FedAvg 82.28 0.60 75.34
AAFL 0.49 79.11

TABLE III
TIME CONSUMPTION ON DIFFERENT COVID-19 DATASET

Dataset Accuracy (%) Algorithm Time Consumption (seconds)

Da 96.23 FedAvg 1194.93
AAFL 744.42

Db 95.56 FedAvg 1010.81
AAFL 681.17

Dc 96.36 FedAvg 1179.02
AAFL 978.05

Dd 93.03 FedAvg 938.92
AAFL 887.84

De 88.44 FedAvg 867.01
AAFL 637.56

Df 82.28 FedAvg 1151.16
AAFL 957.43

with the AAFL algorithm on each dataset and average the
results.

As shown in Table II, Optimal accuracy is the optimal
classification accuracy obtained using centralized SGD to mea-
sure whether the model converges. The difference is relatively
large between the models obtained by the AAFL algorithm
and the FedAvg algorithm, where the models are compared
by both loss and accuracy values at the time node of 500
seconds. Meanwhile, by comparing with optimal accuracy, the
accuracy of models obtained by the AAFL algorithm is closer
to the optimal accuracy than Fedavg algorithm, although all
models did not converge. Thus, the AAFL algorithm converges
faster than Fedavg algorithm on all these COVID-19 X-ray
images datasets within the time budget. To further prove this
conclusion, we conducted the next experiment.

2) Convergence Rate: To further study the AAFL algo-
rithm, we do not impose any constraint on time to analyze
the convergence speed of the AAFL algorithm and FedAvg
algorithm. The quantitative metric tested is the time consump-
tion for each model to converge to near the optimum (optimal
classification accuracy).

The average results of 10 independent experiment runs are
shown in Table III. We note that the optimal accuracy of the
CNN-SVM model is not high on datasets De and Df , which
is due to the inherent characteristics of the model and dataset,
so we still use it as the convergence criterion. We can see
that both the AAFL algorithm and FedAvg algorithm converge
without time constraints, but the AAFL algorithm takes less
time to reach the optimum than FedAvg algorithm in all six
public datasets. Moreover, in the case of the largest difference,

the AAFL algorithm takes only about 67% time consumption
of the FedAvg algorithm to complete the task. It shows that
the AAFL algorithm in the heterogeneous prototype system
has significant convergence rate gains over FedAvg for the
selected datasets and model.

Considering the overall experiments and applications, we
can conclude that the AAFL scheme provides an efficient
performance for countering communicable infectious diseases
(COVID-19) in Edge-Based wireless medical system.

VI. CONCLUSION AND THE FUTURE WORK

In order to improve the efficiency of federated learning
in the heterogeneous Edge-Based wireless communication
systems for countering the communicable infectious disease of
COVID-19, this paper proposed an AAFL scheme that controls
the number of local SGD iterations on medical devices to
obtain the fast convergence of training models. We analyze
the mathematical relationships between the number of local
SGD iterations and the optimal model parameters of FL, and
design an adaptive control algorithm from this relationship to
minimize the loss function under a time budget constraint. Our
experimental results and application performance confirmed
the effectiveness of our AAFL scheme. In the future, we will
explore how AAFL performs in the various distribution of
the COVID-19 data, and assign more effective weights for
updating the global model based on the number and feature
of samples per work node.

ACKNOWLEDGMENTS

This work was supported by National Natural Science
Foundation of China (Grant No.62162024 and 62162022),
Key Projects in Hainan Province (Grant ZDYF2021GXJS003
and Grant ZDYF2020040), the Major science and technology
project of Hainan Province (Grant No.ZDKJ2020012).

APPENDIX A
DISTRIBUTED VS. CENTRALIZED SGD

Proposition 1. When τ = 1, Algorithm 1 yields the following
recurrence relation for wk:

wk = wk−1 − η∇F (wk−1) . (24)

Proof. When τ = 0, we have wi,λ=0
k = wk−1 for all k and

i. Thus,

wk =

∑N
i=1Diw

i,λ=1
k

D

=

∑N
i=1Di

(
wi,λ=0
k − η∇Fi

(
wi,λ=0
k

))
D

=

∑N
i=1Diwk−1

D
−
∑N
i=1Diη∇Fi (wk−1)

D
= wk−1 − η∇F (wk−1) ,

where the second term in the last equality is because∑N
i=1Diη∇Fi (wk−1)

D

= η∇
∑N
i=1DiFi (wk−1)

D
= η∇F (wk−1) .

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 16

The last equation is due to the linearity of the gradient
operator.

We note that (24) is the recurrence relation for centralized
SGD on the global loss F (w). Therefore, the distributed SGD
algorithm presented in Algorithm 1 is logically equivalent
to centralized SGD for τ = 1. The proof of Theorem 1 is
presented in the next section.

APPENDIX B
PROOF OF THEOREM 1

To prove Theorem 1, we first introduce the following
lemma.

Lemma 2. For any k, i and λ ∈ [0, τi], we have∥∥∥wi,λ
k − vi,λk

∥∥∥ ≤ gi(λ),
where we define the function gi(λ) as

gi(λ) ,
δi
βi

(
(ηβi + 1)

λ − 1
)
.

Proof. We show by induction that
∥∥∥wi,λ

k − vi,λk

∥∥∥ ≤ gi(λ) for
any k and all λ ∈ [0, τi].

When λ = 0, we know that vi,λ=0
k = wi,λ=0

k by the
definition of vi,λk , and we have

∥∥∥wi,λ=0
k − vi,λ=0

k

∥∥∥ = gi (0).
Thus, for the induction with λ ∈ [1, τi + 1], we assume that∥∥∥wi,λ−1

k − vi,λ−1k

∥∥∥ ≤ gi(λ− 1). (25)

We now show that
∥∥∥wi,λ

k − vi,λk

∥∥∥ ≤ gi(λ) holds for λ. We
have∥∥∥wi,λ

k − vi,λk

∥∥∥
=
∥∥∥wi,λ−1

k − η∇Fi
(
wi,λ−1
k

)
− vi,λ−1k + η∇F

(
vi,λ−1k

)∥∥∥
= ‖

(
wi,λ−1
k − vi,λ−1k

)
− η

(
∇Fi

(
wi,λ−1
k

)
−∇Fi

(
vi,λ−1k

))
− η

(
∇Fi

(
vi,λ−1k

)
−∇F

(
vi,λ−1k

))
‖

(adding a zero term
[
η∇Fi

(
vi,λ−1k

)
− η∇Fi

(
vi,λ−1k

)]
, and

rearranging)

≤
∥∥∥wi,λ−1

k − vi,λ−1k

∥∥∥+ η
∥∥∥∇Fi (wi,λ−1

k

)
−∇Fi

(
vi,λ−1k

)∥∥∥
+ η

∥∥∥∇Fi (vi,λ−1k

)
−∇F

(
vi,λ−1k

)∥∥∥
(from triangle inequality)

≤ (ηβi + 1)
∥∥∥wi,λ−1

k − vi,λ−1k

∥∥∥+ ηδi

(from the Definition 1 and β -smoothness of Assumption 1)

≤ δi
βi

(ηβi + 1)
(
(ηβi + 1)

λ−1 − 1
)
+ ηδi

(from the assumption in (25))

=
δi
βi

(
(ηβi + 1)

λ − 1
)
.

Using the above induction, we have shown that∥∥∥wi,λ
k − vi,λk

∥∥∥ ≤ gi(λ) for any k and all λ ∈ [0, τi].

We are now ready to prove Theorem 1.

proof of Theorem 1. From the definition of gi(λ) in Lemma
2 and the ρ-Lipschitz in Assumption 1, for any k ∈ [1,K],
we have

F (wk)− F (vk)

=

∑N
i=1DiFi

(
wi,λ=τi
k−1

)
D

−

∑N
i=1DiFi

(
vi,λ=τik−1

)
D

=

∑N
i=1Di

(
Fi

(
wi,λ=τi
k−1

)
− Fi

(
vi,λ=τik−1

))
D

≤

∑N
i=1Diρi

∥∥∥wi,λ=τi
k−1 − vi,λ=τik−1

∥∥∥
D

≤
∑N
i=1Diρigi (τi)

D
.

The proof of Lemma 1 is presented in the next section.

APPENDIX C
PROOF OF LEMMA 1

To prove Lemma 1, we first introduce some additional
definitions and lemmas.

Definition 2. For a round k and work node i, we define θi,λk =

F
(
vi,λk

)
− F (w∗), λ is defined between 0 ≤ λ ≤ τi.

According to the convergence lower bound of SGD given
in [44], Therem 3.14, we always have

θi,λk > 0, (26)

for any finite λ, k and i.

Lemma 3. For any k, i, and λ ∈ [0, τi − 1], we have

Fi

(
vi,λ+1
k

)
− Fi

(
vi,λk

)
≤ −η

(
1− ηβi

2

)∥∥∥∇Fi (vi,λk)∥∥∥2 .
(27)

Proof. Because Fi (.) β-smooth, we have
0 ≤ f(x)− f(y)−∇f(y)T (x− y) ≤ β

2
‖x− y‖2

f(x)− f(y) ≤ ∇f(x)T (x− y)− 1

2β
‖∇f(x)−∇f(y)‖2,

for arbitrary x and y [44], where ∇f(.)T is the transpose of
∇f(.). Thus,

Fi

(
vi,λ+1
k

)
− Fi

(
vi,λk

)
≤ ∇Fi

(
vi,λk

)T (
vi,λ+1
k − vi,λk

)
+
βi
2

∥∥∥vi,λ+1
k − vi,λk

∥∥∥2
= ∇Fi

(
vi,λk

)T (
−η∇Fi

(
vi,λk

))
+
η2βi
2

∥∥∥∇Fi (vi,λk)∥∥∥2
= −η

(
1− ηβi

2

)∥∥∥∇Fi (vi,λk)∥∥∥2 .
Lemma 4. For any k, i, and λ ∈ [0, τi − 1], we have

θi,λ+1
k − θi,λk ≤ −ηϕiε

2, (28)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 17

where ω = mini,λ
1∥∥∥∥vi,λ

k
−w∗

∥∥∥∥2 , and ϕi ,
(
1− ηβi

2

)
ω.

Proof. By definition, θi,λk = Fi

(
vi,λk

)
−F (w∗) and θi,λ+1

k =

Fi

(
vi,λ+1
k

)
− F (w∗). Substituting this into (27) in Lemma

3 yields.

θi,λ+1
k − θi,λk ≤ −η

(
1− ηβi

2

)∥∥∥∇Fi (vi,λk)∥∥∥2 . (29)

The convexity condition gives

θi,λk = Fi

(
vi,λk

)
− F (w∗)

≤ ∇Fi
(
vi,λk

)T (
vi,λk −w∗

)
− 1

2βi

∥∥∥∇Fi (vi,λk)−∇F (w∗)
∥∥∥2

(from the β -smoothness in Lemma 3)

≤ ∇Fi
(
vi,λk

)T (
vi,λk −w∗

)
≤
∥∥∥∇Fi (vi,λk)∥∥∥∥∥∥vi,λk −w∗

∥∥∥ ,
where the last inequality is from the Cauchy-Schwarz inequal-
ity. Hence, (

θi,λk

)2
∥∥∥(vi,λk − (w∗

∥∥∥2 ≤
∥∥∥∇Fi ((vi,λk)∥∥∥2 . (30)

Obviously, we have η > 0, and when 1 − ηβi
2 ≥ 0, (30) is

converted to

− η
(
1− ηβi

2

)∥∥∥∇Fi (vi,λk)∥∥∥2
≤ −η

(
1− ηβi

2

) (
θi,λk

)2
∥∥∥(vi,λk − (w∗

∥∥∥2 .
(31)

Substituting (31) into (29), we get

θi,λ+1
k − θi,λk ≤ −η

(
1− ηβi

2

) (
θi,λk

)2
∥∥∥(vi,λk − (w∗

∥∥∥2 . (32)

Recall that we defined ω = mini,λ
1∥∥∥∥vi,λ

k
−w∗

∥∥∥∥2 , and ϕi ,(
1− ηβi

2

)
ω, and it is assumed that Fi

(
vi,λk

)
−F (w∗) ≥ ε.

Therefore, we have θi,λk = Fi

(
vi,λk

)
− F (w∗) ≥ ε, and (32)

is converted to

θi,λ+1
k − θi,λk ≤ −ηϕiε

2.

Lemma 5. For any k ∈ [1,K] and i, we have

F (vk)− F (wk−1) ≤ −ηε2
∑N
i=1Diϕiτi
D

. (33)

Proof. Using Lemma 4 and considering λ ∈ [0, τi − 1], we
have

Fi

(
vi,λ=τik

)
− Fi

(
vi,λ=0
k

)
= θi,λ=τik − θi,λ=0

k

=

τi−1∑
λi=0

θi,λ+1
k − θi,λk

≤ −ηϕiτiε2.

Thus, for k ∈ [1,K], we have

F (vk)− F (wk−1)

=

∑N
i=1DiFi

(
vi,λ=τik−1

)
D

−
∑N
i=1DiFi (wk−1)

D

=

∑N
i=1DiFi

(
vi,λ=τik−1

)
D

−

∑N
i=1DiFi

(
vi,λ=0
k−1

)
D

=

∑N
i=1Di

(
Fi

(
vi,λ=τik−1

)
− Fi

(
vi,λ=0
k−1

))
D

≤ −ηε2
∑N
i=1Diϕiτi
D

.

We are now ready to prove Lemma 2.

Proof of Lemma 2. Summing up (33) for all k = 1, 2, ...,K,
we have

K∑
k=1

F (vk)− F (wk−1) ≤ −Kηε2
∑N
i=1Diϕiτi
D

.

Rewriting the left-hand side.

F (vK)− F (w0)−
K∑
k=2

F (wk−1)− F (vk−1)

≤ −Kηε2
∑N
i=1Diϕiτi
D

.

According to Theorem 1, we get

F (vK)− F (w0)

≤ (K − 1)

∑N
i=1Diρigi (τi)

D
−Kηε2

∑N
i=1Diϕiτi
D

,

and

F (wK)− F (vK) ≤
∑N
i=1Diρigi (τi)

D
.

Combining the above, we get

F (wK)− F (w0)

≤ K
∑N
i=1Diρigi (τi)

D
−Kηε2

∑N
i=1Diϕiτi
D

.

Equivalently,

(F (wK) −F (w∗))− (F (w0)− F (w∗))

≤ K
∑N
i=1Diρigi (τi)

D
−Kηε2

∑N
i=1Diϕiτi
D

.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 18

Recall that we defined I = F (w0) − F (w∗), Bi =∑N
i=1Diρigi(τi)

D and Ci =
∑N
i=1Diϕiτi

D , thus

F (wK)− F (w∗) ≤ I +KBi −Kηε2Ci.

APPENDIX D
ADDITIONAL RESULTS ON LOSS AND ACCURACY VALUES

See Fig. 13, Fig. 14 and Fig. 15.

0 2 4 6 8 10 12 14

Time(s)

0.0

0.5

1.0

1.5

2.0

L
o
s
s
 f

u
n
c
ti

o
n

CNN + MNIST

AAFL

Fix τi=min

Fix τi=avg

Fix τi=max

Centralized

0 2 4 6 8 10 12 14

Time(s)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
c
c
u
ra

c
y

CNN + MNIST

AAFL

Fix τi=min

Fix τi=avg

Fix τi=max

Centralized

Fig. 13. Loss and accuracy with 80% fast work nodes for CNN + MNIST.

0 20 40 60 80 100(%)

Percentage of fast nodes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

L
o
s
s
 f

u
n
c
ti

o
n

CNN + MNIST

AAFL

Fix τi=min

Fix τi=avg

Fix τi=max

Centralized

0 20 40 60 80 100(%)

Percentage of fast nodes

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
c
c
u
ra

c
y

CNN + MNIST

AAFL

Fix τi=min

Fix τi=avg

Fix τi=max

Centralized

Fig. 14. Final loss and accuracy from 0% to 100% fast nodes for CNN +
MNIST.

0 2 4 6 8 10 12 14

Time(s)

0.0

0.5

1.0

1.5

2.0

L
o
s
s
 f

u
n
c
ti

o
n

CNN + MNIST

AAFL

Adaptive uniform τi

Centralized

0 2 4 6 8 10 12 14

Time(s)

0.0

0.2

0.4

0.6

0.8

1.0

A
c
c
u
ra

c
y

CNN + MNIST

AAFL

Adaptive uniform τi

Centralized

Fig. 15. Loss function and classification accuracy between the AAFL
algorithm and the algorithm in [15] for CNN + MNIST.

REFERENCES

[1] N. J. Beeching, T. E. Fletcher, and M. B. Beadsworth, “Covid-19: testing
times,” Bmj, vol. 369, 2020.

[2] J. C. Gomes, V. A. d. F. Barbosa, M. A. Santana et al., “Ikonos: an
intelligent tool to support diagnosis of covid-19 by texture analysis of
x-ray images,” Research on Biomedical Engineering, pp. 1–14, 2020.

[3] M. van der Schaar, A. M. Alaa, A. Floto, A. Gimson, S. Scholtes,
A. Wood, E. McKinney, D. Jarrett, P. Lio, and A. Ercole, “How artificial
intelligence and machine learning can help healthcare systems respond
to covid-19,” Machine Learning, vol. 110, no. 1, pp. 1–14, 2021.

[4] S. Naz, K. T. Phan, and Y.-P. P. Chen, “A comprehensive review of
federated learning for covid-19 detection,” International Journal of
Intelligent Systems, vol. 37, no. 3, pp. 2371–2392, 2022.

[5] W. N. Price and I. G. Cohen, “Privacy in the age of medical big data,”
Nature medicine, vol. 25, no. 1, pp. 37–43, 2019.

[6] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[7] P. Kairouz, H. B. McMahan et al., “Advances and open problems in
federated learning,” Foundations and Trends® in Machine Learning,
vol. 14, no. 1–2, pp. 1–210, 2021.

[8] I. Dayan, H. R. Roth, A. Zhong, A. Harouni, A. Gentili, A. Z. Abidin,
A. Liu, A. B. Costa, B. J. Wood, C.-S. Tsai et al., “Federated learning for
predicting clinical outcomes in patients with covid-19,” Nature medicine,
vol. 27, no. 10, pp. 1735–1743, 2021.

[9] A. Castiglione, M. Umer, S. Sadiq, M. S. Obaidat, and P. Vijayakumar,
“The role of internet of things to control the outbreak of covid-19
pandemic,” IEEE Internet of Things Journal, vol. 8, no. 21, pp. 16 072–
16 082, 2021.

[10] J. Wang and G. Joshi, “Cooperative SGD: A unified framework for
the design and analysis of local-update SGD algorithms,” Journal of
Machine Learning Research, vol. 22, no. 213, pp. 1–50, 2021.

[11] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” in Proceedings of
Machine Learning and Systems, vol. 2, 2020, pp. 429–450.

[12] M. S. H. Abad, E. Ozfatura, D. GUndUz, and O. Ercetin, “Hierarchical
federated learning across heterogeneous cellular networks,” in ICASSP
2020 - 2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2020, pp. 8866–8870.

[13] H. Jiang, M. Liu, B. Yang, Q. Liu, J. Li, and X. Guo, “Customized
federated learning for accelerated edge computing with heterogeneous
task targets,” Computer Networks, vol. 183, p. 107569, 2020.

[14] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, “Tackling the ob-
jective inconsistency problem in heterogeneous federated optimization,”
in Advances in Neural Information Processing Systems, vol. 33, 2020,
pp. 7611–7623.

[15] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge com-
puting systems,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 6, pp. 1205–1221, 2019.

[16] B. Yan, J. Wang, J. Cheng, Y. Zhou, Y. Zhang, Y. Yang, L. Liu,
H. Zhao, C. Wang, and B. Liu, “Experiments of federated learning for
covid-19 chest x-ray images,” in International Conference on Artificial
Intelligence and Security. Springer, 2021, pp. 41–53.

[17] R. Kumar, A. A. Khan, J. Kumar, N. A. Golilarz, S. Zhang, Y. Ting,
C. Zheng, W. Wang et al., “Blockchain-federated-learning and deep
learning models for covid-19 detection using ct imaging,” IEEE Sensors
Journal, vol. 21, no. 14, pp. 16 301–16 314, 2021.

[18] W. Zhang, T. Zhou, Q. Lu, X. Wang, C. Zhu, H. Sun, Z. Wang, S. K. Lo,
and F.-Y. Wang, “Dynamic-fusion-based federated learning for covid-19
detection,” IEEE Internet of Things Journal, vol. 8, no. 21, pp. 15 884–
15 891, 2021.

[19] C. Wang, X. Wei, and P. Zhou, “Optimize scheduling of federated learn-
ing on battery-powered mobile devices,” in 2020 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2020, pp. 212–
221.

[20] C. Xie, O. Koyejo, and I. Gupta, “Asynchronous federated optimization,”
ArXiv, vol. abs/1903.03934, 2019.

[21] Q. Ma, Y. Xu, H. Xu, Z. Jiang, L. Huang, and H. Huang, “FedSA:
A semi-asynchronous federated learning mechanism in heterogeneous
edge computing,” IEEE Journal on Selected Areas in Communications,
vol. 39, no. 12, pp. 3654–3672, 2021.

[22] A. Feraudo, P. Yadav, V. Safronov, D. A. Popescu, R. Mortier, S. Wang,
P. Bellavista, and J. Crowcroft, “CoLearn: Enabling federated learning in
MUD-compliant IoT edge networks,” in Proceedings of the Third ACM
International Workshop on Edge Systems, Analytics and Networking, ser.
EdgeSys ’20, 2020, p. 25–30.

[23] D. Conway-Jones, T. Tuor, S. Wang, and K. Leung, “Demonstration of
federated learning in a resource-constrained networked environment,” 06
2019, pp. 484–486.

[24] Y. Chen, X. Sun, and Y. Jin, “Communication-efficient federated deep
learning with layerwise asynchronous model update and temporally

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 19

weighted aggregation,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 31, no. 10, pp. 4229–4238, 2020.

[25] S. Zheng, Q. Meng, T. Wang, W. Chen, N. Yu, Z.-M. Ma, and T.-Y. Liu,
“Asynchronous stochastic gradient descent with delay compensation,” in
Proceedings of the 34th International Conference on Machine Learning
- Volume 70, ser. ICML’17. JMLR.org, 2017, p. 4120–4129.

[26] A. Khaled, K. Mishchenko, and P. Richtárik, “First analysis of local GD
on heterogeneous data,” ArXiv, vol. abs/1909.04715, 2019.

[27] F. Haddadpour, M. M. Kamani, M. Mahdavi, and V. Cadambe, “Local
SGD with periodic averaging: Tighter analysis and adaptive synchroniza-
tion,” in Advances in Neural Information Processing Systems, vol. 32.
Curran Associates, Inc., 2019.

[28] H. T. Nguyen, V. Sehwag, S. Hosseinalipour, C. G. Brinton, M. Chiang,
and H. Vincent Poor, “Fast-convergent federated learning,” IEEE Journal
on Selected Areas in Communications, vol. 39, no. 1, pp. 201–218, 2021.

[29] A. Khaled, K. Mishchenko, and P. Richtárik, “Tighter theory for local
SGD on identical and heterogeneous data,” in The 23rd International
Conference on Artificial Intelligence and Statistics, vol. 108. PMLR,
2020, pp. 4519–4529.

[30] S. U. Stich and S. P. Karimireddy, “The error-feedback framework: SGD
with delayed gradients,” Journal of Machine Learning Research, vol. 21,
no. 237, pp. 1–36, 2020.

[31] B. E. Woodworth, K. K. Patel, S. U. Stich, Z. Dai, B. Bullins, H. B.
McMahan, O. Shamir, and N. Srebro, “Is local SGD better than
minibatch SGD?” in Proceedings of the 37th International Conference
on Machine Learning, vol. 119. PMLR, 2020, pp. 10 334–10 343.

[32] H. Yu, S. Yang, and S. Zhu, “Demystifying why model averaging works
for deep learning,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, p. 5693–5700, 2019.

[33] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of FedAvg on Non-IID data,” in 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-
30, 2020. OpenReview.net, 2020.

[34] X.-F. Liang, S. Shen, J. Liu, Z. Pan, E. Chen, and Y. Cheng, “Variance
reduced local SGD with lower communication complexity,” ArXiv, vol.
abs/1912.12844, 2019.

[35] F. Haddadpour and M. Mahdavi, “On the convergence of local descent
methods in federated learning,” ArXiv, vol. abs/1910.14425, 2019.

[36] S. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. Suresh,
“SCAFFOLD: Stochastic controlled averaging for federated learning,”
in 37th International Conference on Machine Learning, ICML 2020.
International Machine Learning Society (IMLS), 2020, pp. 5088–5099.

[37] N. Ivkin, D. Rothchild, E. Ullah, I. Stoica, R. Arora et al.,
“Communication-efficient distributed sgd with sketching,” Advances in
Neural Information Processing Systems, vol. 32, 2019.

[38] H. Yu, R. Jin, and S. Yang, “On the linear speedup analysis of communi-
cation efficient momentum sgd for distributed non-convex optimization,”
in International Conference on Machine Learning. PMLR, 2019, pp.
7184–7193.

[39] F. Haddadpour, M. M. Kamani, M. Mahdavi, and V. Cadambe, “Trading
redundancy for communication: Speeding up distributed sgd for non-
convex optimization,” in International Conference on Machine Learning.
PMLR, 2019, pp. 2545–2554.

[40] M. K. Nori, S. Yun, and I.-M. Kim, “Fast federated learning by balancing
communication trade-offs,” IEEE Transactions on Communications,
vol. 69, no. 8, pp. 5168–5182, 2021.

[41] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[42] A. Krizhevsky et al., “Learning multiple layers of features from tiny
images,” 2009.

[43] D. Sharifrazi, R. Alizadehsani, M. Roshanzamir, and J. H. Joloudari,
“Fusion of convolution neural network, support vector machine and
sobel filter for accurate detection of COVID-19 patients using x-ray
images,” Biomedical Signal Processing and Control, vol. 68, p. 102622,
2021.

[44] S. Bubeck et al., “Convex optimization: Algorithms and complexity,”
Foundations and Trends® in Machine Learning, vol. 8, no. 3-4, pp.
231–357, 2015.

Jieren Cheng (Member, IEEE, 2020) is now a
Professor and the Associate Dean of School of Com-
puter Science & Technology in Hainan University,
China. He received his Ph.D. degree in Computer
Science and Technology from National University
of Defense Technology (NUDT) in 2010. He is
awarded as “Famous South China Sea Scholar”.
He serves as the director of the Hainan Provin-
cial Blockchain Technology Engineering Research
Center. His research interests include Blockchain,
Big Data, Cloud Computing, Cyberecurity, Artificial

Intelligence and Intelligent Transportation.
He hosted three National Natural Science Foundation of China, national

defense key research projects, China-US Computer Science Research Center
Open Project, Ministry of Education Industry-University-Research Collabora-
tive Education Project, Ministry of Education “Tiancheng Huizhi” Innovation
and Education Fund, Hainan Province Key, R&D innovation team projects,
Hainan Provincial Key R&D Projects, Hainan Provincial Natural Science
Foundation Projects, Hainan Provincial Science and Technology Enterprise
Technology Innovation Fund Projects, and Hunan Provincial Twelfth Five-
Year Plan Projects, with a total project funding of more than 10 million.
He participated in 10 national key projects as the main person in charge,
including the National Natural Science Foundation of China, the National
Defense Preliminary Research Key Project, the National Support Plan, and
the Innovation Planning Project of the Ministry of Public Security. He has
won 24 provincial-level projects and 12 school-level projects such as the
Provincial Natural Science Foundation, the Provincial Science and Technology
Plan Fund, and the Provincial Department of Education Key Project.

He is a senior member of CCF and a member of IEEE/ACM. He has been
invited to serve as a reviewer in several journals and international conferences,
e.g., Computer Research and Development, Computer Science, FAW, and a
PC member for several international conferences. He won the ICAIS 2021
Outstanding Organization Chairman, ICCCS 2018 Outstanding Contribution
Award, and the first prize of ICCCS 2018 and ICCCS 2017 Excellent Papers.

Ping Luo (Student Member, IEEE, 2022) is cur-
rently pursuing the MA.Eng. degree in Computer
Science and Technology with Hainan University,
Haikou, China. He received his B.Eng. degree in
Cyberspace Security (Cryptology) with Hainan Uni-
versity, Haikou, China. His research interests in-
clude Convex Optimization, the Industrial Internet
of Things and Artificial Intelligence.

N. Xiong (S’05–M’08–SM’12) is current a Distin-
guished Professor at National Engineering Research
Center for E-Learning, Central China Normal Uni-
versity (CCNU), Wuhan, Hu Bei Province, 430079,
China. He is also with the Department of Com-
puter Science, Georgia State University, Atlanta, GA
30302, USA. He received his PhD degree in School
of Information Science, Japan Advanced Institute
of Science and Technology (JAIST) on March 1,
2008. His research interests include Deep Learning,
Reliable Networks, Software Engineering, and Big

Data Analytics.
Dr. Xiong works in CCNU for many years, and obtained many research

funding and many industrial projects. He published over 600 journal paper
with 200+ IEEE journal papers. He also creates a company about design and
analysis for complex reliable software systems, and obtains over 10 patents.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 20

Jie Wu (Fellow, IEEE, 2009) is the Director of
the Center for Networked Computing and Laura
H. Carnell professor at Temple University. He also
serves as the Director of International Affairs at
College of Science and Technology. He served as
Chair of Department of Computer and Information
Sciences from the summer of 2009 to the summer of
2016 and As- sociate Vice Provost for International
Affairs from the fall of 2015 to the summer of 2017.
Prior to joining Temple University, he was a program
director at the National Science Foundation and was

a distinguished professor at Florida Atlantic University. His current research
interests include mobile computing and wireless networks, rout- ing protocols,
network trust and security, distributed algorithms, applied machine learning,
and cloud computing. Dr. Wu regularly publishes in scholarly journals, confer-
ence proceedings, and books. He serves on several editorial boards, including
IEEE Transactions on Mobile Computing, IEEE Transactions on Service
Computing, Journal of Parallel and Distributed Computing, and Journal of
Computer Science and Technology. Dr. Wu is/was general chair/co-chair for
IEEE IPDPS’08, IEEE DCOSS’09, IEEE ICDCS’13, ACM MobiHoc’14,
ICPP’16, IEEE CNS’16, WiOpt’21, and ICDCN’22 as well as program
chair/cochair for IEEE MASS’04, IEEE INFO- COM’11, CCF CNCC’13,
and ICCCN’20. He was an IEEE Computer Society Dis- tinguished Visitor,
ACM Distinguished Speaker, and chair for the IEEE Technical Committee on
Distributed Processing (TCDP). Dr. Wu is a Fellow of the AAAS and a Fellow
of the IEEE. He is the recipient of the 2011 China Computer Federation (CCF)
Overseas Outstanding Achievement Award.

	Introduction
	Related Work
	Preliminaries and Definitions
	Loss Function
	The Federated Averaging (FedAvg) Algorithm
	Problem Formulation

	Our Proposed AAFL Scheme
	Convergence Analysis
	Approximate Solution to (7)
	Control Algorithm of AAFL
	Estimation of Parameters in G(i)
	Recomputing i*
	Handling of SGD

	Performance Analysis
	Setup
	Baselines
	Model and Datasets
	Simulation of Time Consumption
	Simulation of Heterogeneous System
	Training and Control Parameters

	Results
	Loss and Accuracy Values
	Varying Delay Time Intervals of Slow Work Nodes
	Varying Value of Initial i
	Varying Number of Work Nodes
	Varying Number of Stragglers
	Sensitivity of
	Instantaneous Results

	Applications
	Performance
	Convergence Rate

	Conclusion and The Future Work
	Appendix A: Distributed vs. Centralized SGD
	Appendix B: Proof of Theorem 1
	Appendix C: Proof of Lemma 1
	Appendix D: Additional Results on Loss and Accuracy Values
	References
	Biographies
	Jieren Cheng
	Ping Luo
	N. Xiong
	Jie Wu

